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Activity recognition is an important component of many pervasive computing applications. Radio-based
activity recognition has the advantage that it does not have the privacy concern compared with camera-based
solutions, and subjects do not have to carry a device on them. It has been shown channel state information(CSI)
can be used for activity recognition in a device-free setting. With the proliferation of wireless devices,
it is important to understand how radio frequency interference(RFI) can impact on pervasive computing
applications. In this paper, we investigate the impact of RFI on device-free CSI-based location-oriented activity
recognition. We present data to show that RFI can have a significant impact on the CSI vectors. In the absence
of RFI, different activities give rise to different CSI vectors that can be differentiated visually. However, in
the presence of RFI, the CSI vectors become much noisier, and activity recognition also becomes harder. Our
extensive experiments show that the performance may degrade significantly with RFL. We then propose a
number of countermeasures to mitigate the impact of RFI and improve the performance. We are also the first
to use complex-valued CSI along with the state-of-the-art Sparse Representation Classification method to
enhance the performance in the environment with RFL
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1 INTRODUCTION

Activity recognition aims to identify what a subject is doing. It is an important component of
many pervasive computing applications. For example, the increasing greying population in many
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countries puts a rising pressure on the health care system. Activity recognition can be used to
improve home care for the elderlies. This paper considers the activity recognition problem using
radio signals, in the device-free setting, with an emphasis on making activity recognition robust to
radio frequency interference (RFI).

Activity recognition is a well researched topic. In terms of system components, there are three
broad approaches to the activity recognition problem: camera-based [4, 7, 18, 21, 59], sensor-based
[3, 6, 8, 12, 24, 48, 54] and device-free [32, 38, 41]. Cameras are able to provide high resolution data
for activity recognition, but privacy is a serious concern. Although there is no privacy concern
with the sensor-based approach, it imposes the requirement that a subject has to carry sensors
on his body. This is inconvenient, and activity recognition fails if the subject forgets to carry the
device. We have therefore chosen the device-free approach in this paper.

In the device-free approach to activity recognition, radio devices are placed in the periphery of a
monitored area, called the area of interest (Aol). These radio devices send packets to each other
regularly and use the received radio signal to obtain information on the radio environment. The
key idea is that the radio environment is influenced by the activity taking place in the Aol. The
activity recognition problem is to infer the activity from the received radio signal. In general, there
are three requirements for the practicality of device-free activity recognition systems: informative
measurements, capability to deal with environment changes, and robustness to RFL

Although coarse-grained radio channel measurements, such as radio signal-strength indicators
(RSSI), have been successfully used for device-free indoor localisation [43, 45, 55], they are no
longer informative for activity recognition. Using informative measurements is a pre-requisite for
any successful classification problem. Recent works on device-free activity recognition [32, 38, 41]
have used informative Channel State Information (CSI) instead of coarse-grained radio channel
measurements for activity recognition. This is also our observation, and our proposed solution,
therefore, uses CSI. A challenge for CSI-based device-free activity recognition is that the CSI of
the radio channel is sensitive to changes in the environment, for example new or moved furniture,
due to the multi-path effect. One CSI-based activity recognition system E-eyes [41] proposed a
semi-supervised approach to address the issue of environmental changes by manually updating
new CSl-instances. When the system detects that the CSI-fingerprint for an activity has changed,
E-eyes requires the users to label the new CSlI-instances manually. A similar approach was used in
[27] to deal with the impact of environmental changes on CSI-based localisation.

0.25} RFIfrom ol - - ;
- 802.11 —CS8l vector without RFI |
CSl vector with RFI ;

0.2 o h - — A

Nomalised amplitude

Fig. 1. CSl without and with RFI.
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Another challenge for CSI-based activity recognition is that the CSI is highly influenced by RFL
The number and types of radio devices have proliferated in the last decade. It is hardly possible to
find a frequency band that is clean or without RFL. Our observation, which is depicted in Fig. 1,
shows that CSI is highly impacted by RFI'. The figure shows a CSI without RFI as well as a CSI
with RFI in a particular radio channel. The impact of RFI on CSI is conspicuous. This implies that
CSI-based activity recognition must be robust to RFL This is the key topic of this paper. Furthermore,
our proposed solution can also use the semi-supervised approach proposed by [27, 41] to update
the training set and deal with the impact of environmental changes. In Section 4.10, we will show
the effect of training set update for environmental changes.

As a summary of the above discussion, we have drawn a Venn diagram with the three require-
ments of informative measurements, robustness to environmental changes, and robustness to RFI in
Fig. 2. This diagram is used to differentiate our work (indicated by a star) from two other CSI-based
activity recognition solutions: E-eyes [41] and Sigg et al. [32]. It shows which solution is able to
deal with which requirements. Neither of [32, 41] addresses the impact of RFI on CSIL.

Environment
Change

RFI Robust

A Best solution

* Our solution
. E-eyes 1

[l Ssiggetal

Informative

Fig. 2. Differentiating our work from other recent work on CSl-based activity recognition.

In order to enable the robustness of CSI-based location-oriented activity classification, our
previous research [42] exploits the Sparse Representation Classification (SRC) approach based on
¢1-optimisation. SRC has been shown to be robust to noise. It has also been shown to significantly
improve the classification performance in face recognition [30, 46] and acoustic classification
[44], outperforming other classification approaches such as support vector machine (SVM) and
k-nearest neighbours (kNN). Our previous research [42] also proposed SRC based method on
the amplitudes of CSI vectors (real-valued CSI) to mitigate the influence of RFI and increases the
performance of real-valued CSI based location-oriented activity recognition. In this paper, we
propose a new classification method to further enhance the robustness of activity recognition
using complex-valued CSI based SRC. Location-oriented activity recognition is able to indicate
the location information as well as types of activities.

To summarise, the contributions and novelties of this paper are:

e We demonstrate by using measurements that CSI is highly impacted by RFI. We show
that, while the CSI vectors for different activities in an RFI-free environment are clearly
distinguishable even by naked eyes, this is no longer the case for an environment with RFL

IThe CSI samples in Fig. 1 are from the experiments which will be discussed in Section 4, and more details about the
experiment setup can be found in Section 4.2.
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e To address the above challenge, we propose a novel complex-valued CSI based SRC clas-
sification algorithm for device location-oriented activity recognition. The algorithm uses
complex-valued CSI and fuses the results from a number of ¢;-optimisation according to
their signal-to-noise ratios (SNRs). We show that this method can boost recognition accuracy
and outperforms kNN and other SRC-based methods by up to 10%.

e We are also the first to propose complex-valued CSI SRC classification algorithm. Complex-
valued CSI contains phase information additional to amplitude information. We show this
can improve the performance compared with using only real-valued CSIL

e We study the impact of channel bandwidth on the accuracy of activity recognition. We
use 4 different bandwidths: 5, 10, 15 and 20 MHz, which cover low bandwidth devices and
high bandwidth devices. We show that our proposed classification algorithm produces good
classification accuracy for activities with 20 MHz of bandwidth.

The rest of this paper is organised as follows. Section 2 presents background materials on CSI
and SRC. We then study the impact of RFI on CSI and propose our complex-valued CSI based
activity recognition method in Section 3. Next, we present evaluation results in Section 4 using
experimental data collected from an apartment. Section 5 presents related work. Finally, Section 6
concludes the paper.

2 BACKGROUND
2.1 Wireless Platform and Channel State Information

We use a platform called Wireless Ad hoc System for Positioning (WASP) [25] for our experiments.
The WASP nodes are originally designed for high resolution localisation and use a much wider
bandwidth than many off-the-shelf wireless devices. WASP can operate in both 2.4 GHz and 5.8 GHz
industrial, scientific and medical (ISM) bands, using a bandwidth of, respectively, 83 MHz and
125 MHz. WASP uses Orthogonal Frequency-Division Multiplexing (OFDM) at the physical layer
and time division multiple access (TDMA) at the media access control (MAC) layer. In fact, the
physical layer of WASP is implemented by using commercial off-the-shelf IEEE 802.11 radio chips.

OFDM is a multi-carrier modulation technique. At the 5.8 GHz band, the WASP nodes use 320
sub-carriers. Each of these sub-carriers has a different centre frequency. This means the received
sub-carriers at two frequencies can experience different amount of phase shifts, giving different
frequency response. For a sub-carrier with centre frequency f;, the complex channel response C(f;)
is related to the transmitted symbol T(f;) and received symbol R(f;) by R(f;) = C(fi)T(f;). The
complex number C(f;) captures, respectively, the sub-carrier gain and phase shift. Let fi, fa, ..., f320
denote the centre frequencies of the 320 sub-carriers that WASP nodes use. Then the CSIis a complex
vector [C(f1), C(f2), ..., C(f320)]. More details about CSI can be found in [53]. Our previous research
[42] only uses the amplitude (gain) of CSI of each sub-carrier, while in this paper complex-valued
CSl is applied, which contains both the amplitude and phase shift, to improve the classification
accuracy.

2.2 Sparse Representation Classification

Sparse Representation Classification (SRC) is first proposed in [46] for face recognition. It has
subsequently been applied to other areas, such as acoustic classification [44] and visual tracking [16].
A key feature of SRC is its use of £; minimisation to make the classification robust to noise. We give
a brief description of SRC here, the details can be found in [46]. We assume that the classification
problem has s classes. Class i is characterised by the sub-dictionary D; = [d;1, ..., d;n,] where
dij (j = 1,...,n;) are the n; feature vectors derived from training data. For classification, the s
sub-dictionaries are concatenated to form a dictionary D = [Dy, Dy, ..., D]. Ideally, a test sample y
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Multi-path by Sitting

Multi-path by Standing

(a) Examples of multiple paths caused by different activi-
ties
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axis are the CSI subcarries and samples )

csl

Fig. 3. Examples of multiple paths and CSI vectors (Best view in colour)

should sit in a subspace spanned by the dictionary, i.e. there exists a coefficient vector x such that
y = Dx. However, due to noise, such an x cannot be found or is perturbed. Instead, the SRC method
solves for the coefficient vector x using the following ¢; optimisation problem:

% = argmin ||x||; subject to ||y — Dx||; < e, (1)
X

where € is the noise level. Note that instead of requiring that y = Dx, the constraint requires only
that the vectors y and Dx are sufficiently close to each other. The estimated coefficient vector
% is used for the classification algorithm. Note that the length of % is );;_, n;. Let X; denote the
n;-dimension sub-vector in X that corresponds to the sub-dictionary D;. We calculate the residual
ri =|| y—D%; || for Class i. The class that gives the minimum residual is returned as the classification
result. It is important to point out that £; optimisation is also capable of handling complex-valued
vectors [34, 35].

SRC has a main superiority: featureless. This provides us with an opportunity to build a training
set from the CSI measurements, rather than exact feature from them. Moreover, SRC is known to
be robust to noise. As our work is to study the performance of activity recognition when RFI is
present, we investigate how to explore SRC to boost SNR for improving recognition performance.
As far as we know, we are the first to use an SRC classification method on complex numbers.

3 ACTIVITY RECOGNITION USING COMPLEX-VALUED CSI

This section presents our method to recognise a set of location-oriented activities using CSI in
the device-free setting. We first demonstrate that complex-valued CSI is influenced by activities
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taking place in a room and can be used to identify location-oriented activities. We demonstrate the
challenge of CSI based activity recognition when RFI is present. Finally, we present our SRC based
classification method which takes RFI into consideration.

3.1 CSI contains location-oriented activity information

We first present some intuition on why device-free CSI-based location-oriented activity recognition
is possible. Fig. 3(a) depicts an indoor environment with two wireless nodes and the multi-paths
that the radio propagation may take. It shows that different multi-path effects can be obtained if a
person is sitting or standing. It results in different CSI vectors at the receiver and can be used to
identify the activity (normalised CSI amplitude vector shown in Fig. 3(b)). Furthermore, different
locations of a monitored person also differentiate multi-paths, which makes location-oriented activity
recognition feasible.

In order to demonstrate the feasibility of CSI-based activity recognition, we set up two WASP
nodes in an apartment with one living room and one bedroom. The nodes are 5 metres apart with
3 walls in the line-of-sight path between the nodes. The subject is positioned in an Aol between
the two nodes but is not in the direct path between the 2 nodes. The subject carries out 4 different
activities: sitting, lying, standing, and walking. A WASP node is used as the transmitter and the
other as a receiver. The transmitter sends to the receiver at 10 packets per seconds, and it needs
a 2.5 milliseconds slot to send a packet. This means only 2.5% of running time is occupied for
sending data for activity recognition, which does not occupy bands too much to affect the radio
communication of other wireless devices. For each packet received, the receiver uses the WASP
interface to obtain the CSI vector and SNR for that packet. It is also important to point out that the
data in this experiment are collected in a clean environment without any RFIL.

Fig. 4(a) shows the normalised CSI amplitude vectors under the four different activities. The
horizontal axis shows the sample number where a sample corresponds to a packet. There are 320
values in the vertical axis which corresponds to the 320 sub-carriers. The magnitude is shown
as a heat plot. We have put four blocks of data side-by-side in the figure, which corresponds
to the four activities of lying, sitting, standing and walking. It can readily be seen that the four
activities have highly distinguishable CSI. This confirms that CSI contains information on activity.
Another observation is that the CSI fluctuates a lot when the subject is walking. This is due to
different multi-path effects created by the person walking. Fig. 4(a) shows the CSI when a 125 MHz
bandwidth is used. We now show that the same observations also apply when we use a 20 MHz
channel. The box in Fig. 4(a) is Channel 157 in the 802.11 standards with 20 MHz bandwidth. We
have enlarged the CSI in the box and plotted it in Fig. 4(b). It can be seen that the CSI for the four
activities are very distinguishable and walking creates more fluctuations in CSL

Fig. 5(a) shows the SNR of the corresponding samples (packets). It shows that the SNR has a
slightly larger fluctuation when the subject is walking. However, there does not appear to be any
noticeable differences in the SNR data series among lying, sitting, and walking. These observations
suggest that it may be possible to use SNR to distinguish between walking from the other three
activities where the subject is stationary. However, it does not seem to be possible to use SNR to
distinguish between the three stationary activities.

Since CSI is sensitive to the multi-path effect, same activity in different locations can have
different CSI. Training in each interesting location must be performed for location-orientated
activity recognition, and this is a limitation of CSI-based finger-printing activity recognition. Fig. 8
demonstrates the different CSI amplitudes as a result of the same activity “standing” in two locations.
This fact requires additional training for same activity in different locations, but it helps location-
orientated activity recognition systems locate activities. [17, 32, 41, 49, 50] also apply a similar
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(a) CSI vectors in clean environment

OI <Lying—>| <Sitting—>| <Standing» | «Walking |

50 100 150
Samples

(b) CSI vectors on Channel 157 without RFI

Fig. 4. CSI performance in different activities without RFI (Best view in colour)

strategy, i.e. conducting training in various locations, for improving the performance of radio-based

pattern recognition.

3.2 Challenges of CSl-based activity recognition

The results above are obtained when the two WASP nodes are in a clean environment without RFI.
We conduct another experiment using the same set up, but we add a pair of IEEE 802.11a devices
that communicate in Channel 157 (a 20 MHz band). Our goal is to understand the impact of RFI on
CSI and SNR.

Fig. 6(a) shows the CSI for the four activities when RFI is present on Channel 157. It shows that
the CSI on Channel 157 (enclosed by the white rectangle) is fairly noisy, but the four activities
still have distinguishable CSI outside of Channel 157. This suggests that if wide-band devices are
used to obtain the CSI for activity recognition, then we can use the part of CSI with little RFI to
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Fig. 5. SNR performance in different activities

identify the activity. However, with the ubiquitous use of wireless technologies such as WiFi, Bluetooth,
IEEE 802.15.4, etc., it becomes more and more difficult or even impossible to find RFI-free bandwidth,
particularly in ISM bands, for radio-based activity recognition systems. We therefore consider the
possibility of using CSI in an interfered channel to perform activity recognition.

In order to examine the effect of RFI, we plot the CSI of Channel 157 in Fig. 6(b). It shows that
the CSI vectors of different activities are no longer highly distinguishable. We now examine the
impact of RFI on SNR. Fig. 5(b) shows the SNR of the four activities when RFI is present on Channel
157. We see that the SNR of all four activities is highly fluctuating. We suggested earlier that it
would be possible to tell walking from the static activities using SNR when RFI is absent, however,
this does not appear to be feasible once RFI is present.

To further show the challenge with RFI, Fig. 7(a) and Fig. 7(b) show clusters of complex-valued
CSI from the same sub-carrier with or without RFI in the complex plane. The red spots represent
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(b) CSI vectors on Channel 157 with RFI

Fig. 6. CSl performance in different activities with RFI (Best view in colour. The SNR for these samples are
shown in Figure 5)

the CSI samples without RFI affected. To better show the scatter of CSI, we shift the centre to (0,0).
In the clean environment without RFI, all the samples have high SNR and concentrate in a clear
cluster. However, in the environment with RFI, the samples scatter in a much larger area, and less
pattern can be explored compared with that in the clear environment.

However, if we look more closely at the CSI vectors of each activity, we can see that a number of
CSI vectors among one activity are almost the same. This recurrence of CSI vectors suggests that
we may use a block of CSI vectors for classification instead of individual CSI vectors (see Fig. 6(a)
and 6(b) ). However, this classification is going to be challenging because the CSI vectors appear to
be fairly noisy. We will propose a few different classification methods in Section 3.3.3 to address
this challenge.

To sum up, it is a challenge to use CSI to perform activity recognition when RFI is present.
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3.3 Location-Oriented Activity Recognition with RFI

We now describe our proposed complex-valued CSI-based activity recognition in the presence of
RFI. The goal of activity recognition is to identify four daily activities: sitting, standing, lying and
walking in different rooms, as well as whether the Aol is empty.

3.3.1 Data collection. Our method fingerprints the activities using CSI complex vectors. The first
procedure is to record the CSI measurements and use a CSI data sanitisation method for building a
training set and use the training set to fingerprint the test data by using our proposed machine
learning algorithm.

RFI causes the unexpected change to CSI vectors. There is no existing model for the performance
of CSI vector under RFL. Therefore, we need to consider the RFI environment when training the
dictionary. In other words, the CSI vectors of one specific activity under different physical or radio
environments vary significantly. We have to update training set for a new RFI environment. The
method in [41] can be applied for updating the dictionary when RFI is present.
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using amplitude-valued CSI (b) distance using complex-valued CSI

3.3.2 CSl Data Sanitisation. We use a CSI data sanitisation method to obtain both CSI amplitude
and phase information. A CSI vector with n sub-carriers, i.e. C = [C(f1), C(f2), ..., C(fn)]. The CSI
amplitude vector is the absolute values of each element. Since the receiver and transmitter do not
attempt to synchronise time in OFDM and there is an unknown random phase shift in each CSI
vector, a data sanitisation method to calculate the phase information is required. We use the data
sanitisation method proposed in [27] for calculating this unknown phase shift. Having CSI phase
information, we are ready to calculate complex-valued CSI vectors. The CSI for i-th sub-carrier is a
complex number (I1C;] cos(Cy), |Ci| sin(C;)), where C; is the CSI complex value of i-th sub-carrier
after sanitisation and |C;| = |C;|. We apply this algorithm to all CSI vectors to remove the unknown
phase shift. From now onwards, unless otherwise stated, all CSI vectors are assumed to have been
sanitised.

The complex values of CSI will contain both amplitude and phase information. This is extremely
important for improving performance in the environments with RFI where limited useful data can
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be explored. Fig. 9 gives an intuitive explanation of this improvement. Consider the CSI of the same
sub-carrier for two different classes. Fig. 9(b) depicts the situation when complex-valued CSI is
used, the distance d2 between the two classes is the distance between two complex numbers on the
plane. However, if only the CSI amplitudes are used, then we get the situation in Fig. 9(a) where the
distance between the two classes is d1. It can be shown that d2>d1, which means complex-valued
CSI enhances the separation between different classes and therefore giving better classification
performance. However, the situation is more complicated with RFI due to the multi-path effect.
The phase features might introduce additional extra noise. To address this issue, classification
method along with additional signal processing is explicitly required to mitigate effect from RFI
and improve the recognition performance.

3.3.3 Classification algorithms. We have seen that RFI causes the CSI vector to be very noisy.
In order to deal with RFI, we introduce a window size ws where ws consecutive complex-valued
CSI vectors are used for classification. One possible method is to stack ws complex-valued CSI
vectors into a long feature vector and use it for classification. However, this will be computationally
intensive because the feature vector has a very high dimension. Instead, we will use the one
complex-valued CSI vector at a time and investigate different fusion methods.

Let y1, Y2, ..., yws denote the complex-valued CSI vectors in the time window, and D be the
dictionary. We first solve the following ¢;-optimisation problem for each complex-valued CSI vector
yi, i =1,..,ws:

%; = argmin||x||; subject to ||ly; — Dx||; < e, (2)
X

We now present three different fusion methods which use the estimated coefficients %; (i =
1, .., ws) in different ways.

The first method is to use decision fusion and will be referred to as ¢;-voting. For this method,
the algorithm uses each x; to arrive at a decision class using the standard SRC algorithm described
in Section 2.2. This method then uses majority voting to arrive at a decision.

The second method is to fuse the X; vectors by computing their mean: Xgymup = % % %i. The
mean vector Xsumyp is then used to compute the residuals for each class as in the standard SRC
algorithm described in Section 2.2. This method returns the class that minimises the residual. Note
that this fusion method was proposed by Misra et al. in [20] where they showed that such method
could improve the GPS recovery accuracy. We will call this method ¢; -sumup.

The method ¢;-sumup applies equal weights to all X; by computing a simple average of them.
However, it is possible that some CSI vectors in the window are less affected by noise. This can
also be seen from Fig. 5 where the SNR fluctuates. We therefore propose to use SNR of a sample to
derive a weighting for that sample. Let S; denote the SNR of the i-th sample in the window. We
compute the weighted mean of x; using

fweighting = Z wiXi, 3)
A; Si
w; = ﬁ, Ai = 10( 20), (4)
j=141j

The mean vector Xyeighting i then used to compute the residuals for each class as in the standard
SRC algorithm described in Section 2.2. This method returns the class that minimises the residual.
We call this method as ¢;-weighting.
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Fig. 12. The Performance vs Window Size

4 EVALUATION
4.1 WASP nodes

We use a pair of WASP nodes in our experimental evaluation. We provided some basic information
on WASP nodes in Section 2.1. We provide further background information and explain some
design choices here. We choose WASP because it is a software-defined radio and there is an API to
obtain CSI. WASP can operate in both 2.4 GHz and 5.8 GHz. We choose to perform our evaluation
in 5.8 GHz because this band is less used compared to the 2.4 GHz band. It is therefore easier to
find places where RFI is absent across the entire 125 MHz bandwidth that WASP operates in. This
allows us to do two things. First, we can experiment in a clean radio frequency (RF) environment
and use CSI from the clean environment to establish benchmark for the classification algorithms.
Second, this allows us to control the amount of RFI present in our experiments and we can be sure
that any RFI present in the environment is added by us. We can therefore study the impact of RFI
on activity recognition.
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WASP is a low-power wireless platform. A pair of WASP nodes only consumes 4.5 W [25](2 W
for a receiver and 2.5 W for a transmitter). WASP nodes can be powered by cable, which means the
deployment of a pair of WASP nodes for activity recognition only cost no more than 4 kWh per
month.

Table 1. Bandwidth for different wireless protocols

Wireless Protocol Bandwidth per Channel | Number of Subcarrier in OFDM
2.4 GHz (302.11b/g/n) | 20 MHz 52

3.6 GHz (802.11y) 5/ 10/ 20 MHz 13/ 26/ 52

4.9 GHz (802.11y) 20 MHz 52

5 GHz (802.11a) 20 MHz 52

5 GHz (802.11n) 20/ 40 MHz 52/ 104

5 GHz (802.11ac) 20/ 40/ 80 MHz 52/ 104/ 208

4.2 Experiment Setup

The experiment is conducted in an apartment whose floor plan is shown in Fig. 10. The Aol includes
one living room (top half of the floor plan) and one bedroom (the room on the right). Two WASP
nodes are deployed at the edge of the Aol. One node works as the transmitter and sends a beacon
once every 0.1 second. This node is near the left-hand end of the apartment and is marked as
transmitter in the floor plan. The other WASP node acts as a receiver, and this is where the CSI
data are collected. This node is located in the balcony just outside the bedroom and marked as
the receiver in the floor plan. The receiver is connected to a computer (labelled as PC in the floor
plan) in the bedroom, and this computer is the sink for the CSI data. The distance between the
transmitter and receiver is about 5 metres.

We consider 8 different location-oriented activity classes : (1) E: empty environment (2) L: lying
on the bed in the bedroom (3) SiB: sitting in the bedroom (4) SiL: sitting in the living room (5) StB:
standing in the bedroom (6) StL: standing in the living room (7) WB: walking in the bedroom
(8) WL: walking in the living room. The location of the activities are marked in the floor plan
in Fig. 10. We perform standing and sitting in the same location because we also want to focus
on activity classification without considering different locations to evaluate the efficiency of our
method. We also differentiate between sitting and standing in different locations for evaluating the
location-oriented activity recognition. For each activity class, CSI data is collected for 1 minute, so
that no physical environmental changes take place during this time. For a given dataset, we have
600 CSI samples for each activity, resulting in 600 X 8 = 4, 800 CSI samples in total.

We use a computer (PC) and a WiFi router to create RFI in the environment. Their locations
are marked in the floor plan in Fig. 10. They use 802.11a protocol, which operates in 5.8 GHz, to
communicate on Channel 157 (a 20 MHz channel). The computer communicates with the router
using the echo request ping command as fast as possible with the default packet size 7 kilobytes;
the router responses the request with echo reply packet containing the exact data of request packet.
The average transmission rate will arrive at more than 30 Mbit/s. In order to simulate the RFI that
the activity recognition system may actually experience, we place the WiFi router in the middle of
the apartment, which is a natural location that people will use in order to provide WiFi coverage to
their apartment. The distance between the WiFi router and the receiver is about 4 metres, and the
distance between the PC and the receiver is about 1.5 metres.
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Fig. 13. Confusion matrix: ws = 5 and B = 20 MHz in “Channel 157 without RFI”
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Fig. 14. Confusion matrix: ws = 1 and B = 20 MHz in “Channel 157 with RFI”

4.3 Evaluation methodology and metrics

We apply 10-fold cross validation to each dataset to evaluate our proposed method. We use both
the probability of true detection and confusion matrix to present our results.

We have two primary datasets. One dataset is collected under clean environment while the other
is collected when there is RFI in Channel 157. We use these datasets to investigate the effect of
bandwidth on location-oriented activity recognition. In particular, we investigate what happens if
we use a bandwidth of 5 MHz, 10 MHz, 15 MHz, 20 MHz, 40 MHz, 80 MHz and 125 MHz. Let us
assume that we use a bandwidth window size B MHz where B is one of 5, 10, 15, 20, 40, 80 or 125.
Recalling that WASP nodes have a bandwidth of 125 MHz. We first select the first B MHz of the
125 MHz-band and use the sub-carriers in the B MHz to perform classification. We then shift the
bandwidth window by 5 MHz. If a complete B MHz can be found in the data, we perform another
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Fig. 16. Confusion matrix: ws = 5 and B = 5 MHz in “Channel 157 with RFI”

calculations. We iterate until the whole 125 MHz is covered. We will refer to the results obtained
by sliding bandwidth window over the 125 MHz band as “whole bandwidth without RFI” and “whole
bandwidth with RFI”.

Instead of using the whole 125 MHz in the primary datasets. We also created two secondary
datasets, from the with and without RFI cases, which include over those sub-carriers in Channel 157.
These secondary datasets span a bandwidth of 20 MHz. Note that, when interference sources exist,
all sub-carriers in the secondary datasets are with RFI while only some of the sub-carriers in the
primary datasets are with RFL. By using the secondary datasets, we investigate what happens when
we use a bandwidth window of 5 MHz, 10 MHz, 15 MHz, 20 MHz. The methodology of shifting the
bandwidth window is the same as that for primary datasets. We will refer to the results obtained
from the secondary datasets as “Channel 157 without RFI” and “Channel 157 with RFI”.
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Fig. 18. Confusion matrix: ws = 5 and B = 15 MHz in “Channel 157 with RFI”

Our classification algorithm uses a window size of ws consecutive CSI samples for classification,
as discussed in Section 2.2. We will also vary this window size in our investigation.

We consider the following 4 classification algorithms: kNN with majority voting (kNN-voting),
{1-voting , {1-sumup and £1-weighting. In order to demonstrate the improvement in using a window
size ws, we also show the result of using one CSI sample or a window size of 1; we will use “kNN-
winl” and “f;-winl” to denote the algorithms that use a ws = 1. The default SRC algorithms in

this section is complex-valued unless we state otherwise. We also use complex-valued kNN for
comparison.
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Fig. 20. Confusion matrix: Real-valued CSI, ws = 5 and B = 20 MHz in “Channel 157 with RFI”

4.4 Effect of Window Size

In this section, we study the impact of window size ws on activity recognition performance. We use
ws from 1 to 10, which correspond to a time of 0.1 second and 1 second, because the transmitter
sends beacons at a frequency of 10 Hz. We will show that window size can improve accuracy but
this is at the expense of decreasing the temporal resolution of activity recognition. We will use
both primary datasets (“whole bandwidth without RFI” and “whole bandwidth with RFI”) and both
secondary datasets (“Channel 157 without RFI” and “Channel 157 with RFI”) in this study. We assume
a bandwidth window size B = 20, which is the bandwidth of one 5.8 GHz 802.11 channel. Fig. 12
shows performance in different window size using different data fusion methods.

First, we discuss the performance of using “whole bandwidth without RFI”. Fig. 11(a) shows the
probability of true detection of the 4 different algorithms. When there is no RFI and with a 20 MHz
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Fig. 21. The performance vs bandwidth window size

bandwidth window size, a window size ws of 1 can already achieve an accuracy of approximately
90% for all four classification algorithms. The accuracy gradually increases to 95% when the window
size is increased to 10. The results are similar if we use “Channel 157 without RFI”, as shown in
Fig. 12(a). The algorithms £;-weighting and ¢;-sumup show similar performance but are slightly
better than kNN—-voting and ¢;-voting. This shows that, without RFI, very good classification
accuracy can be obtained.

As we discussed earlier, the challenge is to perform classification when there is RFI. Fig. 11(b)
shows the probability of true detection for the dataset “whole bandwidth with RFI”. It shows that
the performance increases with larger window size. Among the four algorithms used, ¢;-based
algorithms outperform kNN and the best performing algorithms are ¢;-weighting and ¢;-sumup. If
we compare the classification accuracy between without and with RFI in Fig. 11(a) and 11(b), we
see a significant drop in accuracy when RFI is present especially when the window size is small. For
example, for ws = 1, accuracy decreases from 85% to 76% because of RFL. We now turn to the dataset
“Channel 157 with RFI” whose results shown in Fig. 12(b). Again,the accuracy increases when the
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Fig. 22. The performance vs bandwidth window size

window size is increased, and both ¢;-weighting and ¢;-sumup perform the best. The most telling
observation is that, for ws = 1, the classification accuracy is merely 63% but if ws = 5 is used, an
accuracy of almost 85% can be obtained. This shows that window size can have a significant effect
on performance when RFI is present.

We now present the confusion matrices for location-oriented activity recognition using our
proposed €1-weighting. Fig. 13 shows the confusion matrix for “Channel 157 without RFI” with a
window size of 5 (0.5 second). It shows that perfect accuracy is achieved with 5 activities. The
accuracy for static activities is extremely high. The accuracy for the two walking activities are also
very good. We now present the confusion matrix for “Channel 157 with RFI” with a window size of
0.1 second and 0.5 second, in respectively, Fig. 14 and 15. It can be seen that a big window size has
significantly improved classification accuracy of many activities. In the following sections, we will
use a window size ws = 5 (0.5 second) by default.
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4.5 Effect of the Bandwidth Window Size

In this section, we discuss the influence of the bandwidth window size on the location-oriented
activity recognition performance. This study takes advantage of the available wide bandwidth from
WASP nodes to simulate different kinds of protocols shown in Table 1. 2

The result of using different bandwidth window size B for dataset “whole bandwidth without
RFI” is shown in Fig. 21(a). As expected, increasing B gives a better classification accuracy. In
particular, £;-weighting achieves an accuracy of 70%, 90% and 95% when using a bandwidth window
B of 5 MHz, 20 MHz and 125 MHz respectively. Similar trend is also observed for the dataset
“Channel 157 without RFI” (shown in Fig. 21(b)). The algorithms £;-weighting, 1-sumup, £;-voting
and kNN-voting show similar performance.

Fig. 22(a) shows the probability of true detection for the dataset “whole bandwidth with RFI”. It
shows the performance increases when the bigger bandwidth window size increases. Comparing
four algorithms using window size ws 5, £1-weighting and ¢;-sumup perform the best, which
outperform ¢;-voting and kNN-voting. When looking at the dataset “Channel 157 with RFI” (shown
in Fig. 22(b)), the accuracy decreases significantly, especially when the bandwidth window sizes
B are 5 MHz and 10 MHz whose accuracy decreases from 72% and 88% to 50% and 70% using ¢;-
weighting compared with the dataset “Channel 157 without RFI”. The performance of {;-weighting
and {1-sumup is close, but they show their superiority over £;-voting and kNN-voting, for example,
the accuracy of ¢;-weighting and {1-sumup is 5% better than ¢;-voting and kNN-voting when the
bandwidth window size B is 20 MHz. This shows {;-weighting and ¢;-sumup algorithms increase
the recognition performance when there is RFL

Fig. 16, Fig. 17, Fig. 18 and Fig. 15 illustrate the confusion matrix using {;-weighting with the
bandwidth window size B 5 MHz, 10 MHz, 15 MHz and 20 MHz respectively in the dataset “Channel
157 with RFI”. Tt shows that the using larger bandwidth window size B helps increase the accuracy
and robustness to RFI. When the bandwidth window size B is 20 MHz, 2 static activities have perfect
accuracy, 2 static activities have accuracy more than 90%, the other 2 static activities have accuracy
more than 85%, and “walking in bedroom” has the accuracy more than 70%.

4.6 Effect of Different Distances Between the Router and Receiver

In order to evaluate the impact of the amount of interference on classification. We vary the distance
between one interferer (the WiFi router in the floor plan in Fig. 10) and the WASP receiver. We
consider 4 cases: no interference (NONE), interferer just next to the the receiver (OmR), 0.5 metre
away from the receiver (0.5mR), and 1 metre away form the receiver (1mR). The classification uses
only Channel 157. The computer also communicates with the router using the echo request ping
command as fast as possible.

Fig. 23 shows the influence of receiver-interferer distance on the probability of true detection. It
shows that for OmR, the accuracy can drop by more than 10%. However, by using a window size
ws = 5, {1-weighting has an accuracy about 60%. Note that there is not much difference between
the 0.5mR and 1mR cases. Also, there is only a slight drop in performance for the £; algorithms
between NONE and 0.5mR cases. This shows that if an interferer is not present within 0.5m of the
receiver, then the activity recognition accuracy is still high.

2 Since our radio-based activity recognition system uses CSI information from Physical layer, the feasibility of using other
protocols for the same purpose is also subject to the availability of CSI from their drivers. When their drivers are able to
provide CSI, it is expected that they can achieve the similar performance discussed in Section 4.5.

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.



39:23

1 R RS
c :
2 i (m(
208 | [ [
2 |
a |
S 06 i
= |
g 77777 il ML 1-weight
£ 04 | ML 1-sumup
e | ML 1-voting
202 - I KNN-voting
= | EIL1-w1

0 | [ JKNN-w1

NONE OmR 05mR 1mR

Fig. 23. The performance influenced by the distances between the router and the receiver

L1-weight
BL1-sumup
BL1-voting
| KNN-voting
EIL1-w1

U KNN-w1
11.2 5.6 0.56
Mbit/s

Fig. 24. The performance under different transmission rates between the router and the receiver

Probability of True Detection

ACM Trans. Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.



39:24 Bo Wei, Wen Hu, Mingrui Yang, and Chun Tung Chou

Table 2. Features for SNR based walking detection

Feature Equation

Standard Deviation o= ﬁ\/E[(S(k) - p)?]
Peak p = max(S) — min(S)
Head Size n = max(S) — median(S)
3rd Order Central moment | y = E[(S(k) — p)°]

4.7 Effect of Different traffic Between Interference Source and Receiver

In this section, we study the effect of traffic sending rates on the classification performance. We keep
one interference source (the WiFi router in the floor plan in Fig. 10) next to the receiver and adjust
the ping rates of the interferer. The ping rate is set to “as fast as possible” (average transmission
rate more than 30 Mbit/s ), 500 packets per second (transmission rate 28 Mbit/s), 200 packets per
second(transmission rate 11.2 Mbit/s), 100 packets per second (transmission rate 5.6 Mbit/s) and 10
packets per second (transmission rate 0.56 Mbit/s). These settings roughly correspond to the bit
rates of watching online videos with frame rates 1080p, 480p and 360p, which give rise to bit rates
of 8 Mbit/s, 5 Mbit/s and 1 Mbit/s respectively.

Fig. 24 shows the classification performance under different transmission rates. Our proposed
{1-weighting method reaches 80% accuracy when transmission rate is 28 Mbit/s, which means it
is robust to the transmission rate 28 Mbit/s. In contrast, the accuracy of both ¢;-voting and kNN-
voting algorithm is no more than 70%. This means our proposed {;-weighting is more robust to RFI
than the other methods. Moreover, £1-weighting achieves an accuracy of 85% when the transmission
rate is 11.2 Mbit/s. The accuracy stays almost the same for lower transmission rates.

4.8 SNR based Walking Detection Discussion

In Section 3, we discuss the possibility of using SNR to differentiate walking from non-walking,
i.e. a detection or binary classification problem. We see from Fig. 5(a) that, when RFI is absent,
this is probably feasible because walking gives rise to highly fluctuating RSS while non-walking
does not. However, in the presence of RFI, the distinction between walking and non-walking is
not so conspicuous, as seen in Fig. 5(b). In this section, we want to investigate what classification
performance we can get if we use SNR for walking detection. This study is also motivated by the
fact that many device-free localisation methods [9, 60, 61] use SNR as a feature to find the location
of the person in Aol.

The detection problem is to detect whether the person is walking. This covers the classes of
WL and WB instead of walking detection with location information. A commonly used feature for
device-free localisation is the variance of the SNR, which is used in for example [60]. However, in
order to minimise the possibility that walking detection fails due to poor choice of features, we
have chosen to use 4 different features listed in Table 2: Standard Deviation, Peak, Head Size, and
3rd Order Central moment where S is SNR vectors and p is the mean of SNR values in a vector. For
training, we use a logistic regression model.

The alternative to using SNR for walking detection is to use CSI with ¢; classifier. We will
compare these two methods. The comparison uses 10-fold cross validation and measurements from
Channel 157. We consider two datasets, “Channel 157 without RFI” and “Channel 157 with RFI”.
Also, for both datasets, we use bandwidth window sizes B of 5 MHz, 10 MHz and 20 MHz bands.

Since walking detection is binary classification, we use the following metrics:

e True Positive Rate (TPR): TPR = TP/(TP + FN)
e False Positive Rate (FPR): FPR = FP/(FP + TN)
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Table 3. Performance of walking detection (Better statistics in each column is highlighted)

Without RFI With RFI
Bandwidth 5MHz | 10 MHz | 20 MHz | 5 MHz | 10 MHz | 20 MHz
TPR (SNR) 0.7059 | 0.8740 | 0.9076 0.0924 | 0.1975 0.4370
FPR (SNR) 0.0420 | 0.0187 | 0.0070 | 0.0256 | 0.0490 | 0.0506
F1 score (SNR) | 0.7648 | 0.9052 | 0.9407 0.1446 | 0.2885 0.5428
TPR (CSI) 0.4706 | 0.8313 0.9913 0.3277 | 0.5336 0.8393
FPR (CSI) 0.0056 | 0.112 0.0084 0.0938 | 0.0574 0.0309
F1 score (CSI) | 0.6328 | 0.8314 0.9833 | 0.4073 | 0.6256 | 0.8393

Table 4. True Detection Rates using complex-valued CSI vs Real CSI: “Channel 157 without RFI”

L1_weight | L1_sumup | L1_voting | L1_w1 | kNN_voting | kNN_w1
Complex 0.935 0.930 0.909 0.879 0.913 0.889
Real 0.928 0.929 0.888 0.856 0.912 0.885

Table 5. True Detection Rates using complex-valued CSl vs Real CSI: “Channel 157 with RFI”

L1_weight | L1_sumup | L1_voting | L1_w1 | kNN_voting | kNN_w1
Complex | 0.851 0.854 0.770 0.612 0.760 0.603
Real 0.801 0.807 0.752 0.558 0.748 0.575

e F1score: F1 score = 2TP/(2TP + FP + FN)

where TP, TN, FP and FN are the number of true positives, true negatives, false positives, and
false negatives respectively.

Table 3 shows the comparison between detection using SNR and using CSI. Each column illus-
trates one bandwidth window size B in each dataset and we highlight the better statistics. A number
of observations can be made: (1) In the absence of RFI, detection using SNR has a higher TPR
compared to using CSI for a bandwidth window of 5 MHz and 10 MHz; however, for a bandwidth
window of 20 MHz, detection using CSI has a higher TPR. (2) In the absence of RFL, it is viable to
use either SNR or CSI based detector for walking detection. (3) RFI causes the performance of both
detectors to decrease. However, the SNR-based detector has a sharper drop in TPR. (4) Overall, the
CSI-based detector is more robust in the presence of RFI.

4.9 Effect on Complex-valued CSI

4.9.1  Effect of Complex-Valued CSI Based Classification Discussion. In this section, we explore
the advantage of complex-valued CSI based classification. As illustrated in Fig. 9, complex-valued
CSI can enlarge the separation between classes. To further support this, we calculate the distances
between and within classes. We use the metric, which was introduced to calculate the distance
between two classes and tune SVM hyperparameters [33]. The distance is defined as

n n

2 X1,i X2,
D(Cy,Co) = — A, —)
nyny ;JZ:; [loer, il [z, 1]
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Fig. 25. Class difference in “Channel 157 without RTI” and “Channel 157 with RTI”

, where C; and C; are samples for two classes, n; and n, are the numbers of samples in each class.
Xk, i is the i-th sample in Class k. The function d calculates the Euclidean distance between two
vectors. This metric considers distances between two classes as well as the distance within each
class. We average distances between each pair of classes to calculate class distance. The longer class
distance will help improve the classification performance as a result.

Fig. 25 shows the class distances by using real-valued CSI and complex-valued CSI. In the dataset
“Channel 157 without RTI”, the class distance is 0.203 using real-valued CSIL The class distance rises
31.0% to 0.266 when using complex-valued CSI. The class distance decreases to 0.108 when using
real-valued CSI in the dataset “Channel 157 with RTI” due to the existence of RFL. When using the
complex-valued, the class distance significantly rises 52.0% to 0.166. There are two observations: (1)
RFI can reduce the class distance, which results in the reduction of the recognition performance.
(2) Complex-valued CSI can increase the class distance significantly, and improve the classification
results in return.

We will further confirm this using the true detection rates. Table 4 shows the true detection
rates in the dataset “Channel 157 without RTI”. The accuracy stays similar without RFI when using
complex-valued and real-valued based CSI. When looking at the dataset “Channel 157 with RTI”,
the accuracy improves significantly using complex-valued CSI. Table 5 shows the true detection
rates in the dataset “Channel 157 without RTI”. When using complex-valued CSI, the true detection
rate of {;-winl increases from 55.8% to 61.2%. Applying data fusion methods, real-valued CSI based
{1-weighting, {1-sumup and {1-voting can achieve 80.1%, 80.7% and 75.2% respectively. When using
complex-valued CSI, their accuracy increases to 85.1%, 85.4% and 77.0%. This shows the complex-
valued CSI can help improve recognition performance with RFL Fig. 13, Fig. 15, Fig. 19 and Fig. 20
demonstrate the confusion matrices of these settings using ¢;-weighting, which also confirms
the fact that complex-valued CSI achieves better recognition performance. Complex-valued CSI
can supply phase information additional to amplitude information. When the environment is
without RFI, the amplitude information is capable of showing clear distinguishable patterns, so the
performance stays similar in the dataset “Channel 157 without RTI”. However, the additional phase
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Fig. 26. The comparison between sanitised and unsanitised complex-valued CSl in “Channel 157 without RTI”
and “Channel 157 with RTI”

information is important for the scenario with RFI and helps improve the recognition accuracy,
where CSI amplitude is not sufficiently informative.

4.9.2  Effect of Sanitised CSI . To show the effect of Sanitised CSI, we also use the default setting.
For unsanitised CSI, we directly use the raw CSI vectors without any sanitisation. Fig. 26 shows
the true detection rates using sanitised and unsanitised CSI. In the dataset “Channel 157 without
RET”, the accuracy increases from 90.76% to 93.48%. When introducing RFI in the dataset “Channel
157 with RFT”, the accuracy drops to 73.73% with unsanitised CSI. After sanitising, the accuracy
increases to 85.08%. This shows it can significantly improve performance using sanitised CSL

4.9.3  Effect of Complex-valued SRC . In this section, we discuss the effect of SRC using complex-
valued CSI. We are the first to apply complex-valued £; minimisation for classification tasks. To
compare with complex-valued SRC, we combine phase vectors and amplitude vectors into one
column as inputs (“Features in Column”) for a real-valued SRC. Figure 27 shows the true detection
using in the dataset “Channel 157 with RFI” and “Channel 157 without RFI”. In the dataset “Channel
157 without RFI”, the accuracy slightly increases from 93.17% to 93.48%. With RFI in the dataset
“Channel 157 with RFI”, the accuracy decreases to 85.08% using our proposed method, while the
true detection rate is only 80.36% using “Features in Column” method.

4.10 The effect of dictionary update for environmental changes

In this section, we show the effect of dictionary update for environment changes. It is known
that CSI is extremely sensitive to environmental changes due to the multi-path effect. When
the environment changes, we use a similar strategy in [27, 41] that updates the dictionary and
conduct activity recognition. Figure 28 shows the performance of our proposed methods in two
environments with different furniture deployment. We use the default dataset “Channel 157 with RFT”
as “Environment 1". We change the furniture deployment and collect the CSI measurements when
the activities are performed in the same place with RFI in Channel 157 for the dataset “Environment
2”. Evaluating our methods on “Environment 2”, we update and build the dictionary using newly
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Fig. 28. The comparison of the performance in two environments

collected CSI measurements for activity recognition. As shown in Figure 28, the performance of
our proposed methods are equivalent in “Environment 1” and “Environment 2”. £;-sumup achieves
85.08% and 84.29%, and ¢1-weight achieves 85.40% and 84.29% in “Environment 1” and “Environment
2”, which both outperform ¢;-voting with the true detection rates 76.99% and 78.71% in these two
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environments, respectively. This confirms that our proposed methods are capable to deal with
environmental changes by updating the dictionary and work in practice.

4.11 Comparison with fusion methods using kNN

In this section, we compare with ¢; based fusion methods with kNN based fusion methods. For fair
comparison, we introduce similar strategies of {1-sumup and £;-weight to kNN based data fusion
methods. The same as Section 3.3.3, we denote yi, ya, ..., s as the complex-valued CSI vectors
in the time window, and D as the dictionary. We first calculate distance vectors z between one
complex-valued CSI vector and each sample in the dictionary D. For a complex-valued CSI vector
i, zij = |lyi — Djll2, where z;; is the jth element for the distance vector z; and the length of z; is
the number of samples in D. The first data fusion method kANN-sumup is to fuse z; by computing
their mean within a window ws, Zsumup = % % zi. The second method kNN-weight is to fuse z;
by additionally considering SNR of a sample, Zyeighting = % ¥(zi/Si), where S; is SNR of the ith
sample. We select k nearest neighbours according to the distance vector Zsumup Or Zyeighting, and
vote to arrive at a decision. Figure. 29 shows the performance of both ¢; and kNN based data fusion
methods in “Channel 157 without RTI” and “Channel 157 with RTI”. kNN voting is the normal kNN
without any data fusion. It conspicuously shows that £; based fusion methods still outperform kNN
based data fusion methods. When only looking at kNN based data fusion methods, the normal kNN
performs better than the data fusion based methods kNN-sumup and kNN-weight. This implies that
data fusion introduces extra noise to kNN distance vectors when considering all samples within a
window. This again confirms that traditional classification methods are not sufficiently robust to
noise even along with explicit data fusion methods.

5 RELATED WORK

We have already discussed the most related work, i.e. work on using CSI for activity classification,
in Section 1. In this section, we discuss work in activity recognition, pattern recognition from radio
data and the application of compressed sensing on wireless sensor networks.
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5.1 Activity recognition

Activity recognition forms the basis of many context aware pervasive computing applications. We
can broadly classify activity recognition according to whether they are sensor-based or camera-
based. Many sensor-based activity recognition systems have been proposed. Acceleration sensor is
one of the most frequently used sensors [3, 12, 24]. This is because miniature acceleration sensors
are cheap and readily available, and they can be found on all smartphones. For example, Keally et
al. [10] used sensors smartphone as well as sensors wore on wrists, ankles and head to distinguish
between walking, cycling, sitting and other activities. Recently, a number of wristbands, that are
equipped with acceleration sensor, are available in the market. Products such as Jawbone Up [8]
and Xiaomi Mi Band [48] can achieve good activity recognition accuracy but they require the users
to wear the devices.

Microphone is another sensor that has been used in activity recognition. Hao et al. [6] present
a method to monitor sleep quality using microphone; however, it is not sure whether the same
method will function in daily activity recognition in a noisy environment. Yatani and Truong [54]
design a wearable acoustic sensor which can be used to record the sound near the throat of the
user, and use the measurements for activity recognition. Again, the issue is that the subject has to
wear a sensor.

Cameras are also widely used for activity recognition, localisation and tracking [4, 7, 13, 18,
21, 28, 59]. An advantage of camera sensors is that they free the subjects the need to wear or to
remember to wear a device. Another advantage is that they provide very rich data which can
be used to distinguish between many different activities. However, the Achilles’” heel of using
camera for activity recognition is privacy concern. Also, cameras can only cover a limited area. For
monitoring in an apartment, a camera is needed in each room. On the contrary, activity recognition
using radio signals can cover a much wider area and can “see" through walls, while cameras cannot.
We have therefore chosen to use device-free radio-based activity recognition which does not need
subjects to carry a device and has no privacy concerns.

Visible light is also used for human sensing. Li et. al. [14] developed a testbed using off-the-shelf
LED for both human sensing and communication.

5.2 Radio based pattern recognition

The propagation of radio waves in an environment is affected by the objects and people in the
environment, through reflection, diffraction, constructive and destructive interference and so on.
There is much interest in using the received signal characteristics to infer about the attributes of
people and objects in an environment. The received signal characteristics used can be coarse or
fine grained.

An example of coarse grained radio signal feature is RSSI which measures the received signal
power. RSSI has been successfully used in device-free localisation [9, 43, 45, 51, 60, 61]. This is
because a person standing in an area between the transmitter and receiver can attenuate, reflect,
scatter the radio waves. These effects create a characteristic pattern in RSSI which can be used to
infer the location of people in the environment.

Unfortunately, only limited information on the environment can be inferred from RSSI. There is
a growing interest to use fine grained features of radio signals for inference. This is also fuelled by
the availability of API to query CSI from WiFi chipsets such as Intel 5300 [5] and Atheros 9390 [26].
CSI has been used for many pattern recognition problems, including localisation [27], human
detection [63], activity recognition [32, 41], fine-grained gesture recognition [17] , “lip-read” [36],
emotion recognition [58], identity recognition[37, 56, 57] and smoking detection[62].
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Some research works also use phase information for radio based device-free applications [15,
23, 39, 40], but they either use conventional classification methods or see phase as additional
and independent information. As mentioned in Section 1, our work differs from earlier work on
integrating complex-valued CSI into the SRC method for activity recognition in that we take RFI
into consideration while earlier work did not. Among them, Ma et.al. [15] show the feasibility of
using 20 MHz radio band to recognise 276 gestures, which means our proposed system has the
ability of recognising much more types of activities. In our proposed system, we conduct recognition
for the most common activities in the living environment and instead focus on mitigating RFL

Radio signals have also been used to perform gesture recognition. WiSee designed by Adib et
al. [2] and WiVi designed by Pu et al. [22] used software-defined radio to extract the Doppler effect
caused by the gesture. In order to reduce energy consumption, Kellogg et al. [11] built AllSee which
uses RFID tags and power-harvesting sensors for gesture recognition. However, these works can
only recognise dynamic gestures and are not able to detect static activities because they rely on
Doppler effect. To further improve the resolution of the radio signal based localisation and gesture
recognition, Adib et al. [1] design WiTrack and obtain time-of-flight from the Frequency Modulated
Carrier Wave (FMCW) technology for localisation in 3 dimensions. Witrack has high resolution for
localisation (approximately 10 cm) but needs to use a bandwidth of 1.69 GHz. However, we show
in this paper as few as 20 MHz of bandwidth can be used to distinguish static activities with good
accuracy. Moreover, none of these works design their systems with RFI, while our work takes RFI
into consideration.

5.3 Application of Compressed Sensing on Wireless Sensor Networks

Recently, compressed sensing has been applied to wireless sensor networks. SRC proposed by Wright
et al. [46] is one of the applications of compressed sensing which helps increase the recognition
performance. Wei et al. [44] developed an acoustic classification method on wireless sensor networks
by applying SRC to increase the recognition performance and decrease the computation time to
meet the requirement of real-time classification. Shen et al. [30, 31] optimised the SRC to boost the
face recognition performance in smartphones.

Besides recognition, compressed sensing is also applied to background subtraction [28, 29, 52],
data compression for in-situ soil moisture sensing [47], and cross-correlation for acoustic ranging
[19] and GPS ranging [20].

Compared with these works, this paper is the first to investigate the feasibility of SRC for
radio-based activity recognition. Furthermore, our work also takes advantage of SRC for activity
recognition with RFI in present.

6 CONCLUSION

In this paper, we investigate the performance of radio based device-free location-oriented activity
recognition systems under RFI using complex-valued CSI and propose a novel fusion algorithm
based on SRC that can improve the recognition performance of the systems by up to 10% when RFI
is present. Our prototype robust location-oriented activity recognition system requires only one
pair of nodes for a one-bedroom apartment, which enables easy system set-up and maintenance.
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