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ABSTRACT
This paper investigates discrete and continuous hand-drawn loops

and marks in mid-air as a selection input for gesture-based menu

systems on optical see-through head-mounted displays (OSTHMDs).

We explore two fundamental methods of providing menu selection:

the marking menu and the loop menu, and a hybrid method which

combines the two. The loop menu design uses a selection mecha-

nism with loops to approximate directional selections in a menu

system. We evaluate the merits of loop and marking menu selection

in an experiment with two phases and report that 1) the loop-based

selection mechanism provides smooth and effective interaction;

2) users prioritize accuracy and comfort over speed for mid-air

gestures; 3) users can exploit the flexibility of a final hybrid mark-

ing/loop menu design; and, finally, 4) users tend to chunk gestures

depending on the selection task and their level of familiarity with

the menu layout.
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1 INTRODUCTION
Optical see-through head-mounted displays (OST HMDs) are under

intense industry development and as a consequence some OST

HMDs are nowmade available for reasonably affordable prices, such

as theMicrosoft HoloLens.While themainstreamOSTHMDmarket

is yet to emerge, OSTHMDs are already being deployed into vertical

markets, such as security and defense, construction, engineering

and manufacturing. Current OST HMDs are limited in mass market

appeal, primarily due to their bulky form factor, limited field-of-

view and power consumption demands. However, devices, such as

Microsoft HoloLens, are already excellent protoyping testbeds for

investigating next-generation user interfaces for OST HDMs.

One primary challenge in such a future is the demand for inter-

action techniques that are robust in the presence in an inherently

noisy sensor environment. Noise is unavoidable in any interface

and arises from multiple sources such as the user’s neuromuscular

and cognitive systems, device sensors and inference algorithms

(e.g., gesture recognition algorithms). While current limitations of

OST HMDs, such as form factor and low field-of-view, are likely to

be solved in the not too distant future, providing uninstrumented

users with fluid interaction techniques that are resilient to noise is a

fundamental obstacle blocking mainsteam adoption of OST HMDs.

Unlike typical computing environments, such as laptops and capac-

itive touchscreen-enabled mobile devices, OST HMDs must infer

the user’s intention using noisy sensors, such as depth sensors, and

probabilistic algorithms, such as random decision trees and deep

neural networks. Further, OST HMDs interactions are situated in

a particular physical environment, and the characteristics of this

environment will introduce additional noise, which is difficult to

control and model.

In this paper we evaluate discrete and continuous marking menu

and loop menu selection. We investigate design considerations for

how to transplant a known efficient and flexible control interface,

the marking menu, to OST HMDs and ensure it is sufficiently noise

resilient. Such a control interface is useful for many situations. First,

it is based on a known efficient menu technique which provides

users with a seamless transition from novice-to-expert behaviour.

It is therefore a suitable component of standard OST HMD user

interfaces, for instance to allow users to browse command hierar-

chies and trigger commands. Second, we envision a future where

OST HMDs are used, among other things, to seamlessly interact

with smart devices to remotely trigger a range of functions, such

as using an OST HMD to remotely configure a heating control

appliance in a home or to reprogram robot in a smart factory. A

robust control interface is vital for such interactions, as errors may

incur a substantial recovery cost.

However, the marking menu is not fully robust to noise due to

its reliance on sequences of linear strokes, which are difficult to

carry out reliably using OST HMD sensors, such as a front-mounted

depth sensor. We therefore also explore a variant of the marking

menu which in this paper will be referred to as the loop menu,
inspired by FlowMenu [17].

Our key findings are 1) the loop-based selection mechanism pro-

vides smooth and effective interaction; 2) users prioritize accuracy

and comfort over speed for mid-air gestures; 3) users can exploit
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the flexibility of a final hybrid loop and marking menu design; and,

finally, 4) users tend to chunk gestures depending on the selection

task and their level of familiarity with the menu layout.

2 RELATEDWORK
Gesture design and gesture-based menu design have been exten-

sively researched in the past. Dachselt and Hubner [12] surveyed

previous 3D menu applications, Cheng et al. [11] reviewed recent

research activities with 3D hand recognition using depth sensors

and Bailly et al. [5] analyzed visual menu techniques. Zhai et al. [43]

reviewed gestural stroke-based user interfaces while Delamare et

al. [13] surveyed existing gesture guiding systems and provided

an online tool assisting designers to quickly identify and compare

current solutions that match their required design specifications.

Below we review the literature from two perspectives. We first

review prior research on gesture control techniques and thereafter

we review prior research on gesture design theory.

2.1 Gesture Control Techniques
2.1.1 Gesture Discrimination by Hand Configuration. The finger-

count menu [23] allows menu selection via recognition and match-

ing of the number of fingers the user is extending to a labelled menu

item. However, recognition of hand form does not allow smooth

navigation through many hierarchies in a single cluster of actions,

otherwise referred to as dynamic co-articulation [9]. Aoki et al. [2]

argues that there will be wasted motion in switching one hand form

to another in doing so.

2.1.2 Gesture Discrimination by Relative Hand Position/Orientation.

Prior research has extensively researched pointing gestures [32,

40] and wrist tilt gestures, [30] respectively. Vogel and Balakrish-

nan [40] developed and compared different freehand techniques for

pointing and clicking from a distance. They used features such as

velocity, acceleration, absolute position and movement axis of the

finger to recognize intended clicks. They tested raycasting (from tip

of index finger), relative raypointing (with tracking hand positions

on a vertical plane) and a hybrid of both techniques and found out

that freehand raycasting faced high error rates in selecting small

and medium targets. Freehand click-and-point can also lead to the

“Heisenberg effect”, a phenomenon where the action of clicking

causes the hand position to be adjusted [8]. In lieu of the uncon-

strained freehand movements, which causes inaccuracy in ray-

pointing, Shoemaker et al. [37] proposed that distance-independent

techniques are preferable.

Instead of using the hand/finger to point-and-click, Pfeuffer et al.

[32] explored using gaze-and-pinch interactions for manipulations

in virtual reality. Nonetheless, like any pointing-based interaction

technique, each selection is performed with a discrete action or

gesture, which does not allow chunking of multiple selections or

dynamic co-articulation. This reduces the suitability of such tech-

niques in menu selection systems as they do not support quick

navigation of menu hierarchies. Lastly, the rapMenu [30] is an

orientation-based gestural menu system that uses wrist tilts and

multiple distinct pinch gestures to make menu selections without

requiring precise movements.

2.1.3 Gesture Discrimination by Shape/Path. The marking menu

[25] is a 2D menu interface design with a similar layout to the pie

menu [10]. In a markingmenu, a menu selection is made by drawing

a gesture (denotedmark) from the centre to the desiredmenu item. It

allows scale-independent selection, open-loop and hence eyes-free

operation for experts, while also providing support for novice usage

with closed-loop visual menus and novice-to-expert transitions. It

allows quick access tomenu items in deeper hierarchies via dynamic

co-articulation in a single continuous stroke.

Zone and Polygon [45] and Flower [4] menus are variants of

marking menus with different layouts, providing users with ei-

ther better accuracy or menu item capacity. Zhao et al. [46] also

presented a variant using multiple discrete strokes (higher-order

gestures [43]) known as “simple marks”. Marking menus have also

been adapted for text entry [39] and parameter controls [33]. Fi-

nally, introductions of new input devices have stimulated further

explorations of marking menus. For instance, a two-handed mark-

ing menu for touchscreens has been presented [21]. Ren and O’Neill

[34] proposed a 3D marking menu for freehand gestural interaction.

They concluded that the additional z-axis provided by the 3D menu

should be avoided as accuracy and movement speed along the z-
axis is lower for users. Other examples include the wave menu [3]

and the double crossing technique [29].

Besides a directional path, drawing different shapes in mid-air

can also be used to select objects or menu items. The Vision-based

Unicursal Gesture Interface (VUGI) [2] allows menu selection by

drawing shapes. It is similar to QuikWriting [31] and Cirrin [27],

where users can make text-entry by moving out of the central area

to designated zones for selection and returning back to the central

area for confirmation.

2.2 Gesture Interface Design Theory
Prior research [16, 26, 28] has indicated that human vision consists

of a ventral stream for conscious perception of objects (identify

a menu item) and a dorsal stream for unconscious, online con-

trol of visually guided action toward objects (reach for the menu

selection). Furthermore, the execution (dorsal stream) of limb move-

ments can be viewed as two distinct component phases: an initial,

ballistic phase and a subsequent phase where refinement and error-

correction takes place, usually relying on visual feedback to reduce

the error between the effector and the target [15, 42]. Studies [14, 41]

have also shown that dynamic visual cues in both the central and

peripheral field-of-view affects motor behaviour. It is also generally

viewed that providing information regarding the learner’s success

in meeting the environmental goal (knowledge of results) after a

response is widely regarded as critical for motor learning [35]. Thus,

mid-air menu selection systems should account for motor move-

ment and visual feedback considerations. This includes the error

correction phase in selections made with upper limb movements,

potential visual distractions often present in optical see-through

devices and lastly, visual feedback for error correction. A plausible

approach would be to avoid target selection methods and explore

trajectory based movements, such as goal-crossing [1].

Kurtenbach [25] improved learnability andmemorability of gesture-

based interaction systems by catering for novice exploration, expert

operation and training to facilitate novice-to-expert transition. He
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also explored how an “unfolding interface” or self-revealing devices

can help achieve this novice-to-expert transition. Other work, such

as OctoPocus [7] and LightGuide [38], used self-revealing guidance

to provide feedforward and feedback, teaching users new gesture

commands and proper movements respectively. Bailly et al. [6]

explored mid-air marking menus and Zheng et al. [47] explored the

positive and negative aspects of continuous and discrete marking

menus defined on a grid.

3 LOOP AND MARKING MENU SELECTION
We investigate two menu selection techniques: the marking menu

and the loop menu, which is a refinement of the marking menu and

closely related to FlowMenu [17] in its design.

A marking menu works as follows. A user makes a menu selec-

tion by first triggering the menu, which is typically a pie menu

centred around the invocation point. In novice mode the under-

lying pie menu is visualized to the user. The user then navigates

the hierarchical pie menu by articulating linear strokes towards

the desired pie slices. When a slice has been selected it can either

trigger a sub-menu, and the process repeats, or the selected pie slice

can be a menu item, which will be triggered if selected by the user.

In expert mode, the underlying pie menu is not shown to the user.

Instead, the user selects the desired menu item by articulating a

series of continuous linear strokes, mimicking the same movement

pattern as in novice mode. Since the movement pattern is the same

in both novice and expert mode, this allows users to implicitly learn

the motor memory patterns for menu selections in novice mode

and seamlessly transition from closed-loop visually guided novice

behavior to open-loop direct recall from motor memory expert

behavior. This principle is also underpinning the gesture keyboard

mobile text entry method [22, 44].

To encourage users to transition to expert mode, the visual de-

piction of the marking menu is typically not revealed until a set

timeout after the menu has been triggered. An often overlooked

implementation detail of the marking menu is that if the user stops

their movement for a set duration in expert mode, which indi-

cates the user has forgotten the direction for the next selection, the

marking menu switches back to novice mode. In addition to the

original continuous marking menu it is also possible to implement

as a discrete marking menu where each linear stroke is separately

delimited.

The loop menu uses a selection mechanism with loops instead

of linear strokes to approximate directional selections in the menu

system. Our design is based on the hypothesis that moving in

loops for menu selections is easier, faster and more accurate than

producing linear motions in unsupported 3D space for an OST

HMD.

To investigate loop and marking menu selection in an OST HMD

we use a Microsoft HoloLens. The loop and marking menu gestures

are delimited by the default built-in HoloLens ‘click’, or air tap

gesture (touching the index finger with the thumb).

To make a selection:

(1) The user starts with a ‘click’ gesture to trigger hand tracking.

(2) While the user has the click gesture triggered (i.e., the thumb

and index finger remain in contact), the user moves their

hand in mid-air, in the direction towards the intended menu

Figure 1: Illustration of making a menu selection: a) sin-
gle selection with a loop, b) single selection with a line, c)
multi-hierarchical selection with multiple loops, d) multi-
hierarchical selection with loops and ending with a line.

item and exits the inner octagon. A selection occurs upon

re-entering the octagon. If the item selected is a parent item,

the menu updates to reveal subsequent child items.

(3) The user either releases the ‘click’ gesture for selection con-

firmation, or continues to navigate deeper through the menu

hierarchy by repeating step 2.

For shorter gesture, and hence selection, duration, selections can

also be made by drawing lines instead of loops. Simply release the

‘click’ gesture early, before re-entering the inner octagon. Though

faster, this method of selection does not allow for chunking for

navigation through the menu hierarchies. Users can also choose to

combine loops and lines for multi-hierarchical selection, with lines

used as the last selection.

The selection process is illustrated for all cases in Figure 1.

The system detects loop menu selections as follows. Each menu

item is assigned to an angular range, with the range dependent on

the number of menu items. The user selects an item by tracing a

looped path in the general direction towards that menu item. The

algorithm takes data points throughout the entire loop. The inter-

preted direction of the drawn loop is the line joining the average

point of the loop, (

∑n
1
X

n ,

∑n
1
Y

n ) and the middle point between

(
Ix+Jx

2
,

Iy+Jy
2

) and (0 , 0), where n is the total number of data

points per loop, X and Y are the horizontal and vertical coordinate

of a given point on the loop, I is the point where the loop exits the

inner octagon and J is the point where the loop reenters it. Figure

2 illustrates the key aspects of the system’s selection mechanisms.

This approximation method allows users to easily select off-axis

directions without having to be precise with their gestures. Users

would not need to focus on exiting and entering the exact zones or

follow a specific trajectory path. This allows gesture articulation to

be fluid, quick and less strenuous.

By default, we used a hierarchical menu layout of breadth 8 and

depth 2, thus offering access to 64 commands, to ensure a fair and

meaningful comparison with the marking menu (see Section 4.2).

4 EVALUATION
We evaluated the loop and marking menu in a within-subjects ex-

periment with two phases. In Phase 1 we investigated the strengths
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Figure 2: A breakdown of the system’s selectionmechanism.

andweaknesses of using loops versusmarks (linear gestural strokes)

for menu selection for continuous and discrete selection separately.

Phase 1 therefore compared the continuous and discrete loop menu

(with loops only) with the continuous [25] and discrete [46] mark-

ing menu (linear strokes only).

In Phase 2 we investigated whether users were able to exploit

the flexibility of the loop menu to 1) enhance their selection perfor-

mance and/or 2) cater for different selection tasks. We investigated

if performance with the loop menu would improve when users were

allowed the flexibility to combine both loops and linear strokes for

menu selection, and if the selection tasks themselves would affect

users’ preference for any of the various selection methods available.

Phase 1 and Phase 2 were conducted in one sitting with the

same participants and apparatus. We investigated the following

hypotheses:

Hypothesis 1: Menu selection with loops is more accurate than

linear gestural strokes.

Hypothesis 2: Menu selection with loops reduces workload com-

pared to linear gestural strokes.

Hypothesis 3: Menu selection with loops is faster than linear

gestural strokes.

Hypothesis 4: Using both loops and linear gestural strokes to-

gether improves selection performance.

Hypothesis 5: There will be a difference in preferred selection

methods when using the loop menu for different selection tasks.

4.1 Participants and Apparatus
We opportunity-sampled 24 right-handed participants, 9 female and

15 male, in an age range of 22 to 31, with the exception of one 38

year old participant. None had previous experience with marking

menus or the HoloLens. All participants took part in both Phase 1

and Phase 2.

Both Phase 1 and Phase 2 were conducted using a Microsoft

Hololens, a Kinect 360 and an ASUS X556U laptop computer. The

Hololens was used to capture the participants’ gestural inputs and

the Graphical User Interface (GUI) was viewed from the optical

see-through display provided by the HoloLens. We use software by

Hincapié-Ramos et al. [19], which uses the Kinect 360 to measure

the Consumed Endurance (fatigue) of the participants during the

trials. It is important to realize that while the HoloLens is an ex-

cellent practical and affordable choice for investigating OST HMD

user interfaces, such devices are still in their infancy. As a conse-

quence, the field of view is limited and there is a small lag in the

hand tracking.

4.2 Task and Stimuli
Participants were given a sequence of labels (e.g., N-S, which meant

first select North and then select South) and were requested to

perform the appropriate gestures to generate the respective labels.

After the gesture was completed, the participant was presented with

a label based on their input. A gesture stroke that was unrecognized

would require the participant to re-attempt the same gesture. Due to

the limitations of the Hololens, should the participant move his/her

hand beyond the device’s sensor boundary, the gesture would be

cancelled and the participant would need to re-attempt the gesture.

When a selection did not match the stimulus, the participant was

asked to rectify the mistake(s) until a correct selection is made. An

incorrect selection could be undone with a double-click gesture.

At the end of each test condition, participants were instructed to

complete a NASA-TLX [18] form.

Similarly to previous research on marking menus by [24, 46],

we used compass labels (‘N’, ‘S’, ‘E’ and ‘W’) for the menu layout.

This simulates a user who is already well-accustomed to the menu

layout and would therefore not require menu visualisations. For

reference, a compass showing all directions was also displayed on

the top-right corner of the HoloLens display.

Each participant was provided 8 gesture stimuli per trial block.

There were two trial blocks for each test condition (menu selec-

tion technique). The 8 gesture stimuli and the order were selected

randomly. Similarly to prior work [46], the gesture stimuli were

non-ambiguous for continuous marking menus (e.g., N-N or NW-

NW etc.).

4.3 Statistical Analysis
For all subsequent reported results, unless otherwise stated, we used

the following methods for statistical analysis. We used General Lin-

ear Model (GLM) repeated measures analysis of variance to analyze

Consumed Endurance scores and time durations. Time durations

were log-transformed prior to analysis. NASA-TLX ratings were an-

alyzed using Friedman’s test. Multiple comparisons were adjusted

using Holm-Bonferroni correction from an initial significance level

of α = 0.05. For some analyses we used a Generalized Linear Mixed-

Effects (GLME) model with either a Poisson or Binomial kernel and

a log link function as some of our measures technically consisted

of count data and thus violated the assumptions of a GLM analysis

of variance. The specific kernel used in these analyses is reported

for each of the relevant dependent variables. GLME allows us to

use more statistical power compared to non-parametric testing.

Note that in reporting the statistical outcomes of GLME analyses

we report t parameter values, which should not be confused with

reporting results from ordinary t-tests. It is not possible to calculate

meaningful effect sizes for the GLME models. Instead we report

model fit as R2, which is a proportion of how good the fit is (R2 = 0:

no fit; R2 = 1: perfect fit). The word significant should be interpreted
as statistically significant throughout the rest of this paper.
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4.4 Phase 1: Menu Selection Technique
The objective of Phase 1 was to evaluate the effects of menu se-

lection technique. We investigated two independent variables: 1)

DiscreteMenu with two levels (loop menu vs. marking menu);

and 2) ContinuousMenu with two levels (loop menu vs. mark-

ing menu). These independent variables were investigated as four

individual conditions in a single experimental session per partici-

pant. To avoid ordering effects, the order of the test conditions was

counterbalanced using a Latin Square design.

Prior research shows that in order to ensure a lower than 10%

error rate for the marking menu, a menu breadth of 4 can have

a maximum depth of 4 (4×4), a menu breadth of 8 can have a

maximum depth of 2 (8×2), and any menu breadths exceeding 8

would not be practical accuracy-wise [24, 46]. However, when using

the marking menu in an OST HMD, it is cumbersome to keep four

continuous linear strokes within the camera field of view/boundary.

Hence, we used the 8×2 menu layout for all four test conditions in

Phase 1.

Participants did practice trials before each test condition. Partic-

ipants had to make 7/8 correct selections before they were allowed

to proceed with the actual trial. This allows us to study typical user

behavior once a completely unfamiliar hypothetical user has fa-

miliarized themselves with menu selections in an OST HMD. Each

participant went through Phase 1 in one sitting, including breaks

between menu selection techniques, in approximately 1 hour.

The experimental design for Phase 1 was as follows (excluding

practice trials): 24 participants × 4 test conditions × 8 items for

each test condition × 2 trial blocks = 1536 menu selections in total.

The dependent variables were:

(1) Accuracy:
(a) Correct Selection: Measured in number of menu selections

that matched the gesture stimuli on the first attempt. A

Binomial kernel was used for the GLME analysis.

(b) Number of gestural attempts. A Poisson kernel was used

for the GLME analyses on three of the following variables:

(i) Exit Boundary Count: Number of re-attempts due to

exiting the camera FOV/detection boundary.

(ii) Repeated Incorrect Selections: Number of re-attempts

as a result of repeated wrong selections made.

(iii) Additional Attempts: Total number of re-attempts to

complete all the menu selections.

(2) Workload:
(a) Consumed Endurance: A metric for estimating a user’s

arm fatigue during mid-air interaction [19]. Hincapié-

Ramos et al. [19] defined endurance as “the amount of

time a muscle can maintain a given contraction level be-

fore needing rest”, while Consumed Endurance is the ratio

of the interaction time and the computed endurance time

associated with the gestures. For instance, a Consumed

Endurance level at 100% would mean the user is required

to rest.

(b) NASA-TLX survey results.

(3) SelectionDuration:The articulation duration of the recorded,
correct selection.

(4) Trial Duration: The total duration between the time when

the trial stimulus is triggered and when the correct corre-

sponding selection is completed.

(5) Subjective Ratings: 1–5 Likert scale ratings of the per-

ceived accuracy, selection duration and comfort of the tech-

niques.

4.5 Phase 1 Results
4.5.1 ContinuousMenu Comparison (Figure 3).

(1) Accuracy. We found a significant difference (t = 2.3003,

p < 0.05, R2 = 0.0071) between the menu selection tech-

niques for the mean number of correct selections. The con-

tinuous loop menu was significantly more accurate than the

continuous marking menu. We also found a significant dif-

ference for the mean number of additional gesture attempts

(t = −7.3039, p < 0.05, R2 = 0.6428) between the menu se-

lection techniques. It took users more attempts on average to

complete the 16 menu selections for the continuous marking

menu. Out of the total additional attempts, the continuous

marking menu also had more attempts due to repeated incor-

rect selections (t = −2.9235,p < 0.05, R2 = 0.3557), so-called

cascading errors [20]. There was no significant difference

for the exit boundary count (p = 0.11).

(2) Workload/Comfort. There were no significant differences

for the overall workload score for the NASA-TLX question-

naire (p = 0.10) or the mean Consumed Endurance score

(p = 0.17) between the menu selection techniques.

(3) Selection Duration. There was a significant difference for
the mean duration per gesture (F1,23 = 168.95, p < 0.05)

between the menu selection techniques. The continuous

marking menu was significantly faster than the continuous

loop menu.

(4) Trial Duration. There was no significant difference (p =
0.32) in the mean trial duration between the two menus (6.85

s, sd = 3.48 s and 6.06 s, sd = 2.19 s for the continuous marking

and loop menu respectively).

(5) Subjective Ratings. There was no significant difference in

the median Likert scale ratings of the perceived accuracy

(p = 0.11), selection duration (p = 0.83) and comfort (p =
0.25) between the continuous marking and loop menu. The

median ratings for accuracy, selection duration and comfort

for the continuous marking and loop menu were 4.0, 3.5, 4.0

and 4.0, 3.0, 4.0 respectively.

4.5.2 DiscreteMenu Comparison (Figure 4).

(1) Accuracy.We found no significant difference between the

menu selection techniques for themean number of correct se-

lections (p = 1.00). We found a significant difference for the

mean number of additional gesture attempts (t = −3.0051,

p < 0.05, R2 = 0.4984) between the menu selection tech-

niques. It took users more attempts on average to complete

the 16 menu selections for the discrete marking menu. There

were no significant differences for repeated incorrect selec-

tions (p = 0.35) or exit boundary count (p = 0.051).
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Figure 3: Box-and-whisker plots for continuous marking menu vs. continuous loop menu in Phase 1.

Figure 4: Box-and-whisker plots for discrete marking menu vs. discrete loop menu in Phase 1.

Figure 5: Average selection duration across all participants
for trial selection N in each test condition in Phase 1.

(2) Workload/Comfort. There were no significant differences

for the overall workload score for the NASA-TLX question-

naire (p = 0.68) or the mean Consumed Endurance score

(p = 0.07) between the menu selection techniques.

(3) Selection Duration. There was a significant difference for
the mean duration per gesture (F1,23 = 90.89, p < 0.05) be-

tween the menu selection techniques. The discrete marking

menu was faster than the discrete loop menu.

(4) Trial Duration. There was a significant difference (F1,23 =
6.03, p < 0.05) in the mean trial duration between the two

menus (6.11 s , sd = 1.99 s and 8.16 s, sd = 4.18 s for the

discrete marking and loop menu respectively). Participants

required less time to complete a trial selection with the dis-

crete marking menu than the discrete loop menu.

(5) Subjective Ratings. There was no significant difference in

the median Likert scale ratings of the perceived accuracy

(p = 0.62), selection duration (p = 0.11) and comfort (p =
0.09) between the discrete marking and loop menu. The

median ratings for accuracy, selection duration and comfort

for the discrete marking and loop menu are 4.0, 3.5, 4.0 and

4.0, 3.0, 3.0 respectively.

4.6 Phase 2: Hybrid Loop/Marking Menu
In Phase 1 participants were prevented from using the full flexibility

of the loop menu as the objective was to assess the merits of loops

and linear strokes.

In Phase 2, we first introduced the combined loop and marking

menu design which provides full functionality of selecting with

both loops and linear marking strokes, in an 8×2 menu layout with

compass labels. To avoid confusion with the restricted loop menu

configurations in Phase 1, we will refer to this loop menu with

full functionality as the hybrid loop/marking menu. As there was
no learning effect in Phase 1 (see Figure 5), we will compare the

performance of this hybrid loop/marking menu against the marking

menu results obtained in Phase 1 using the same menu layout.

Thereafter we investigated the effects of altering the menu con-

figuration. We tested two conditions. In the first condition (hybrid

loop/marking menu with arbitrary labels) we used the same hybrid

menu with an 8×2 menu layout, but instead of compass labels the

menu items were labeled in colours for the parent hierarchy and

shapes for the child. For example, a menu item could be labeled as

red-square or pink-triangle. This simulated amenu layout where the

participant would not know where the intended menu items were
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beforehand, and thus required them to explore the menu first. The

second condition (hybrid menu 8×4) used the same hybrid menu

but with a 8×4 menu layout and compass labels. This investigated

the effect of a more complex, but known, menu configuration.

All participants would proceed with the default hybrid loop and

marking menu first, and the following two menu layout conditions

were counterbalanced across participants. Each participant went

through Phase 2 in one sitting, in about 45 minutes.

The dependent variables were the same as in Phase 1, with the

exception that we also investigated the frequency of each selection

method (loops vs. linear strokes).

4.7 Phase 2 Results
4.7.1 Overall Comparison. We took the performance data of the hy-

brid loop/marking menu (HM) and compared with the earlier menu

variants in Phase 1: continuous marking and loop menu, discrete

marking and loop menu (CMM, CLM, DMM, DLM respectively).

(1) Accuracy.We used the same GLME analysis as in Phase 1.

We found a significant difference between themenu selection

techniques for the mean number of correct selections (t =
−2.3063, p < 0.05, R2 = 0.0091). The hybrid menu was

significantly more accurate than the continuous marking

menu.We found a significant difference for themean number

of additional gesture attempts between the menu selection

techniques. It took users fewer attempts (R2 = 0.4048) on

average to complete the 16 menu selections for the hybrid

menu than continuous marking menu (t = 7.4354, p < 0.05),

discrete marking menu (t = 6.0719, p < 0.05) and discrete

loop menu (t = 3.3469, p < 0.05) respectively. Out of the

total additional attempts, the hybrid menu also has lesser

attempts than the continuous marking menu (t = 3.0641,p <
0.05) due to repeated incorrect selections (R2 = 0.1777), and

lesser attempts than the discrete marking menu (t = 4.181,

p < 0.05) and discrete loop menu (t = 2.4282, p < 0.05) due

to participants exiting the camera boundary (R2 = 0.2770).

(2) Workload/Comfort. We found significant differences for

the mean workload score for the NASA-TLX questionnaire

(χ2 = 11.8326, p < 0.05), and the mean Consumed En-

durance score (F4,92 = 4.77, p < 0.05) between the menu

selection techniques. The hybrid menu had a significantly

lower NASA-TLX workload than the continuous marking

menu (p = 0.0099). The hybrid loop menu also had a signifi-

cantly lower Consumed Endurance score than the continu-

ous marking menu (p = 0.0101) and the discrete loop menu

(p = 0.0012).

(3) Selection Duration. There was a significant difference for
the mean duration per gesture (F4,92 = 83.12, p < 0.05)

between the menu selection techniques. The hybrid menu

was faster than the continuous loop menu (p < 0.001), dis-

crete marking menu (p < 0.001) and discrete loop menu

(p < 0.001).

4.7.2 Importance Rating of Factors. The participants were also

asked to rate the importance of accuracy, articulation time and

comfort as factors in a freehand gestural menu system. We found

a significant difference for ratings between the three factors (χ2

= 11.91, p < 0.05). The participants on average rated accuracy

(p = 0.0337) and comfort (p = 0.0029) as more important than artic-

ulation time. There was no significant difference between accuracy

and comfort.

4.7.3 Overall Preference. Participants were asked to choose their

1) overall preferred menu between the hybrid menu (HM) and the

earlier menu variants in Phase 1: continuous marking and loop

menu, discrete marking and loop menu (CMM, CLM, DMM, DLM

respectively), and 2) overall preferred menu when the hybrid menu

is not an option. 19/24 people preferred the hybrid menu. When the

hybrid loop menu was excluded as an option, the majority of the

participants preferred the continuous loop menu (11/24) and the

discrete marking menu (9/24), both of which are selection methods

widely used in the hybrid menu throughout Phase 2.

4.7.4 Selection Pattern. We recorded the corresponding selection

pattern for all gesture selections made by the participants. For each

loop, straight line and ‘click’ release (discrete selection mode), we

labeled it as ‘L’, ‘S’ and ‘M’ accordingly. For example, if a participant

started with a loop, followed by a release of the ‘click’ gesture, and

ended with a straight line, it would be recorded as ‘LMS’. We used a

GLMEmodel with a Binomial kernel and a log link function to assess

the effect of menu layout on the number of gestures performed in

discrete selection mode.

We found a significant difference for the number of selections

made using the discrete selection mode between the menu layouts.

There were more gestures performed with discrete selection mode

when using the hybrid menu with arbitrary menu labels than the

hybrid menu with compass labels for the 8×2 menu (t = 9.3116,

p < 0.05, R2 = 0.8591). There were also more gestures performed

with discrete selection mode when using the hybrid loop menu

with the 8×4 menu compared to the hybrid loop menu with the

8×2 menu (t = 3.0349, p < 0.05, R2 = 0.7743).

5 DISCUSSION
We here discuss the findings in relation to the five hypotheses:

Hypothesis 1: Menu selection with loops is more accurate
than linear strokes.

The loop menu resulted in 4.38% more correct selections from

a given set of selection stimuli (for continuous selection mode

only), and required 21.3% and 8.9% fewer total attempts than the

marking menu in both the continuous and the discrete selection

mode respectively to complete the selection tasks (see Figure 3 and

Figure 4).

While the tendency to exit the camera boundary with the mark-

ing menu is higher, the main contributor to the increase in the

attempt count was due to participants cancelling incorrectly drawn

gestures midway (additional attempts - (repeated incorrect selec-

tions + exit boundary count)) before selection confirmation due to

the difficulty to produce straight movements with freehand ges-

tures (with 72% and 58.7% of total reattempts for continuous and

discrete selection mode respectively; see Figure 3 and 4).

Hypothesis 2: Menu selection with loops causes lower work-
load than linear marking strokes.

The results do not indicate that the loop menu reduces workload

or increases comfort compared to the marking menu. This means
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Figure 6: Box-and-whisker plots for for all menu variants in Phase 1 and Phase 2 (using the same menu layout).

Figure 7: Participants’ rating of factors in Phase 2.

Figure 8: Participants’ preferred menu in Phase 2.

using loops instead of straight lines improves accuracy without

adding much, if any, additional workload or discomfort.

Hypothesis 3:Menu selectionwith loops is faster than linear
marking strokes.

The average gesture distance per second (i.e., gesture speed) of

the marking menu in the continuous and discrete selection mode

(0.16m/s and 0.13m/s respectively) was lower than the loop menu

(0.21m/s and 0.15m/s for continuous and discrete selections respec-

tively). This indicates that participants were able to move faster

with the loop menu compared to when using the marking menu.

However, the additional gesture distance required in the loop menu

(see Figure 10) outweighed its superior movement speed, resulting

in a shorter selection duration for the marking menu than the loop

menu in both selection modes (see Figure 3 and 4). Nonetheless,

the equal selection duration ratings of the two menus by the partic-

ipants show that using loops instead of straight lines did not incur

any user perceivable penalty in selection duration.

Hypothesis 4: Using both loops and linear marking strokes
together will improve selection performance.

The hybrid loop/marking menu outperformed in all measure-

ments (see Figure 6) and was also preferred by most participants.

It retained all positive characteristics from each individual menu

variant.

In Figure 3 and 4, we can observe a classic speed-accuracy trade-

off between performing straight lines in the marking menu and

loops in the loop menu during Phase 1. However, the hybrid menu

has both accuracy and speed. It is on par, or better, in terms of

the number of correct selections with all the menu variants. It has,

together with the continuous loop menu, the lowest additional

attempts, the lowest repeated incorrect selection count and the

lowest exit boundary count while simultaneously demonstrating

approximately the same selection duration as the fastest menu,

the continuous marking menu. The hybrid menu is also either on

par, or better, than all menu variants in terms of workload/comfort

(NASA-TLX and Consumed Endurance; see Figure 6).

To ensure the improved performance with the hybrid menu was

not due to learning effects, we compared the average selection

duration across all participants for each trial selection for all test

conditions in Phase 1. Figure 5 shows that the learning effect is min-

imal as the average selection duration did not improve significantly

from the first trial selection to the last over all test conditions.

Hypothesis 5: There will be a difference in preferred selec-
tion methods when using the hybrid menu for different se-
lection tasks.
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Figure 9: Selection patterns in Phase 2.

Figure 10: Gesture distance vs. selection duration of every
gesture performed by the participants in Phase 1.

The main gesture combinations used throughout Phase 2 were

‘SMS’/‘SMSMSMS’ (analogous to the discrete marking menu) and

‘LL’/‘LLLL’/ ‘LS’/‘LLLS (analogous to the continuous loop menu

ending with a linear stroke).

There were approximately twice as many gestures performed

with discrete selection mode when users were using the hybrid

menu with arbitrary menu items as compared to the compass menu

items (see Figure 9). We believe the need to search for items in

each of the two menu hierarchies encouraged the participants to

perceive the task as accomplishing two discrete objectives. This

resulted in a pause realized through the release of the ‘click’ gesture

after selecting the menu item from the parent hierarchy.

Participants tended to chunk their gestures more during com-

mand elicitation when they already knew the location of the menu

items. In both the 8×2 and the 8×4 compass layouts of the hybrid

loop menu, the ratio of continuous selection gestures to discrete se-

lection gestures were approximately 3:1 and 2:1 respectively, while

the ratio was approximately 1:2 for the arbitrary menu layout (see

Figure 9).

With the deeper menu hierarchy in the 8×4 menu layout, there

was an increase in variance of the preferred method (see Figure

9). While there were participants who felt that holding the ‘click’

gesture is less energy consuming, others preferred to release the

‘click’ gesture more often to rest their arm.

6 CONCLUSIONS
This paper has demonstrated the benefits of using loops over straight

lines for making selections on scale-independent menu systems in

OST HMDs. Despite the additional distance for gesture travel and

the longer gesture articulation duration, the nonrestrictive looping

movements improves selection accuracy without compromising

users’ perceived gesture articulation duration or effort.

Users prioritized accuracy and comfort over speed. Participants’

ratings on the importance of the factors in Figure 7 (accuracy, artic-

ulation time and comfort) and their preference for menu variants

that are more accurate but slower (see Figure 6 and 8), demonstrated

that users indeed prioritized accuracy and comfort over articulation

time.We conjecture this indicates the importance of providing users

with a sense of internal locus of control or agency [36], especially

for mid-air gestural systems, which involve generally more taxing

actions than, for example, capacitive touchscreens.

Users exploited the flexibility of the hybrid menu to enhance

their selection performance. Users could make selections with the

hybrid menu as quickly as with the marking menu while retaining

an accuracy level as high as the original loop menu. Thereby we

demonstrated the additional noise resilience provided by the loop

menu compared to the marking menu, a key design factor for OST

HMDs, which rely on inherently noisy sensing of mid-air gestures.

Finally, users were also able to exploit the flexibility of the hy-

brid menu to cater for different selection tasks. We observed that

participants switched between chunking (continuous gestures) and

discrete gestures depending on the selection task as well as on the

level of familiarity with the menu layout.

The principle of using loops in gestural interfaces is not new

(e.g. [17, 31]). However, this paper demonstrates empirically that

looping is a useful technique for designing a practical usable OST

HMD menu interface given today’s hardware limitations, in partic-

ular high lag, lack of precision, and a limited field-of-view, which

necessitate a robust and flexible design solution.
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