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Figure 1: Illustrative examples using autostereograms. a) Password input. b) Wearable e-mail notification. c) Private space in
collaborative conditions. d) 3D video game. e) Bar gamified special menu. Black elements represent the hidden 3D scene content.

ABSTRACT

Autostereograms are 2D images that can reveal 3D content
when viewed with a specific eye convergence, without using
extra-apparatus. We contribute to autostereogram studies
from an HCI perspective. We explore touch inputs and output
design options when interacting with autostereograms on
smartphones. We found that an interactive help (i.e. to control
the autostereogram stereo-separation), a color-based feed-
back (i.e. highlight of the screen), and a direct touch input can
provide support for faster and more accurate interaction than
a static help (i.e. static dots indicating the stereo-separation),
an animated feedback (i.e., a ‘pressed’ effect), and an indirect
input. In addition, results reveal that participants learn to per-
ceive smaller and smaller autostereogram content faster with
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practice. This learning effect transfers across display devices
(smartphone to desktop screen).
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1 INTRODUCTION

Stereopsis - the ability to perceive depth and 3D stereoscopic
images - comes from the horizontal disparity of the two images
captured by our eyes [31]. This disparity is then processed by
the brain to create a depth perception. Since the development
of random-dot stereograms (RDS) by Julesz in 1960 [22], stere-
ograms have been used as a stimulus in several stereopsis
experiments to understand human [10, 28, 31] and primate
[13, 28] stereo-vision and neurophysiological mechanisms of
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depth perception. Autostereograms - or Single Image Random
Dot Stereograms (SIRDS) - are 2D ‘flat’ images that can reveal
3D content when perceived with a specific eye convergence
[5, 19, 29]. In contrast to standard stereograms, autostere-
ograms do not require any extra-apparatus such as polarized
or shutter glasses.

Autostereograms, also called "Hidden 3D" or "Magic Eye",
have also been used as an entertainment medium, such as
in image-book collections [12, 32, 46]. Such entertaining and
engaging aspect is partially due to the combination of the
minimum oculomotor efforts required from the observer, and
the surprising resulting 3D effect, making autostereograms
an attractive gamified solution to view 3D scenes [42, 43].

However, autostereograms have received little attention
from a human-computer interaction perspective. This work
fills this gap by introducing the concept of Interactive Au-
tostereograms. Indeed, both core concepts defining autostere-
ograms, i.e. "hidden" and "3D", can be useful in various scenar-
ios. For instance, autostereograms can solve the problem of
privacy when inputting sensitive information by preventing
shoulder-surfing attacks [49]. Yet, no previous attempt was
made to interact with autostereograms.

We report on an empirical study investigating how users
can interact with autostereograms. Results show that an inter-
active help leads novices to perceive autostereogram content
faster than with other help methods. A color-coded feedback
provides more accuracy than other feedbacks. A direct input
leads to faster and more accurate interaction than an indirect
input. Participants can learn to see smaller and smaller au-
tostereogram content faster with practice. Lastly, this learning
effect transfers across display apparatus.

By introducing the concept of Interactive Autostereograms,
our contributions are twofolds: (1) the design of an interactive
help method to perceive the hidden 3D content, and (2) an in-
vestigation into the impact of different touch input and output
design options when interacting with autostereograms.

2 RELATED WORK

We briefly present results from studying the stereopsis pro-
cess in the cognitive literature, and previous works linking
computer sciences and autostereograms.

Stereopsis

Front-facing eyes allow for slightly different captured images,
while still allowing for an overlap between the two images.
This horizontal disparity allows to derive depth information
[21]. Random-dot stereograms (RDS) are pairs of monocu-
lar images in which some random dots from one image can
be fused with random dots from the other image to create a
depth perception [22]. RDSs do not contain any monocular
cues such as perspective or shadowing. Thus, RDSs revealed
that binocular depth perception was processed by a devoted
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part of the brain, not by the eyes [8, 10, 21, 31]. Researchers
have then used RDSs in numerous studies to better understand
various aspects of stereopsis [14, 17, 19, 23, 30].

Perhaps more relevant to our HCI approach are results
reporting a relatively large variability in depth perception
with RDSs [12, 19, 21, 27-29]. It appears that around 68% of
the population have good to excellent stereo ability, while
32% have poor to moderate stereo ability [21], and 5% of the
population is said to be blind to the stereo effect [12]. This can
result in a long initial latency to perceive depth [9].

Fortunately, the time to perceive depth and figure in RDSs
decreases with repetitions [18, 28]. This learning effect ap-
pears to be position specific on the retinae, based on selective
spatial attention, and stimulus specific to name a few, but not
due to learning depth contours or a priori information about
the hidden 3D [28]. Such perceptual learning can last weeks
or month depending on the experimental procedure reported
in previous work [16, 18, 27, 28]. In addition, learning also
concern motion detection in RDSs [18, 34].

Single-image-random-dot-stereograms (SIRDS) are a spe-
cific type of RDS that display random dot patterns so that
depth can be perceived without additional apparatus [5, 19,
42]. This requires users to explicitly look at the image so that
the two eyes capture the dot patterns with the correct dispar-
ity to allow the brain to fuse the two images. In other words,
users have to decouple eye convergence (crossing-point of the
line-of-sight) from focus (depth of lens adjustment). This ocu-
lomotor skill is known to be difficult at first [5, 19, 32, 42-47].
Thus, perceiving depth in SIRDSs can take several minutes
and several attempts [19]. Possible explanations include the ig-
norance of the proper viewing strategy [19], or the automatic
rejection of the unusual depth impression [47]. However, once
the correct decoupling is acquired, the percept is highly com-
pelling [5], with convincing images with vivid depth [43], and
can also be modified without any further eye adjustments
[5, 32]. Like other RDSs, SIRDS benefit from a perceptual
learning, but also from an additional kinesthetic learning of
the convergence/focus decoupling oculomotor skill, which
is also stable over time [5].

Autostereograms in Computer Science

Previous work introduced [12, 42], and classified autostere-
ograms [44, 45, 47], encouraging the community to find new
scientific applications [12, 42, 47]. Classifications allow us to
differentiate autostereograms according to their rendering
texture properties (ASCII or random dots, colored or not, etc).
Authors also propose an ordering of autostereograms accord-
ing to how difficult they are to see [44]. However, we could not
find any empirical evidence supporting this claim. Previous
work also proposed algorithms to generate autostereograms
[12,32, 43, 45, 51]. These algorithms present solutions to cre-
atearandom dot texture according to a 3D scene via depth map



[43], via ray-tracing [51], or hardware-accelerated via shader
programming [32]. Some algorithms also include additional
features such as animation support [32, 45], or color inclusion,
such as the creation of subtle color effects (e.g. shading) [46],
or to render 2D effects on the texture itself [44].

More related to HCI are previous works using eye con-
vergence as an input method [25, 26, 36]. For instance, eye
convergence can be used to determine the position a user is
looking at in volumetric data to display the corresponding
layer as an autostereogram with the correct disparity [36]. A
solution to overcome the initial oculomotor skill required to
see autostereogram is to rely on gaze tracking [26]. The sys-
tem can display autostereograms with a disparity according
to the current eye convergence. To help users converge their
eyes in pre-computed depth levels, authors include physical
markers between the desktop screen and the users. Users
can then look at the markers’ reflection in the screen, hence
allowing them to look ‘behind’ the screen.

In this work, we also tackle the problem of the initial ocu-
lomotor skills. However, we consider an interactive approach
that could be used in several contexts, not only with gaze
tracking and physical markers in-between users and displays.
In addition, we investigate input and output solutions when
interacting with autostereograms.

3 ILLUSTRATIVE SCENARIOS

We provide illustrative examples to demonstrate how inter-
active autostereograms could find their place in our everyday
life. This list complements what has been proposed so far, i.e.
using autostereograms for cryptography [50], as an amuse-
ment medium [12,32, 43, 46], for artistic compositions [32,42],
and for scientific visualization [12, 32, 43]. This list is also a
response to previous work encouraging the community to
further explore the use of autostereograms [12, 42, 47]. Note
that these scenarios will be realistically possible once HCI
researchers have investigated (i) solutions regarding the ini-
tial latency to perceive depth, as well as (ii) the impact of
interaction options on performances (e.g., interaction time).
Autostereograms offer privacy since the content is only
perceived according to a specific viewpoint, with a specific
eye convergence. Thus, the content cannot be revealed if
the stereo disparity cannot be interpreted by the brain [42].
On mobile devices, a straightforward application of interac-
tive autostereograms concerns password input [26] (Figure
1, a). Autostereograms can prevent shoulder-surfing attacks
[33, 49], but also smudge attacks (via oily residues on touch
screen) [6] if GUI element positions are randomized at each
use. This scenario concerns any access of sensitive informa-
tion in public, such as checking a bank account balance on
public transit for instance. Autostereograms can be perceived
with very low resolution [42]. We can hence envision future
fabric clothing enabling interactive autostereograms. This
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solution could allow fast, easy, and subtle access to email noti-
fications for instance (Figure 1, b). Proprioception offered by
fabricinput [20,35] couldin turn help for eye-free interactions,
such as for quickly snoozing a reminder. Autostereograms
can also be a software-oriented solution for accessing private
information in a collaborative environment such as on a table-
top for instance [11, 39]. Users could display and interact with
private information anywhere on the screen in front of them,
without hardware restrictions, and without other users being
able to see the content (Figure 1, ¢).

With some oculomotor efforts , autostereograms offer hid-
den 3D content with a vivid depth perception [43], making au-
tostereograms a good candidate for entertainment purpose
(e.g., [2]). On mobile devices, such 3D content could be applied
to video games. For instance, a platform game could provide a
secret path via the background texture. It could also be used to
provide an actual 3D experience while gaming (Figure 1, d), as
implemented by the game Quack I [1]. A pub could propose a
menu on which special drinks and cocktails could be ordered,
hence creating a special and unique experience for its cus-
tomers (Figure 1, e). In this scenario, the occulomotor efforts
and the challenging initial depth perception have the potential
to initiate novel social interactions among groups of friends,
and hence to positively contribute to the business publicity®.

4 EXPERIMENTAL FACTORS

We want to explore and evaluate the use of different help
methods - to perceive the 3D - as well as different input and
output solutions - to interact with autostereograms.

Help Methods

We want to provide a solution that could reduce the oculomo-
tor effort required to initiate the interaction. We consider three
help methods: none (baseline), static (standard method), and
interactive (custom method).

A standard help consists in displaying two solid static dots
at the top or at the bottom of the image [42, 43, 46, 47]. Users
are then instructed to accommodate their eyes so that a third
dot appears in the middle. They can then focus on the center
dot until depth is perceived in the scene. The system displays
two 10-pixels dots on the far plane of the image, positioned at
1/20th from the bottom edge of the screen (Figure 2, left, Ap-
pendix A). We created an interactive method based on results
from previous stereopsis experiments [28]. More specifically,
we use the fact that autostereograms can be interactive, and
that repeated exposure can facilitate depth perception. We
hence provide a slider to control the disparity level (i.e. the
separation between corresponding pixels), ranging from 0 (no
1Some services exist to create on-demand custom autostereograms for

advertisement purpose (e.g., http://www.magiceye.com/samples.html,
http://www.custom-stereograms.com/index.html)
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disparity, making the content impossible to see) to 2 (large
disparity), with 1 corresponding to the original disparity level
[43]. We hypothesize that it can solve the problem of users
variability to perceive autostereograms [12, 19, 21, 27-29]. In
addition, the system always displays a cube at the center of the
scene (Figure 2, left). This can help users anticipate what they
can see, and provoke a retinal position-specific learning effect
[28] based on the selective spatial attention of the probable
stimulus location [28]. The cube is rotated to fully benefit
from the depth-within-figure effect [28], stating that depth-
within-figure is easier to perceive than the figure contours.

Touch Inputs

Touch interaction commonly uses direct input to provide an
affordance close to real world manipulations. However, previ-
ous work comparing direct vs indirect touch input reveals that
direct touch manipulation can be faster and more accurate
during a 2D task [37], while indirect can be more accurate dur-
ing a 3D task [24]. More closely related to our work, indirect
input can lead to a better accuracy during 3D manipulations
in a 3D stereoscopic context [40]. This result can be explained
by the fact that direct touch aims for the middle of the two
projected images [48] due to the Vergence-Accomodation
conflict, an effect originating from the difference between the
perceived depth and the actual screen depth. In our study, we
are also interested in knowing if direct interaction can lead
to the loss of the stereo-perception of the 3D scene. Indeed,
with autostereograms, the eyes are not focusing on the screen
plane, thus creating a double-vision of the finger performing
a direct touch (Figure 2, right). If users try to focus on the
finger, the stereo-perception of the scene will then be lost.

We hence also include an indirect input (Figure 2, right).
The system displays a circle as a cursor. The 50-pixels circle,
part of the hidden interface, is positioned on top of all 3D
elements in the scene. We apply a gain of 2 between the finger
movements and the cursor: a 1px finger movement creates
a 2px cursor displacement. The cursor cannot go outside the
boundary of the screen. Users can select an object by posi-
tioning the cursor on top of it, and then performing a tap
action. The control of the cursor (slide and tap actions) can
be performed wherever on the screen.

Visual Outputs

Any user interfaces, hidden or not, should offer some feed-
back after a user action [7, 38]. We are interested in knowing
if visual feedback is adapted when interacting with autostere-
ograms, especially since visual feedback can be disruptive for
the 3D perception. We consider three visual feedbacks: none
(baseline), color, and animated.

For the color feedback, the system highlights the full
screen when a selection is detected: every pixels displays
arandom green shade instead of a grey shade. Indeed, it is not
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Figure 2: Help methods (left) and touch inputs (right). Yellow
elements represent hidden autostereogram content. Green
elements represent picture annotations.

possible - and perhaps not desirable for privacy reasons - to
highlight only the selected 3D object [46]. We discarded the
solution of highlighting an on-screen bounding area around
the touch position, as it created a double-shaped color box
under the interaction focus. For the animated feedback, we
build on the fact that dynamic stereo motion can be perceived
(and learnt) in random-dot-stereograms [18, 34]. We hence
consider amotion-in-depth feedback: the depth of the selected
objectisanimated to create a ‘pressed’ effect. The object moves
backward (to the far plane) and forth (to its origin), with an
animation of 0.05 distance unit every 0.1ms (with the near
plane being at 1, and the far plane being at 0). To prevent
geometrical limitations (e.g., unfortunate echo due to random
pixel color), pixel color should be computed at each frame [43],
hence creating a dynamic white noise effect. The animated
feedback is then hidden by the dynamic white noise and does
not reveal any content when seen normally.

While the color feedback might distract at the screen level,
the animated feedback might distract in the 3D scene level.
In contrast, the color feedback might prevent distraction by
being outside the scope of focus, and the animated feedback
might prevent distraction by being in focus.

5 EXPERIMENT

We consider two experimental tasks: one to assess interaction
aspects, and one to assess the minimum size 3D objects should
be to be perceived and recognized.

Tasks

We chose to have two distinct tasks in order to avoid any
interference between the size and the interaction factors.

Main Task - 4 Digits Selection. The first task consisted in
inputting a sequence of four single-digit numbers displayed
as autostereograms. Having a sequence of numbers assured
that participants could recognize and discriminate the 3D
digit shapes. In addition, to capture any potential loss of 3D
perception due to our experimental factors (Input and Output),



the system displayed the two first digits first, and added the
remaining two digits after the selection of the second digit.
This ensured that participants could not see and memorize
the overall 3D scene before starting interacting with it and
potentially lose the stereo-perception without us detecting it.
Although spotting 3D objects before any interaction in case
of stereo-perception loss could likely be the standard in real
situations, we wanted to fully control and detect any loss of 3D
perception for evaluation purpose. We used a column layout
to avoid putting numbers too close to the screen edges. Each
number (~ 140X 140 pixels) was slightly shifted, randomly, to
the left or to the right from the screen middle vertical line to
avoid participants learning finger movements. The numbers,
their combinations, and their vertical position were randomly
generated at each trial, but we ensured that a trial had only
one occurrence of each number. A trial started with a label
presenting the random sequence to input. When ready, partic-
ipants could press a button to make the label disappear and the
autostereogram appear. We set a timeout of 1 minute per trial.
A trial ended after four correct or incorrect selections (wrong
number or background), or when reaching the timeout limit.
Participants performed 10 repetitions with each condition,
resulting in: 3 Helps X 3 Inputs X 2 Outputs X 5 Sessions X 10
repetitions X 12 participants = 10,800 sequences acquisitions.

Size Task - Single Digit Recognition. The second task con-
sisted in recognizing single digit numbers displayed as au-
tostereograms without using any help method. Digits became
smaller and smaller after each trial. First, the system displayed
an autostereogram. Participants had to perceive its 3D con-
tent without time limit. When ready, participants could go to
the next screen and chose the number they saw (among three
other unique random single digit numbers), or the "I do not
know" option. If the answer was correct, another autostere-
ogram appeared with a new 3D random number with a scale
reduced by 10%. The task finished in case of a wrong answer
or if participants declared not knowing since the next trial
would use an even smaller size.

Procedure and Experimental Design

Due to a strong learning effect in perceiving stereograms
[5, 18, 28], we chose a mixed-design with HELP as a between-
subject factor, and INPUT and OUTPUT as within-subject
factors. We counterbalanced INPUT and OUTPUT within
groups with a Latin-Square design. We also ran the experi-
ment over multiple SESSIONS to capture learning effects on
performances and preferences. Thus, the overall procedure
consisted of six sessions: a setup session, and experimental
sessions 2, 3, 4, 5, and 6. Sessions were approximately 1h long
(hence a total of 6h per participants), and separated by at least
2h and at most 24h from each other. We made sure that partic-
ipants could take a break whenever they wanted to guarantee
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Figure 3: Experimental sessions.

minimum or no fatigue. The 2h to 24h gap between sessions
was to allow some rest while still ensuring a learning effect,
like in the motor learning literature [4].

Session 1: Setup. The first setup session (Figure 3) allowed
us to assess participants’ ability to perceive autostereograms.
Indeed, 30% of the population can find it difficult to per-
ceive stereograms [21], and 5% is completely ‘blind’ to them
[12]. Since HELP methods are evaluated with a between-
subject design, we wanted to make sure that our groups were
correctly balanced regarding participants’ ability to see au-
tostereograms. We assessed participants’ ability to perceive
autostereograms via an introduction (Figure 3, B) and a size
task on a dekstop computer (Figure 3, C). We used existing
examples from the internet to introduce the concept. Dur-
ing this initial introduction, we instructed participants to try
different methods to see their first autostereogram:

- Put the nose on the screen to prevent accommodation, and
slowly go back.

- Look behind the screen (e.g., wall behind the display, or the
on-screen face reflection [12, 43]).

- Daydream so that eyes diverge and ‘look’ behind the screen.
We then used the number of correct answers and the aver-
age time per trial in the size task on desktop to create three
stereopsis ability groups (Figure 3, step 1). We finally assigned
each participant to a HELP method group so that each HELP
group had approximately the same stereopsis ability levels
(Figure 3, step 2). Participants then performed a size task on
smartphone without autostereograms (Figure 3, D). We use
this condition to have a point of reference for the size task
with autostereograms (Figure 3, E and G).

Session 2 to 6: Experimental Parts. Participants performed
the main task (selection of sequences of digits - Figure 3, F)
using the HELP method according to their group defined in
Session 1. Participants then performed the size task (Figure 3,
G) before finishing the session with a questionnaire to collect
qualitative data (Figure 3, H).
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End Session 6: Final Test. The last experimental session fin-
ished with another size task on desktop (Figure 3, I), like the
setup session, to assess a potential learning transfer from
smartphone to desktop. The experiment ended with a final
questionnaire about autostereograms in general (Figure 3, J).

Participants and Apparatus

36 unpaid volunteers (18 females), ranging in age from 18
to 33 (M=23.4, SD=3.5) participated in the experiment. Four
of them already heard about autostereograms, and nine had
previous experience with 3D stereoscopic movies.

Both applications (size and main tasks) were implemented
in C# with the Unity3D game engine and ran on a 3.6 GHz
Intel Core i7 computer and a Samsung Galaxy S6 smartphone
(screen size: 5.1 inches, weight: 138g, resolution: 1440 X 2560
pixels 640 dpi). We based our rendering mechanism on a previ-
ous algorithm [43]. However, a C# implementation only lead
to an application running at around 4 frame per seconds (fps)
on the smartphone. We hence opted for a ray casting method
to get the depth map. To fit the proposed algorithm [43], depth
is then inverted and normalized so that Z = 0 corresponds to
the far plane: Z =1-(Z—-Zmin)/Zmax. We also use two dic-
tionaries: one for rendering purpose, and one for interaction
purpose. Thus, one dictionary allows to render the correct
shape (e.g., with a hole in the ‘0’ shape), and the second one
allows touch interaction (e.g., tapping on the ‘0’ shape selects
‘0’, even if tapping in the hole). The ray cast happens before
the scene rendering, thus only creating a delay after pressing
the ‘start trial’ button. The software ran at 464 X 824 pixels
(dpi=144), at around 25 fps.

6 MAIN TASK RESULTS

We consider three main independent variables: HELP (None,
Static, Interactive), INPUT (Direct, Indirect), and OUTPUT
(None, Color, Animated). We refine our findings considering
two secondary independent variables: SESSION (1 to 6) to as-
sess learning effects, and TAP (1, 2, 3, 4). Indeed, tap 1informs
on the initial viewing, and tap 3 informs on potential loss of
3D perception during the first two taps.

Instead of listing the impact of every factors per metric
(i.e. "Which factors impact metric m?"), we present our results
according to every metrics per factor (i.e. "Which metrics does
factor fimpact?"). This allows us to cast a broad overview of
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the complete set of effects the factors have, and hence ease the
discussion. We consider 6 dependent variables: the trial com-
pletion time (the time to input all 4 digits), the tap time (the
time to input one digit), the trial success rate (trials with all 4
digits corrects), the tap success rate (taps on the correct digit),
the number of missed targets (taps on the background), and
the number of timeouts (trials with less than 4 digits after 60s).
We perform our analysis with non-parametric tests (Friedman
and Wilcoxon tests for within-subject factors, Kruskal-Wallis
and Mann-Whitney tests for between-subject factors, all post-
hoc tests reporting Bonferroni corrected p-values) and report
averaged values with their 95% confidence intervals (Mean,
[Cllow, CIhigh]) and effect sizes.

Participants Grouping and Rejection Rate

We computed a heuristic metric to create three stereopsis
ability groups. The metric is based on the number of correct
answers and the average time per trial in the size task on
desktop: score=(Avg(time))/10 — #correct + 30. We divide the
average time per trial by 10 to get the same order of magnitude
as the number of correct answers, and add 30 in order to have
only positive values (post-hoc choice to shift results for pre-
sentation purpose). Thus, low scores indicate a relatively good
ability to see autostereograms. This heuristic is not meant to
become a generalized stereo-ability metric, but is merely a
convenient way to categorize our participants without opto-
metric tests [19]. We use color-coded categories to represent
participants with poor (Red, score > 30), medium (Blue, score
in [10, 30], and good (Green, score < 10) stereo-ability.

To validate our participants grouping, we analyzed the ef-
fect of HELP and GROUP on the average heuristic scores. We
did not find any significant main effect of HELP [ y%(2) =1.06,
p=0.59], suggesting a fair global repartition of our partic-
ipants (Figure 4, left). We found a large effect of GROUP
[x%(2)=26.22, p<0.001], suggesting an actual difference be-
tween all groups with alarge effect size [all p<0.001, allr>0.70].
The lack of significant difference between HELP is true for all
groups [all p>0.1] (Figure 4, right). Note that there is a low sta-
tistical power in the Red group (N=6, with 2 per help system).
Thus, the interactive help has one participant as an outlier, but
this does not significantly impact the results. We can conclude
that our participants grouping is fair for all HELP systems.
Although this heuristic does not include other factors such as
the learning ability of participants, it at least ensures that we
do not perform a mixed-design analysis with a HELP system
ending up with all red participants and another one with all
green participants for instance.

Two participants could not do the experiment, and were
replaced by new participants to keep a counter-balanced
design. This rejection rate (2/(36+2)=5.26%) is in line with the
fact that 5% of the population cannot see autostereograms
[12], but lower than in previous works (2/16=12.5% [27], and
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Figure 5: Effect of HELP methods and SESSION on trial completion time (left), and tap time during session 2 (right).

1/3=33% [28]). However, our rejection rate combined to our
Red group is in line with these statistics: (2+6)/(36+2)=21%.
We decided to keep Red participants to provide a compre-
hensive analysis. In the remainder of this section, to move
toward more transparent statistics [15], we provide raincloud
plots [3] to display raw data, probability densities, and 95%
confidence intervals for each group of participants.

Help Methods

Help methods influence time-related metrics during the first
experimental session (session 2). We found an effect on trial
completion time (Figure 5, left) [ x2(2)=10.9, p<0.01], with
Interactive (M=26.03s, [19.6, 32.5]) leading to faster times
than Static (M=40.49s, [36.7, 44.3]) with a large effect size
[p<0.01, r=0.66]. We also found a large effect of HELP on
tap time during the first experimental session (Figure 5,
right) [x%(2)=15.9, p<0.01], with Interactive (M=6.4s, [5.2,
7.5]) faster than both Static (M=12.17s, [9.9, 14.4]) [p<0.01,
r=0.8] and None (M=10.23s, [8.4, 12.1]) [p<0.01, r=0.5]. These
differences are reflected for TAP 1 [y%(2)=8.4, p<0.05, all
r>0.46] and Direct INPUT [y%(2)=13.1, p<0.01, all r>0.5].
As a side note, this effect disappears as participants reach
SESSION 6, leading to a TAP 1time of 4.9s, 6.4s, and 5.0s for
None, Static, and Interactive respectively. The only difference
between tap time with Static (M=13.23s, [10.6, 15.8]) and
None (M=6.8, [4.8, 8.9]) emerges during SESSION 2, with an
Indirect INPUT [ x%(2)=10.7, p<0.01] (r=0.72).

Discussion. The Interactive help allows for faster trial
completion times than the other help systems. Since this
gain of time concerns only the first tap, we can conclude
that this help concerns the initial depth perception only.
However, differences exist only during the first session. This
indicates that participants can quickly learn how to see
autostereograms, even without help. Help can be beneficial
for the first handling of such novel display type. The fact
that None was faster than Static with an Indirect input was
not expected. The static two dots are positioned at the
bottom of the screen, while the cursor is in the center of the
screen. This could explain difficulties faced by participants
in this condition. Accuracy-related metrics are not impacted
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by HELP. Thus, the quality of the depth perception is not
impacted by how this percept is acquired in the first place.

Touch Inputs

Direct (M=21.4s, [17.7, 25.1]) leads to faster trial completion
time than Indirect (M=27.9s, [24.7, 31.1]) [W=30, Z=7.4,
p<0.01, r=0.9] (Figure 6, left). This result is reflected in all
visual outputs (all r>0.8), in all help systems (all r>0.8), and
in all sessions (all r>0.8) - although we note a strong learning
effect, going from 31.7s and 36.8s (session 2) to 14.3s and
20.9s (session 6) for Direct and Indirect respectively. The same
effect appears for tap time, with Direct (M=6.0s, [5.0, 7.0])
faster than Indirect (M=8.0, [7.0, 9.0]) and a large effect size
[W=43, Z=7.4, p<0.01, r>0.8]. This result holds for all taps
(all r>0.6), all visual outputs (all r>0.8), all help systems (all
r>0.8), and all sessions, with a learning effect leading Direct
from 9s (session 2) to 4.5s (session 6), and Indirect from 10.1s
to 6.8s. Regarding accuracy metrics, INPUT also influences
the trial success rate with a large effect size [W=544, Z=-7.4,
p<0.01, r>0.8]: Direct (M=57.0%, [49.3, 64.7]) is more accurate
than Indirect (M=44.0%, [33.3, 54.7]), again reflected for all
conditions (all r>8) and a strong learning effect: from 39.8%
to 71.3% for Direct and 27.2% to 56.3% for Indirect. The same
general difference exists when considering the tap success
rate (Figure 6, right), with Direct (M=79.5%, [75.5, 83.5])
more accurate than Indirect (M=65.7%, [57.6, 73.8]) [W=544,
Z=-7.4,p<0.01,r>0.8]. There is also a strong learning effect:
from 68.5% and 50.0% (session 2) to 87.2% and 75.6% (session
6) for Direct and Indirect respectively. It appears that Direct
(M=7.6%, [5.7, 9.6]) leads to less missed targets than Indirect
(M=14.7%, [10.1, 19.2]) for all conditions. However, we found
a learning effect only for Direct [ y?(4)=30.9, p<0.01], going
from 12.4% (session 2) to 4.2% (session 6) (r>0.4). Lastly, Direct
(M=6.0%, [3.1, 8.9]) also leads to less timeouts than Indirect
(M=11.6%, [6.2, 17.0]) [W=73, Z=-7.4, p<0.01, r>0.8].

Discussion. INPUT influences all metrics, with a direct
input leading to faster and more accurate results than an in-
direct input. The benefits of a direct input are also reflected in
the qualitative results: participants preferred a direct input
(85.1%) compared to an indirect input (14.9%). 14 participants
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Figure 6: Effect of INPUT and SESSION on trial completion time (left), and tap success rate (right).

commented that the indirect input was cumbersome and
felt like a "waste of time" compared to a direct input. In com-
parison, a direct input is considered as "intuitive" and "fast".
Interestingly, 13 participants commented that the stereo
cursor was "difficult to find", either at first or after dragging it.
Seven participants reported difficulties to perceive both digits
and the cursor at the same time. However, one participant no-
ticed that when adjusting the slider (with the Custom HELP),
this difficulty disappeared. Only four participants noticed
that a direct input lead to an "uncertain tap location" because
of a "double-vision" of the finger. Thus, current advantages of
a direct input (fast and intuitive thanks to an everyday usage)
overcome the problem of double-vision we anticipated.

Visual Outputs

OUTPUT has a small significant effect on trial success rate
(Figure 7, left) [y?(2)=15.4, p<0.01], with Color (M=54.5%,
[45.6, 63.5]) leading to more accurate input than None
(M=50.3%, [42.1, 58.5]) (r=0.1) or Animated (M=49.6%, [41.2,
58.1]) (r=0.1). We also note a learning effect, as accuracy goes
from 39.9%, 39.1%, and 31.2% (session 2) to 60.1%, 66.9%, and
63.7% (session 6) for None, Color, and Animated respectively.
These differences are reflected in the Direct condition only
[x*%(2)=13.4, p<0.01, all r = 0.1]. A similar pattern appears
for the tap success rate metric (Figure 7, right) [ y%(2)=16.4,
p<0.01], with Color (M=76.5%, [71.3, 81.6]) marginally more
accurate than None (73.0%, [67.8, 78.2]) (r=0.1) and Animated
(M=72.5%, [67.4,77.6]) (r=0.1). Alearning effect takes place

as accuracy goes from 64.2%, 64.5%, and 59.8% (session 2)
to 79.8%, 84.1%, and 81.1% (session 6) for None, Color, and
Animated respectively. Note that this small difference is
reflected for the Dynamic help method [ y2(2)=7.7, p<0.05,
all r =0.1] and the Direct input [ y%(2)=28.7, p<0.01, all r = 0.1].

Discussion. OUTPUT has a marginal effect on accuracy-
related metrics, with Color leading to more accurate selections
than None and Animated - which both lead to equivalent
results. This effect is reflected in qualitative results, with
participants ranking Color first more often (64.6%) than None
(21.7%) and Animated (13.7%). Indeed, participants noted
that Color was easier to perceive, while 21 participants could
not see (at all or clearly) the Animated feedback. Of these 21
participants, one reported that it might be due to the loss of
3D perception after a tap on the screen, while two mentioned
that they faced difficulties only in the Direct condition. In
addition, four participants could see the animation after some
practice and changed their preferences until realizing the
delay it imposes on the interaction process. Two participants
noticed that the animation impacted their 3D perception
(while four reported the same effect with Color).

7 SIZETASK RESULTS

The second task was meant to determine the size limit of
autostereogram content compared to standard viewing. We
consider 3 dependent variables: the time delay to perceive
a digit, the total number of digits seen during the task,
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and the bounding box width of the last digit seen. We
consider 2 independent variables: the session, and the help
method participants used during the main task (recall that
participants performed the size task without help method).
We found a significant large effect of learning on the time
delay, going from 64.5s, [29.4, 99.5] (session 1 - no practice) to
8.5s, [6.4, 10.7] (session 6) [ x2(5)=56.9, p<0.01, r=0.6]. Even af-
ter practice, this time is slower than without autostereograms
(~0.8s). This learning effect is transferred to autostereogram
viewing time on desktop [W=594, Z=7.27, p<0.01, r=0.9], with
session 1 (M=33.1s, [20.6, 45.7]) slower than session 6 (M=9.4s,
[6.3, 12.6]). We did not find any effect from the help system
participants used during the main task [y%(2)=1.6, p=0.4].
Learning occurs for the number of digits participants
managed to recognize [ y%(5)=30.5, p<0.01], going from 9.3
[6.6,12.0] in session 1 to 15.9 [13.7, 18.0] in session 6 (r=0.4).
For comparison, participants manage to recognize 28 digits
without autostereograms. The learning effect is transferred
to the desktop condition [W=171.5, Z=7.3, p<0.01, r=0.9]. We
did not find any effect of the help method on the number of
recognized digits [ y%(2)=3.9, p=0.14]. Lastly, we also found
a significant effect of learning on the width limit (Figure 8)
participants could identify (the height limit follows the same
trend) [ 2(5)=29.2, p<0.01]: from 50.6px [39.9, 61.3] (session
1) to 26.1px [19.4, 32.8] (session 6) (r=0.4). For comparison, the
width limit without autostereograms is -~ 7.5px. The learning
effect is transferred to the desktop condition, going from
40.9px [31.1, 50.6] in session 1 to 30.0px [23.7, 36.3] in session
6 [W=410, Z=7.27, p<0.01, r=0.9]. We did not find any effect
from the help system on this width limit [ y%(2)=4.0, p=0.14].

8 LIMITATIONS

Our Interactive help was effective during the first experimen-
tal session only. Participants still took ~5s to perceive the
hidden content during the last session. Although promising,
it appears that we can continue our efforts to provide even
more fruitful help designs, perhaps focusing on the learning
aspect instead of the initial perception of novices. Our
investigation is a first step toward the use of autostereograms
and includes all groups of users (red, blue green). Future
work could be more focused (e.g., with the RED group of
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users only). To reach this goal, we provide our experimental
material to the community http://hci.cs.umanitoba.ca/assets/
publication_files/Autostereo_PublicationSoftwareData.zip.
Indeed, since we employed a between-subject design, future
works can come up with their own help methods, and
compare their results to the three help methods we already
analyzed. Assuming a fair and similar participants grouping
(red, blue, green), future works can evaluate their methods
without extra-costs and efforts regarding our baselines. Once
interaction challenges identified and solved, prospective
scenarios described in this work and new ones could then
become common day-to-day interactive medium.

Participants reported difficulties to perceive dynamic
elements: the cursor for the indirect touch input, and the
‘pressed’ effect of the animated feedback. We hypothesize
that although learning occurs [18, 34], only a subset of our
experimental conditions involved these dynamic elements.
We hence consider that we did not evaluate the full impact of
dynamicity, but rather its effects before and during learning,
showing that direct input leads to more time-efficient and
accurate selections than an indirect input.

9 KEY FINDINGS

Learning occurs:

1) Participants can learn to see (faster and smaller)
autostereogram content, even without help.

2) The learning process transfers across apparatus
(smartphone and desktop).

Help benefits novices time performance:

3) Providing help for the initial viewing of autostere-
ograms can reduce the time it takes novices to perceive
the hidden content.

4) The quality of the depth perception is not impacted
by how this percept is acquired in the first place.

Touch inputs influence both time and accuracy:

5) A direct touch interaction leads to faster and more
accurate input than an indirect one.

6) Current advantages of a direct input overcome the
double-vision of the finger problem.

Visual outputs marginally influence accuracy:
7) A color-based feedback increases accuracy.
8) An animated feedback is difficult to perceive.

10  CONCLUSION AND FUTURE WORK

Autostereograms are 2D images that can reveal a 3D content
when perceived with a specific eye convergence, without
any extra apparatus. Autostereograms have received little
attention from an HCI perspective. This work fills this gap
with the concept of Interactive Autostereograms.

Given the minimum oculomotor-skills required to perceive
the content of autostereograms, we first illustrate when such
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Figure 9: Autostereogram example using the Static two dots
help method and an Indirect touch input.

medium could offer new use-case scenarios in our everyday
life. We then perform an empirical investigation regarding
how users can interact with autostereograms. We evaluate
three different methods to help users perceive the hidden 3D
content, two touch-inputs, and three visual feedbacks. Results
show that our interactive help allows for faster content per-
ception during the first experimental session. We also provide
evidences that a color-based feedback can improve accuracy,
while a direct touch input improves both interaction time and
accuracy. Lastly, results reveal a strong learning effect, with
participants being able to decrease the time it takes to perceive
smaller and smaller hidden content. Such learning effect
transfers across display apparatus (smartphone to desktop).
Beside pursuing efforts toward decreasing the initial
time required to perceive autostereograms, we identify two
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Figure 10: Explicit visualization of the autostereogram
example in Figure 9.

research avenues. First, we need to assess if there is some
concern about long-term exposure. There is no long term
negative or positive impact of 3D stereoscopy display [41]. It
might be the same for autostereoscopic display, but a formal
experiment is required. Second, if autostereograms become
pervasive and common in our everyday life, we might want
to investigate if it has an impact at the subconscious level:
Can we induce feelings, etc. via autostereograms even if the
content is not explicitly perceived?

A APPENDIX: AUTOSTEREOGRAM EXAMPLE

Figure 9 shows a screen shot of our experiment main task
with an Indirect touch input and the Static two dots help
method. The scene displays four numbers (4, 9, 5, and 6) and a
circle representing the cursor. Figure 10 shows a visualization
of what readers should see in 3D in Figure 9.

In order to perceive the 3D content using the Static help
method, readers should converge their eyes so that the two
solid dots appears as four dots. To do so, slightly converge
your eyes as if looking behind the image. Then, readers should
accommodate their eyes so that the two images of the dots at
the center merge to become one, hence creating only three dot
images. The next step consists in controlling the focus. The
difficulty resides in controlling the focus (i.e. in the image)
without losing the correct convergence (i.e. behind the image)
obtained in the previous step. For novices, a simple trick is to
continue fixating the third central dot image steadily until the
brain captures the stereoscopic image. Since the ’6’ number
will be just above this third dot image, readers can slightly
move their eyes into the scene while keeping track of their
convergence (the third central dot) via their peripheral vision.
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