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Figure 1: (a) AudioTouch is a micro-gesture recognition approach based on active bio-acoustic sensing without requiring any
instrumentation on users’ fingers or palm. (b) It recognizes micro-gestures with small differences among various finger ges-
tures. (c+d) It also allows for discrimination of force, further expanding interaction vocabulary. (e) This approach enables
several compelling application scenarios such as device-free input in mobile scenarios.

ABSTRACT
We present AudioTouch, a minimally invasive approach for
sensing micro-gestures using active bio-acoustic sensing.
It only requires attaching two piezo-electric elements, act-
ing as a surface mounted speaker and microphone, on the
back of the hand. It does not require any instrumentation
on the palm or fingers; therefore, it does not encumber in-
teractions with physical objects. The signal is rich enough
to detect small differences in micro-gestures with standard
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machine-learning classifiers. This approach also allows for
the discrimination of different levels of touch-force, further
expanding the interaction vocabulary. We conducted four
experiments to evaluate the performances of AudioTouch: a
user study for measuring the gesture recognition accuracy,
a follow-up study investigating the ability to discriminate
different levels of touch-force, an experiment assessing the
cross-session robustness, and, a systematic evaluation as-
sessing the effect of sensor placement on the back of the
hand.
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1 INTRODUCTION
With computing becoming increasingly mobile and ubiq-
uitous, interaction beyond the desktop increasingly high-
lights the need for complementary forms of input when
no mouse or keyboard is available. While touchscreens are
clearly intuitive and popular, they also come with drawbacks.
In particular, as mobile devices continue to be miniaturized,
touchscreen real-estate becomes increasingly limited, lead-
ing to smaller on-screen targets and occlusion by the fingers
of displayed content. This issue becomes pronounced once
we consider devices that do not even require a screen such as
smart appliances and remote controllers, or devices that have
a screen but with which we want to interact at a distance
such as a phone in a pocket or a smart thermostat.

In response to these changing interaction needs, studies on
human-computer interaction (HCI) have explored many ap-
proaches of recognizing gestural interaction with mobile de-
vices, including sensing via the built-in camera [43], infrared
(IR) proximity sensors [1, 31], magnetic tags [19], electromyo-
graphy (EMG) [18, 33, 36, 41], electro-tomography [56] and
ultrasound-imaging [32]. However, these often require sig-
nificant user instrumentation or instrumentation of the envi-
ronment, presenting significant barriers to adoption. Further-
more, many approaches require users to perform large hand
or wrist motions to be able to discriminate various gestures.

In this paper, we present AudioTouch, a novel approach for
sensing micro-gestures using active bio-acoustic sensing. Au-
dioTouch recognizes micro-gestures with small differences
among various finger gestures, for example, only articulating
the thumb to parts of the other fingers such as the fingertip
or individual segments of the finger. This approach is less
invasive compared to those involving ring and glove-type
sensors. Since it only requires two piezo-electric elements to
the back of the hand (BoH) and does not require any instru-
mentation on the palm or fingers and does not encumber
interaction with physical objects. Hence, we use the term
‘minimally invasive’ to denote this property.

We demonstrate that the acquired signal is rich enough to
accurately discriminate a large number of micros-gestures
via standard machine-learning methods. Furthermore, given
the signal properties, a robust classifier can be trained from
very few sample; hence, it is straightforward to personalize
the gesture set. We also demonstrate that AudioTouch is
capable of discriminating two levels of touch force in thumb-
to-finger gesture sets of the middle and bottom phalanges
with 85.0% and 85.5% accuracy, respectively. In addition, we

investigated the effect of sensor location on the recognition
accuracy using ten sensor locations. Except for one location,
we did not find any difference in the recognition accuracy
of AudioTouch. Finally, we discuss interaction scenarios in
which AudioTouch may be leveraged.

2 RELATEDWORK
With the explosive proliferation of mobile computing de-
vices, the need for alternative input paradigms has grown
significantly. We review work touching upon various aspects
of input recognition in HCI research, focusing on suitable
sensing modalities for mobile gesture recognition.

Input Recognition
Camera-based gesture recognition. Much work has been ded-
icated to estimating the full 3D hand-pose of the user or de-
tect discrete gestures using RGB or depth cameras [12, 27, 43,
44, 46]. For example, LeapMotion [27] uses a short-baseline
stereo pair in combination with active IR illumination to
track 6-degrees-of-freedom hand poses. Taylor et al. [46]
proposed a real-time hand tracking system using depth cam-
eras that combines a discriminative machine-learning model,
for initialization, with an energy minimization process for
temporal tracking. Song et al. [43] proposed a data-driven
technique to recognize static hand postures using only an
RGB camera of commercial mobile devices. While provid-
ing rich means of input, all these methods rely on the line-
of-sight between an environment-mounted or body-worn
camera and the user’s hands; hence, there are issues with
(self-)occlusions, which may limit user mobility.

Non-visual sensing modalities. In the light of challenges faced
by vision-based approaches, researchers have explored sev-
eral alternative sensingmodalities. Many gesture recognition
approaches that leverage radio-frequency signals [28, 29, 47],
capacitive sensing [42], and thermal sensing [9] have been
proposed. WiFinger [28] is a gesture recognition system that
exploits the channel state information of existing Wi-Fi sig-
nals to detect coarse user interaction. Soli [29] is a millimeter-
wave radar that can be leveraged for gesture recognition. A
follow-up work [47] has demonstrated that this signal can be
leveraged to recognize 11 dynamic gestures based on a deep
learning algorithm. Touché [42] recognizes the configura-
tion of a hand touching a conductive object using capacitive
profiles of the object. Pyro [9] recognizes pinching gestures
using pyroelectric IR sensing. These approaches rely on ex-
ternal sensors or require significant user instrumentation and
often can only detect coarse gestures (e.g., wave gestures).
In contrast, AudioTouch recognizes a rich set of fine-grained
hand postures based on light-weight on-body sensing only.

Finger and Glove-based Sensing. To avoid occlusion issues,
ring-type sensors such as cameras [3], hall effect sensor
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arrays [19], and contact microphones [55] have been pro-
posed. Cyber-gloves have been used provide user input in
the context of augmented reality (AR) and virtual reality
(VR) [4, 7, 35, 50, 51]. While such approaches can recognize
fine-grained interactions, they do require instrumentation
on the users’ fingers and palm, which can be an issue. In
contrast, AudioTouch does not require any instrumentation
on the users’ fingers and palm and solely relies on two piezo-
electric sensors attached to the BoH.

On-body sensing. For overcoming the need for an environment-
mounted sensing infrastructure, a number of approaches
leverage body-worn sensors.
Various works have explored the use of optical sensors

mounted on the user’s wrist, arm, or shoulder [12, 24, 39, 44].
Similar to environment-mounted cameras, such approaches
are susceptible to (self-)occlusion and varying lighting con-
ditions and may be bulky due to the optical apparatus.
Much research has been dedicated to measuring signal

changes induced by the configuration of the bones, mus-
cles, wrist, or arm using sensors such as IR sensors [1, 31],
capacitance/impedance sensors [40, 56, 58], pressure sen-
sors [2, 5], IMUs [26, 54], EMG [18, 33, 36, 41], or ultrasound
imaging [32]. Most closely related to AudioTouch are ap-
proaches that attempt to recognize subtle micro-gestures
such as thumb-to-fingertip gestures. Tomo [56, 57] recog-
nizes coarse hand gestures and pinch gestures using electri-
cal impedance tomography on the user’s wrist. Several ap-
proaches [18, 41] leverage forearm-mounted EMG electrodes
to recognize a small number of pinch gestures. However,
EMG-based sensing requires many electrodes. SensIR [31] is
a gesture recognition method that can recognize 12 gestures,
including pinch gestures, using near-IR sensing on the user’s
wrist with a wrist-worn bracelet composed of pairs of emit-
ters and receivers. EchoFlex [32] can recognize ten discrete
hand gestures quite accurately but requires the mounting of
a large and expensive ultrasound probe on the user’s arm.
ThumbSlide [1] can detect the thumb sliding over a user’s
finger using an array of IR sensors mounted on the wrist.
Finally, photo-reflective sensors [53] or strain gauges [30]
mounted on the BoH have been explored for gesture recog-
nition. AudioTouch also leverages BoH-mounted sensors but
recognizes a rich set of thumb-to-finger gestures and, thumb
gestures and detects touches to the user’s palm as well as
discriminates between different levels of touch-force across
different pinch gestures, while only requiring minimal user
instrumentation.

Acoustic Sensing
In our work, we leveraged bio-active acoustic sensing; hence,
our work relates to those that leveraged acoustic sensing of
some form for (input) recognition. Passive acoustic sensing

has been used for gesture recognition [6, 11, 13], on-body
sensing [14], and object identification [15]. Active acoustic
sensing has been used in prototyping methods [25, 37, 38] for
gesture recognition [23, 34, 52] and context recognition [48].
The Sound of Touch [34] tracks finger positions on the user’s
arm and recognizes arm-grasp gestures. Yokota et al. [52]
proposed an on-skin touch sensing method using a trans-
ducer mounted on the user’s wrist and receivers mounted
on the user’s wrist and tip of index finger. To the best of
our knowledge we are the first to propose a method for the
micro-gesture recognition of hand postures using only two
piezo-electric sensors attached to the BoH. We investigated
the effect of sensor locations on our method’s gesture recog-
nition accuracy.

Force and Pressure Sensing
Several approaches measure force on a touchscreen using
the built-in sensors [8, 17, 45] or leveraging additional equip-
ment [16, 21]. Others involve the sensing of stylus force
in digital ink applications [20]. AudioTouch senses force as
an additional modifier for gestural interaction and achieves
this despite the lack of direct force sensing capabilities. In
this sense, AudioTouch is similar to [50], which requires a
force sensitive glove, but AudioTouch does not require any
instrumentation on the fingers.

3 AUDIOTOUCH
Our goal was to recognize subtle, micro-gestures without
requiring excessive user instrumentation to enable interac-
tion in mobile and unconstrained settings. Prior work has
shown that large arrays of strain gauges or photo reflectors
can be leveraged to recognize finger postures [29, 30] and
that users touching passive objects can change the standing
wave patterns induced by surface mounted speakers [37]. We
built upon and extended this previous work by leveraging
piezo-electric sensors as a surface speaker and microphone
mounted on the BoH to recognize micro-gestures based on
differences in the resonant properties of the hand. We exper-
imentally demonstrated that this approach, AudioTouch, can
be used to discriminate between a rich set of one-handed ges-
tures even if the changes in the hand are small. AudioTouch
is so sensitive that it is even possible to discriminate between
soft and hard presses across four different pinch gestures.

Sensing Principle
Our sensing principle is based on active bio-acoustic sensing.
At the core of AudioTouch lies the observation that the shape
of the hand and the configuration of bones and muscles in
the hand, which serve as media for acoustic waves, change
depending on finger postures. Generally, an object has its
own resonant property, which depends on the shape, ma-
terial, and boundary condition [37]. Prior work (e.g., [37])
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focused on the boundary condition of an object to recog-
nize how the object is touched. When an object is touched,
the boundary condition changes, which changes the reso-
nant property of the object. This change can be observed by
vibrating an object and obtaining the frequency response.

AudioTouch, however, focuses on changes in shape, in-
cluding the internal configuration, of the hand. When a user
changes finger postures, the bones and muscles move; thus,
the resonant property of the hand changes (Figure 2). These
changes are observed as different resonant spectra. Using
this basis, AudioTouch recognizes gestures by observing the
resonant spectra. Specifically, it emits ultrasound from one
piezo element attached to the BoH to both through the hand
and along the surface and obtains the frequency response
with another piezo element attached to the BoH. AudioTouch
uses supervised machine-learning to recognize the gesture
with the obtained resonant spectra.

Hardware
Our prototype system consists of a piezo-electric microphone
and speaker, audio interface, and laptop running our custom
software for signal processing and machine-learning-based
micro-gesture recognition. Figure 3 shows our prototype im-
plementation, illustrating the minimally invasive nature of
AudioTouch.We use a piezo-electric microphone and speaker
made of commercial bimorph type piezo elements (THRIVE
K2512BP1, 25× 12× 0.23mm). The microphone induces a
wave-pattern that travels through the user’s hand and sur-
face and is received (after pose-determined attenuation) as
vibration response by the surface microphone. The piezo
elements are attached to an acrylic plate with hot glue to
prevent breakage.

Wemount the piezo elements on the user’s hand via simple
double-sided tape. This mounting method does not result
in any external forces being applied to the piezo elements.
More specifically, we use double-sided medical tape (3M,

B-2

Palm touch Neutral

C-3 N
Thumbs up

A-1

Index pinch

Figure 2: Examples of resonant spectra in hand postures. Dif-
ferences in shape including internal configuration of hand
are observed as different acoustic resonant spectra.

2477 Double-Coated TPE Silicone Acrylate Medical Tape) to
ensure safe mounting on the skin. The piezo elements are
amplified and connected to a laptop (Apple MacBook Pro,
CPU: Intel Core i7 3.5 GHz, RAM: 16GB) through an audio
interface (Steinberg UR44).

Software
The software consists of a sweep signal generator, vibra-
tion response analyzer, and machine-learning-based gesture
recognition engine. The audio signals are handled via the
BASS audio library.
Our sweep signal generator emits sinusoidal sweep sig-

nals from 20 – 40 kHz. The sweep signal increases linearly
in 20ms then repeated. That is, the duration of the sweep
is 20ms. The sampling rate is 96 kHz. We determined the
frequency range in reference to a previous work [37]. This
range is also inaudible to the human ear; hence, the approach
appears to be entirely silent to the user.

The vibration response analyzer converts incoming audio
signals from the time domain into the frequency domain.
This module samples audio signals at 96 kHz. It first uses
4096 samples to calculate the frequency domain of the signals
ranging from 0–48 kHz using the fast fourier transform (FFT),
resulting in a set of 2048 frequency domain values. From
these values, it extracts values in the range of 20–40 kHz.
Finally, it constructs a 400-element feature vector using a
peak detection algorithm, which obtains valid values (avoids
using very small values) for the recognition engine. After the
recognition, the system performs the above process again.

Using these features as input, the recognition engine clas-
sifies the different, discrete gestures in real-time using a stan-
dard support vector machine (SVM) classifier. The engine
recognizes gestures every 20ms. We used the SVM algorithm
of the WEKA Machine Learning Toolkit [10] with its default
parameters. The classifier was trained using the sequential
minimal optimization algorithm.

Laptop PC

Audio 
Interface

Piezo 
elements

a b

Figure 3: System overview and piezo elements. (a) Au-
dioTouch consists of a piezo-electric microphone and
speaker, audio interface, and laptop. (b) Piezo elements
(25× 12× 6mm) are attached to acrylic plates with hot glue.
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4 EXPERIMENTAL EVALUATION
We conducted four experiments to evaluate themicro-gesture
and touch-force recognition accuracies and feasibility of
AudioTouch: a user study for measuring the micro-gesture
recognition accuracy (Study 1), follow-up study investigat-
ing the ability to discriminate different levels of touch-force
(Study 2), experiment assessing the cross-session robustness
(Study 3), and systematic evaluation assessing the effect of
sensor location on the BoH on the gesture recognition accu-
racy of AudioTouch (Study 4).

Participants
We recruited 11 participants (10 male and 1 female, P1 – P11)
ranging in age from 21 to 24 (SD = 1.17) for Studies 1–3. These
11 participants took part in Study 1. In addition, we randomly
assigned the 11 participants for Study 2 (8 participants: all
male) and Study 3 (3 participants: 2 male and 1 female) to
decrease the influence of fatigue. We also recruited another
10 participants (all male, R1 – R10) ranging in age from 21 to
25 (SD = 1.23) for Study 4.

Procedure
We first asked participants to attach the piezo elements to
the back of their left hand. The locations were 10mm from
the metacarpal (MCP) joints (the knuckle between the hand
and a finger). This distance was chosen according to the
results reported in a previous work [30]. The distance be-
tween piezo elements was experimentally determined to be
10mm. In this setting, the extensor tendon of the middle
finger serves as the centerline between the two elements.
During the experiment, the participants placed their left el-
bow and forearm on the desk and an armrest, respectively,
to prevent fatigue (Figure 4a). The monitor in front of the

a b

c

a

Figure 4: Experimental setup. (a) Participants placed their
left elbow and left forearm on the desk and an armrest, re-
spectively, during experiments. (b, c) We asked participants
tomark the position of twopiezo elements using amarker to
investigate the reproducibility of AudioTouch (two red rect-
angles on BoH).

participants displayed different hand poses, which were then
performed by the participants. The order of presentation was
randomized. When they performed the thumb gesture set,
we asked them to make their palm perpendicular to the desk.
When they performed the thumb-to-finger and palm gesture
sets, we asked them to make their palm parallel to the desk.
In a trial, we asked the participants to perform the displayed
hand pose and to press a foot switch. After pressing the foot
switch, data collection for each gesture started. The observed
vibration response showed small variance over time. To sup-
press the effect of variance, we collected 20 samples (i.e., 20
× 400 element vectors) in each trial.

Study 1: Micro-Gesture Recognition
To evaluate the micro-gesture recognition accuracy of Au-
dioTouch, we used three gesture sets: thumb-to-finger (Fig-
ure 5), thumb (Figure 6), and palm touch (Figure 7). We evalu-
ated such recognition accuracies using these three individual
gesture sets and a combined gesture set consisting of a total
of 24 gestures (Figures 5 – 7). We also added a neutral state
to simulate an idle (i.e., no interaction) state.

Procedure. The instruction order of the three gesture sets and
neutral state was randomized, and participants were asked
to conduct ten sessions. In each session, he/she performed
the 24 gestures once. We asked them to take a break after ev-
ery session for at least oneminute.We collected the following
number of samples: 11 participants× 10 sessions× 24 gestures
× 20 samples = 52,800 samples.

Results. To attain meaningful micro-gesture recognition ac-
curacies, we conducted a leave-one-session-out cross-vali-
dation for each participant and averaged the accuracies across
participants. AudioTouch achieved average recognition ac-
curacies of 87.1% (SD = 11.3), 82.9% (SD = 13.5), and 89.3%
(SD = 13.8) for thumb-to-finger, thumb, and palm touch ges-
tures, respectively. It also achieved an average recognition
accuracy of 84.4% (SD = 10.9) when the classifier was trained
on all gestures simultaneously.

Study 2: Touch-Force Recognition
In addition to recognizing several micro-gestures (as in Study
1), we observed that the tension on the BoH changes signifi-
cantly when fingers touch each other lightly versus when
pressed together tightly. To evaluate whether this difference
can yield a meaningful gesture modifier (i.e., the same ges-
ture can be mapped to different functionalities based on the
exerted force), we conducted an additional user study to eval-
uate the touch-force recognition accuracy of AudioTouch,
which would show its advanced potential and limitations.
We again asked participants to perform gestures, but this
time at two levels of touch-force (soft and hard), and evalu-
ated AudioTouch’s touch-force recognition accuracy using
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Figure 5: Thumb-to-finger gesture set and example bio-acoustic spectra of this set. Thumb touches each phalange on the hand.

Left Middle Right

B-4 B-5 B-6

B-1 B-2 B-3
Thumbs Up

Thumbs Push

B-1 B-2 B-3

B-4 B-5 B-6

40k20k

Figure 6: Thumb gesture set and example bio-acoustic spec-
tra of this set.

the thumb-to-finger gesture set. That is, we analyzed the
recognition accuracy using 25 gestures (A-1 –A-12 gestures
(Figure 5)× 2 levels+ neutral state). We also used the col-
lected data to evaluate such recognition accuracies from this
gesture set when limited to a specific phalange (i.e., top,
middle, or bottom) to examine the recognition accuracies
in detail. That is, we analyzed the following three gestures
sets: thumb-to-finger gesture set of the top phalanges (A-1–
A-4 × 2 levels+ neutral state), that of the middle phalanges
(A-5–A-8 × 2 levels+ neutral state), and that of the bottom
phalanges (A-9–A-12 × 2 levels+ neutral state).

Procedure. The presentation order of the gestures was ran-
domized, and the participants were asked to conduct ten ses-
sions. In each session, they conducted the 25 gestures once.
We asked the participants to either only lightly touch fingers
or press them tightly. We asked them to take a break after
every session. We collected the following number of sam-
ples: 8 participants× 10 sessions× 25 gestures× 20 samples
= 40,000 samples.

Top Center

Bottom

Left

Right Neutral

C-2 C-3

C-4 C-5 N

C-1

C-1 C-2 C-3 C-4 C-5 N

20k 40k

Figure 7: Palm touch gesture set and a neutral state, and ex-
ample bio-acoustic spectra of this set and neutral state.

Results. We conducted a leave-one-session-out cross-vali-
dation for each participant. AudioTouch achieved average
touch-force recognition accuracies of 74.8% (SD = 14.2), 78.2%
(SD = 15.7), 85.0% (SD = 13.0), and 85.5% (SD = 13.2) for the
thumb-to-finger gesture set, and those limited to the top,
middle and bottom phalanges, respectively. The results indi-
cate that AudioTouch can recognize two levels of touch-force
in thumb-to-finger gestures of middle and bottom phalanges
with 85.0% and 85.5% recognition accuracies, respectively.
Note that the purpose with Study 2 was to explore the ad-
vanced potential and limitations of AudioTouch. As a result,
it may be difficult to recognize two levels of touch-force in
the thumb-to-finger gesture set (i.e., 25 gestures).

Study 3: Effect of Re-mounting of Sensors on Gesture
Recognition Accuracy
An important limitation of many wearable gesture recog-
nition approaches is the need to calibrate and retrain the
classifier every time the device is taken off then placed on
the user’s body before it can be used. Since the operating
principle of AudioTouch should not be overly sensitive to
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Index Middle Ring Pinky Palm

D-1 D-2 D-3 D-5D-4

Figure 8: Pinch gesture set.

the re-mounting of the piezo elements, we conducted a study
to assess the cross-session robustness of AudioTouch. We
used the pinch gesture set shown in Figure 8.

Procedure. We first asked participants to coarsely mark the
position of the two piezo elements (see Figure 4b, c). These
elements were then taken off and re-attached after a short pe-
riod (roughly 1–3minutes). The presentation order of the ges-
tures was randomized. We asked the participants to perform
these gestures once per session. Each participant completed
five rounds of ten sessions. We asked the participants to take
a break for at least one minute and to remove then re-attach
the piezo elements after every round.We collected the follow-
ing number of samples: 3 participants× 5 rounds× 10 sessions
× 6 gestures× 20 samples = 18,000 samples.

Results. AudioTouch yielded an average recognition accu-
racy of 76.2% (SD = 8.8) for the pinch gesture set in a leave-
one-round-out cross-validation setting across all participants.
This result indicates that AudioTouch has the potential of
recognizing gestures even if the piezo elements accidentally
come off the BoH by re-attaching them to almost the same lo-
cations. Precise sensor (re-)mounting was assumed in many
previous work (and ours), and we leave an exhaustive study
of the effect of misplaced sensors on reproducibility for fu-
ture work.

MCP

Top
Area

Bottom
Area

Figure 9: Marked lines on the BoH for Study 4.

Study 4: Effect of Sensor Location on Gesture
Recognition Accuracy
In Studies 1–3, we used specific sensor locations (10mm from
the MCP joints with the two elements separated by 10mm),
which we determined with a trial-and-error approach. How-
ever, other sensor locations may yield better gesture recog-
nition accuracies of AudioTouch.
To systematically investigate the effect of sensor loca-

tions on gesture recognition accuracy of AudioTouch, we
used pinch gestures (Figure 8) at the ten locations (L1–L10)
shown in Figures 9 and 10. At L1–L6, the extensor tendon of
the middle finger serves as the centerline between the two
elements. In this experiment, we used distances of 14, 28,
and 42mm (vertical lines in Figure 9 are drawn at intervals
of 7mm to avoid overlapping of piezo elements whose width
is 12mm). At L7–L10, the piezo elements were attached to
only the left or right side of the BoH. We used two areas
as vertical locations of the sensor: top and bottom. The top
area is 10mm from the MCP joint of the middle finger. The
bottom area is 35mm (i.e., 10mm plus 25mm, which is the
height of a piezo element). We determined the two vertical
areas to avoid the effect of the MCP joints and wrist.

Procedure. We first asked participants to mark the lines for
ten sensor locations (see Figure 9) then conduct ten sessions
at each sensor location. The presentation order of the pinch
gestures (Figure 8) was randomized, and we asked partici-
pants to perform these gestures once per session. After fin-
ishing the ten sessions, the piezo elements were then taken
off and re-attached to an indicated next location. We used
a Latin square design (e.g., OR1 = {L1,L2, ...,L10}, ORn =

{Ln ,Ln+1, ...,L10,L1, ...,Ln−1}) as the location order to re-
move the order effect because this study had many condi-
tions. Each participant completed ten rounds of ten sessions
each.We asked the participants to take a break for at least one
minute and to remove then re-attach the piezo elements after
every round. We collected the following number of samples:

Location 1 Location 2 Location 3 Location 4 Location 5

Location 10Location 6 Location 7 Location 8 Location 9

Figure 10: Sensor locations.
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10 participants× 10 locations× 10 sessions× 6 gestures× 20
samples = 120,000 samples.

Results. We averaged the gesture recognition accuracies us-
ing a leave-one-session-out cross-validation for a location of
a single participant and averaged the accuracies across par-
ticipants. The results are shown in Figure 11. To compare the
gesture recognition accuracies between locations, we con-
ducted a one-way ANOVA. The test showed significant differ-
ences in these accuracies between locations (F (9, 90) = 1.99,
p = .049 < .05). We also conducted a Tukey’s HSD test,
which showed that the recognition accuracy at L3 (96.6%)
was significantly higher than that at L9 (90.6%).

The results indicate that AudioTouch’s gesture recogni-
tion accuracies were approximately 95% at L1 – L8. However,
those at L9 and L10 were 90.6% and 91.8% (approximately
90%), respectively. Therefore, L9 (bottom, only left or right
side) may not be suitable as a sensor location on the BoH.
In addition, L10 may not be suitable as a sensor location,
though there were no significant differences in the recogni-
tion accuracy between L10 and L1–L9.

5 DISCUSSION
Recognition Robustness and Accuracy
In Study 1, we instructed a hand orientation (i.e., parallel
or perpendicular) for each micro-gesture. That is, micro-
gestures were performed with different hand orientations in
Study 1. The hand orientation might affect the micro-gesture
recognition accuracies across different gesture sets since the
wrist rotation affects recognition. Therefore, further studies
on the effect of hand orientation on micro-gesture recogni-
tion accuracy are necessary.
While AudioTouch achieved 89.3% micro-gesture recog-

nition accuracy with a gesture set in Study 1, this accuracy
with all gesture sets remained relatively low. To address
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Figure 11: Gesture recognition accuracies at each location.
Each bar means ± one SD between participants.

this issue, we calculated confusion matrices of recognition
for all gesture sets (Figure 12 left) and found that micro-
gestures involving the pinky (i.e., A-4, A-8, A-12 in Figure 5
in the thumb-to-finger gesture set) tends to be confused
with other gestures, whose average accuracies are the lowest
among four fingers (index: 87.8%, middle: 89.4%, ring: 85.0%,
pinky: 78.3%). To examine this effect, we calculated recog-
nition accuracy by removing the pinky finger gestures. The
resulting accuracy was 92.1% with 10 gestures of the thumb-
to-finger gesture set. We also calculated the accuracy for
all micro-gestures without these three micro-gestures. The
result shows an accuracy of 86.6% with 21 micro-gestures
(Figure 12 right).

Compared to the gesture recognition accuracy of AudioTo-
uch, that of Tomo [57], which uses 32 electrodes on a user’s
wrist, was 94.3% for five pinch gestures. In contrast, Au-
dioTouch recognized ten thumb-to-finger gestureswith 92.1%
micro-gesture recognition accuracy.

Other Sensor Location
We conducted another pilot study to compare the BoH to one
location on a wrist (the outer wrist) with four participants
and the six gestures (pinch gesture set and a neutral state)
shown in Figures 7 and 8. AudioTouch yielded a gesture
recognition accuracy of 93.1% for the BoH and 82.4% for
the wrist. A dependent t-test also showed that this accuracy
for the BoH was higher (p = .003< .05). Although, this pilot
study compared these accuracies at one location on the BoH
and wrist, we felt that it might be difficult for AudioTouch to
recognize small differences between various finger gestures
when the sensor location is on the wrist and that the BoH
would be a more suitable location.

Limitations
While we believe that AudioTouch is a promising and inter-
esting direction for always-available, wearable interaction,
it is not without limitations. Of course, further engineer-
ing would be required to further miniaturize the setup and
improve robustness and accuracy. AudioTouch is currently
not robust in the cross-user setting: it currently needs to be
trained for each user. Considering the significant differences
in body type, skin, and gesture performance, this is to be
expected. While we believe that advanced machine-learning
methods can improve this situation, addressing this fully is
beyond this initial exploration.
External pressure changes the vibration patterns picked-

up by the piezo-electricmicrophone. Hence, band-typemount-
ing solutions would be problematic. However, retraining the
classifier or custom mounts could alleviate these issues. We
also assume that holding heavy or vibrating objects would
affect gesture recognition, but we have not yet investigated
this.
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A-1 A-2 A-3 A-4 A-5 A-6 A-7 A-8 A-9 A-10 A-11 A-12 B-1 B-2 B-3 B-4 B-5 B-6 C-1 C-2 C-3 C-4 C-5 N
A-1 85.4 2.8 5.0 0 6.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A-2 2.6 84.6 5.9 3.6 0 3.1 0 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0
A-3 7.6 8.6 79.5 2.6 0 0 0 0 0 0 0 0 0 0 0 0 0 1.6 0 0 0 0 0 0
A-4 0 4.1 4.4 87.3 0 2.5 0 1.1 0 0 0 0.6 0 0 0 0 0 0 0 0 0 0 0 0
A-5 1.0 0 0 0 94.8 0.3 0 0 4.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A-6 0 0.1 0.6 1.6 0 94.0 0 0.8 0.1 0.8 0 1.0 0 0 0 0.1 0.1 0.8 0 0 0 0 0 0
A-7 0 0 4.9 1.1 0 2.3 78.3 5.4 0 0 6.9 1.3 0 0 0 0 0 0 0 0 0 0 0 0
A-8 0 1.1 3.5 8.0 0 1.4 6.8 62.1 0 0 0.1 17.0 0 0 0 0 0 0 0 0 0 0 0 0
A-9 0 0.1 0.1 0 3.6 0.1 0 0 91.5 0.6 0 0 0.1 0 0 1.8 2.0 0 0 0 0 0 0 0
A-10 0 0.5 0 0 1.9 2.5 0 0 0.5 93.1 0.1 0 0 0 0 0 1.4 0 0 0 0 0 0 0
A-11 0 0 0 0 0 0 4.0 0 0 2.4 91.6 2.0 0 0 0 0 0 0 0 0 0 0 0 0
A-12 0 0 0 0 0 0 7.0 7.8 0 0 0.1 85.1 0 0 0 0 0 0 0 0 0 0 0 0
B-1 0 0 0 0 0 0 0 0 0 0 0 0 84.5 9.4 0 2.6 3.1 0 0 0 0.4 0 0 0
B-2 0 0 0 0 0 0 0 0 0 0 0 0 5.0 85.0 2.5 0 2.5 2.5 0 0 0 0 0 2.5
B-3 2.5 0 0 0 0 1.9 0 0 0 0 0 0 0 2.8 90.4 0 0 2.5 0 0 0 0 0 0
B-4 0 0 0 0 0 0.5 0 0 0.4 0 0 0 3.6 0 0 80.4 10.9 4.3 0 0 0 0 0 0
B-5 0 0.1 0 0 0 0.5 0 0 2.6 0 0 0 2.6 4.8 0 22.3 56.1 11.0 0 0 0 0 0 0
B-6 0 1.8 0 0 0 2.0 0 0 0 0 0 0 0 0.1 0 14.5 10.3 71.4 0 0 0 0 0 0
C-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 87.8 2.8 0 0.5 3.5 5.5
C-2 0 0 0 0 0 0 0 0 0 0 0 0 1.4 0 0 0 0 0 4.0 86.3 0 1.3 1.3 5.9
C-3 0 0 0 0 0 0 0 0.1 0 0 0 0 0.3 0 0 0 0 0 0.5 0.1 96.8 2.3 0 0
C-4 0 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 2.6 0.1 88.1 0 8.0
C-5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.9 2.5 0 0.6 86.1 1.9
N 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0 0.9 5.8 0 4.0 2.5 86.8
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A-1 A-2 A-3 A-5 A-6 A-7 A-9 A-10 A-11 B-1 B-2 B-3 B-4 B-5 B-6 C-1 C-2 C-3 C-4 C-5 N
A-1 85.3 1.1 2.3 7.5 1.0 0.9 0.8 0 0 0 0 0.5 0 0 0.6 0 0 0 0 0 0
A-2 4.3 86.8 4.8 0.5 2.3 0.09 0 0.1 0 0 0 0.1 0 0 1.0 0 0 0 0 0 0
A-3 3.5 5.7 88.4 0 0 1.8 0 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0
A-5 9.1 1.0 1.2 84.3 0.1 0 2.4 0.5 0 0 0 0 0 0 1.3 0 0 0 0 0 0
A-6 0.4 2.4 0.2 0 93.2 1.4 0.05 1.1 0 0 0 0.8 0.05 0.05 0.4 0 0 0 0 0 0
A-7 0.7 0.1 3.0 0 2.6 89.4 0 0.2 3.9 0 0 0 0.05 0 0 0 0 0 0 0 0
A-9 0.2 0.05 0.05 2.4 0.09 0 93.8 0.2 0.09 0.05 0.05 0 2.2 0.7 0.09 0 0 0 0 0 0

A-10 0 0.2 0 0.8 0.9 0.05 1.0 95.0 1.6 0 0 0 0 0.5 0 0 0 0 0 0 0
A-11 0 0 0.9 0 0 2.3 0 0.9 95.9 0 0 0 0 0 0 0 0 0 0 0 0
B-1 0 0.9 0 0.9 0 0 0 0 0 83.6 7.8 0 3.0 2.1 0.5 0 0.09 0.1 0 0.9 0
B-2 0 0 0 0 0 0 0 0 0 9.0 80.2 1.8 3.1 3.8 1.0 0.05 0 0.05 0.05 0 0.9
B-3 1.8 1.8 0 0 0.7 0.2 0 0 0 0.05 4.6 89.9 0 0 0.9 0 0 0 0 0 0
B-4 0.9 1.8 0 0 0.2 0 0.8 0 0 4.4 0.6 0 80.1 8.2 3.0 0 0 0 0 0 0
B-5 0 0.05 0.9 0.9 0.2 0 1.9 0.9 0 1.3 3.3 0 17.3 65.2 8.0 0 0 0 0 0 0
B-6 0.9 1.5 0 0 0.8 0 0 0.5 0.2 1.8 1.0 0.5 8.6 9.1 75.1 0 0 0 0 0 0
C-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 86.5 1.0 0 2.2 6.4 4.0
C-2 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0.05 3.2 91.5 0.9 0.5 1.3 2.1
C-3 0 0 0 0.05 0 0 0 0 0 0.1 0 0 1.0 0.6 0 0.2 0.05 97.2 0.8 0 0
C-4 0.3 0.3 0 0 0 0 0 0 0 0 0.09 0.3 0 0 0 5.5 1.9 0.1 85.4 1.6 4.4
C-5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5.2 1.8 0 1.1 87.2 4.6
N 0 0 0 0 0.3 0 0.05 0 0 0 0 0.7 0.05 0 0 3.5 3.0 0 2.5 5.0 84.8
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Figure 12: Confusion matrices of micro-gesture recognition accuracy in Study 1. Left: all gestures, right: all gestures without
pinky finger gestures in thumb-to-finger gesture set.

Environmental Factors Affecting Micro-Gesture
Recognition Accuracy
Environmental resistance is generally important in gesture
recognition of wearable devices. In a situation in which con-
tinuous vibration occurs, a sensingmethod for detecting such
environmental factors (e.g., a method using an accelerom-
eter, which is used in lifelog applications) could be used to
reduce such effects by classifying the noise-floor level and
subsequently adjusting the classifier. However, AudioTouch
is free from problems such as the effect of external light and
limitations of the viewing angle of camera-based methods
and does not require full instrumentation of the hand as is
the case with glove-type methods.

Acceptability
Our current proof-of-concept implementation uses large
piezo elements and a home-made mounting mechanism, re-
sulting in higher invasiveness than bracelet type sensors,
which are not good at recognizing micro-gestures. However,
we believe that there is a promising path towards miniatur-
ization, potentially reducing the form factor to tattoo-like
patches, such as DuoSkin [22], since the piezo element is
extremely thin (0.23mm). There are also flexible piezo ele-
ments as well as flexible and thin cables, which were used
to implement SkinMarks [49]. If AudioTouch adopts such
flexible components, acceptability would become higher.

Portability
One of the most appealing properties of AudioTouch is the
possibility to use it as an input mechanism for mobile and
wearable devices. Our experiments show that our proof-
of-concept implementation achieved good gesture recog-
nition accuracy in challenging settings. We also showed

that AudioTouch can be miniaturized and made entirely self-
contained, as shown in Figure 13. The module has a pro-
grammable wave generator to emit sinusoidal sweep signals
from 20–40 kHz. The setup is connected to the host via Blue-
tooth and is entirely powered by a 3.7 V, 400mAh battery.
This unoptimized prototype can be continuously used for 1
hour, and the latency is about 0.1 seconds. We believe that
miniaturization and runtime improvement are straightfor-
ward engineering tasks.

Machine-Learning Algorithm
We used a well established and simple machine-learning al-
gorithm with default parameters for the proof-of-concept
implementation, demonstrating that the sensing approach
can be used with current methods. To further improve ges-
ture recognition accuracies of AudioTouch, adopting domain
specific recognition approaches or more powerful machine-
learning methods would be a choice. Nonetheless, one aspect
of the SVM is that it achieves high accuracy with a small set
of data, allowing end-user retraining of the classifier.

Figure 13: Wearable type of AudioTouch.
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Future Work
In Studies 1 – 3, we used specific sensor locations (10mm
from MCP joints and elements between 10mm) to conduct
experiments focused onmicro-gesture and touch-force recog-
nition accuracies of AudioTouch. In Study 4, we evaluated
the affect of ten sensor locations on gesture recognition accu-
racy; however, there are many conditions other than sensor
locations that could not be evaluated. For future work, it is
necessary to explore the effects of sensor conditions such as
other locations (e.g., wrist and arm), angles, sizes, and shapes
to evaluate gesture recognition accuracy. We also plan to
explore how sensitive is AudioTouch is to different locations.

We conducted all experiments in controlled environments.
Therefore, it is necessary to verify user factors (e.g., effects
of user’s fatigue, touching/removing elbow from the desk,
wrist bending angle, wrist and arm movement, and body
movement, e.g., walking) in subsequent studies. In addition,
each user has different physical conditions such as skin, mus-
cle, and age. Therefore, we need to conduct user studies with
participants of diverse demographics (e.g., wider age ranges
or better representation of gender).

6 INTERACTIVE SCENARIOS
To envision utility of AudioTouch, we briefly discuss poten-
tial interactive scenarios.
AudioTouch can be leveraged to robustly detect a rich

repertoire of micro-gestures only involving actuation of in-
dividual fingers but no wrist or arm movement. This allows
for discrimination of pressure, further expanding the inter-
action vocabulary. The lightweight and small form-factor
of AudioTouch forms a straightforward path to real-world
implementation. These unique properties enable compelling
interactive scenarios for which we implemented proof-of-
concept prototypes.
While the below proof-of-concept implementations are

simple, they demonstrate the general purpose of AudioTouch,
and we believe it can be used in many on-the-go situations
that currently require a user to retrieve a smartphone or
tablet from his/her pocket or use a special purpose input
device such as a remote control. AudioTouch may also en-
able rich interactions in AR/VR, industrial, and automotive
settings.

Number keypad
AudioTouch can be leveraged as an efficient means of nu-
merical input. Mapping a set of numerical keys onto the
phalanges of the user’s in combination with thumb-to-finger
gestures enabled with AudioTouch allows for efficient num-
ber input, providing a natural analogy to a physical or touch
number keypad. In our implementation (see Figure 1e), we

a b c

Figure 14: Menu selection application. (a) Soft-press pinch
brings up menu and enables cycling through menu items.
(b) Hard-press pinch selects menu item and triggers corre-
sponding action. (c) Result of selecting menu item.

map each finger to a row of a number keypad, then each
phalange is used as a key.

Menu Selection
Using menuing systems on remote devices such as smart TVs
can be a challenge with conventional input methods. The
capability of AudioTouch to discriminate pressure allows for
the implementation of an efficientmenu selection application.
For example, a soft-press pinch may bring up a menu and
enable cycling through a menu items, whereas a hard-press
of the same gesture selects a menu item, as illustrated in
Figure 14.

7 CONCLUSION
In this paper, we presented AudioTouch, a minimally inva-
sive approach for sensing micro-gestures for always avail-
able input in on-the-go interaction settings. This approach
leverages an active bio-acoustic sensing scheme and robustly
recognizes a rich repertoire of micro-gestures involving only
actuation of individual fingers. The sensing scheme is en-
tirely self-contained and does not rely on any instrumen-
tation of the environment or the user’s fingers and palm.
AudioTouch also allows for discrimination of force, further
expanding the interaction vocabulary.

We conducted experiments to evaluate the micro-gesture
recognition accuracy of AudioTouch. Such accuracies were
92.1% and 86.6% with 10 gestures of the thumb-to-finger ges-
ture set and 21 gestures, respectively. We also demonstrated
that AudioTouch is capable of discriminating two levels of
touch-force in the middle and bottom phalanges of thumb-to-
finger gestures with 85.0% and 85.5% recognition accuracies.
Except for one location, we did not find any difference in the
gesture recognition accuracy of AudioTouch. We also imple-
mented proof-of-concept interactive scenarios and showed
how AudioTouch can be made fully wearable and wireless.
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