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ABSTRACT
Secure function evaluation (SFE) allows two parties to jointly eval-

uate a publicly known function without revealing their respective

inputs. SFE can be realized via well-known cryptographic protocols,

such as Yao’s garbled circuits (GC) and the protocol of Goldreich, Mi-

cali, and Wigderson (GMW), which obliviously evaluate a Boolean

circuit representation of the function. Unfortunately, even with the

most recent optimizations that touch known lower bounds, these

protocols incur an impractical high communication overhead.

In this work, we efficiently realize SFE by evaluating the function

in a trusted execution environment (TEE), concretely the widely

available Intel Software Guard Extensions (SGX). We address the

unresolved issue of countless software side-channel vulnerabilities

in a unique way, namely by evaluating Boolean circuits – as used

by cryptographic SFE protocols – inside an Intel SGX enclave. This

way, all possible paths of the function are executed and all memory

accesses are guaranteed to be independent of the actual input data.

The communication of our protocol depends only on the num-

ber of inputs and outputs (it is optimal up to an additive constant),

but not on the circuit size (in contrast to Yao’s GC and the GMW

protocol). Furthermore, we are the first to also address efficient pri-

vate function evaluation (PFE) via TEEs, where one of the parties

provides a function that represents intellectual property and is com-

puted obliviously on the other party’s input. For realizing PFE, we

securely evaluate universal circuits (UCs) that can be programmed

via input bits to emulate any function up to a given size.

We provide a prototype implementation of our SFE and PFE pro-

tocols based on Intel SGX. We empirically compare its performance

to the ABY framework (Demmler et al., NDSS’15) that provides

state-of-the-art implementations of Yao’s GC and the GMW pro-

tocol as well as an adapter for evaluating UCs. For PFE with a UC

emulating a circuit with 10 000 gates (representing, e.g., a secret

function to calculate individual car insurance rates), we improve

the run-time by factor 2.3x over Yao’s GC and by at least two orders

of magnitude over the GMW protocol in a high-latency Internet

setting. The communication is reduced by factors 106x and 131x

compared to Yao’s GC and the GMW protocol, respectively.
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1 INTRODUCTION
Secure function evaluation (SFE) allows two mutually distrusting

parties to jointly compute a publicly known function without re-

vealing their respective inputs. A classic problem to motivate SFE

is the so-called millionaires’ problem [127], where two millionaires

want to determine who is richer without revealing their net worth

to each other. SFE hereby constitutes an intriguing alternative to

relying on a trusted third party.

The applications of SFE are manifold and continuously grow-

ing. Exciting new application areas include, for example, privacy-

preserving machine learning inference. Here, researchers suggest to

evaluate all or at least some parts of a machine learning model, e.g.,

a deep/convolutional neural network (DNN/CNN) securely using SFE
technology [74, 77, 89, 103, 104, 106]. This way, in a machine learn-
ing as a service (MLaaS) scenario, a client is able to use an online

classification service such that neither the service provider learns

the private input data nor the client learns the service provider’s

intellectual property (i.e., the model parameters). Another recently

studied SFE application is the distributed analysis of extremely

sensitive genomic data [7, 16, 33, 34, 39, 109, 110, 118].

SFE can be realized via well-known cryptographic protocols,

most prominently Yao’s garbled circuit (GC) [127] and the protocol

of Goldreich, Micali, and Wigderson (GMW) [47]. Both protocols

obliviously evaluate a Boolean circuit description of the desired

function. However, even with the most recent optimizations, they

incur a high computation and communication overhead, which

often prevents practical deployment. For example, accurately classi-

fying a single 32x32 gray-scale image from theMNIST data set using

Yao’s GC results in a total communication of 791MB [106]. More-

over, due to known lower bounds, there is little hope for substantial

further improvement. For example, it is necessary to transfer at

least two ciphertexts per AND gate in Yao’s GC protocol [129].
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Sometimes not only the inputs of a function but also the func-

tion itself should be kept secret, e.g., when executing proprietary

software on private data. For these cases, private function evalua-
tion (PFE) allows twomutually distrusting parties to jointly evaluate

a private function provided by one of the parties on private data

provided by the other party while ensuring that neither of them

learns anything about the other party’s input. Applications include

privacy-preserving credit worthiness checking [45], remote diag-

nostics [23], medical diagnostics [11], and intrusion detection [99].

Conceivable future applications of PFE include privacy-preserving

billing as might be used in the context of smart cars or smart homes

when computing individual insurance or electricity rates.

With the help of universal circuits (UCs), the problem of PFE

can be reduced to the problem of SFE [1]. A UC is a special type of

Boolean circuit that can be programmed to simulate any Boolean

function up to a given size [120]. In the PFE setting, one party

provides the private input and the other party provides the private

function in form of programming bits to the universal circuit, while

the UC itself is the publicly known function in the SFE setting.

Naturally, the previously discussed limitations of interactive SFE

protocols apply to the PFE setting as well, even more so since

the size of the universal circuit is super-linear in the size of the

simulated circuit
1
.

Trusted execution environments (TEEs) like the ubiquitously avail-
able Intel Software Guard Extensions (SGX) represent an attractive al-
ternative to communication-intensive cryptographic SFE protocols.

Intel SGX allows applications to create so-called enclaves, which are

isolated from all other software running on the same machine, even

privileged software such as the operating system (OS), the virtual

machine manager (VMM), device drivers, or the system BIOS. In

an SFE scenario, the two parties can both send their private inputs

to such an enclave, inside which the function can then be computed

securely and fromwhich they can afterwards retrieve the result. For

this purpose, both parties only need to establish a secure channel

with the enclave and make use of a remote attestation (RA) protocol

to verify the enclave’s integrity before provisioning it with their

private inputs. This concept has been used, for example, for effi-

cient privacy-preserving speech recognition [19] and for efficient

privacy-preserving machine learning inference [56].

However, Intel SGX itself does not provide protection against

software side-channel attacks. Instead, developers are responsible

for building enclaves that are protected against side-channel adver-

saries whomay gather power statistics, cache miss statistics, branch

statistics via timing, or page access statistics via page tables [63].

This is especially difficult since new side-channel vulnerabilities

of Intel SGX are continuously being discovered by the research

community (e.g., [20, 48, 54, 94, 95, 112, 122, 123]). These attacks

can be used to compromise the confidentiality of SGX-protected

data, which represents a major obstacle when using Intel SGX as a

drop-in replacement for cryptographic SFE protocols.

So far, the only option for a developer to remove this obstacle is

to rely on the many mitigation strategies proposed against various

types of side-channel attacks (e.g., [18, 32, 50, 51, 113–115]). The

main problem however is that these defenses are usually proposed

1
Note that there are linear-complexity PFE protocols [75, 97], but they rely on expensive

public-key cryptography, namely on additively homomorphic encryption.

in response to a newly discovered attack, only targeting that spe-

cific attack, and failing to consider the bigger picture [123]. Many

defenses are therefore unable to offer protection against alterna-

tive attack strategies or even variations of the same attack. For a

comprehensive overview of various side-channel attacks against

Intel SGX and corresponding mitigation techniques we refer the

reader to App. A.

Our Contributions. We observe that Boolean circuits as evalu-

ated by cryptographic SFE protocols are inherently secure against

known software side-channel attacks. This is because in a Boolean

circuit representation, all possible paths of the function are executed

and all memory accesses are guaranteed to be independent of the

actual input data. Therefore, we realize efficient SFE based on the

ubiquitously available TEE implementation Intel SGX and mitigate

software side-channel attacks by evaluating Boolean circuits inside

an Intel SGX enclave. This enclave can be run either on the machine

of one of the protocol participants or on a machine hosted by a

third party like a cloud service provider. In contrast to Yao’s GC and

the GMW protocol, the communication complexity of our protocol

is independent of the size of the circuit, but depends only on the

number of inputs and outputs and is optimal up to an additive

constant
2
. This property makes our protocol especially suitable for

an IoT setting where bandwidth and computation power of at least

one protocol participant is limited.

While many previous works suggested using Intel SGX for pri-

vacy protection, most of them focus on a specific application (e.g.,

[19, 28, 29, 56, 68, 91, 111]). Due to the fact that we load the circuit

into the enclave during the protocol execution, we make it possible

to re-use the same enclave for the secure evaluation of arbitrary

functions, thereby eliminating the need for a per-application de-

sign. Besides our simple yet effective side-channel mitigation tech-

nique, this is what distinguishes our work from previous proposals

to utilize Intel SGX for secure computation [10, 53, 84] that sug-

gested to implement the functionality in SGX and left protection

against side-channel attacks to the developers. For obtaining the

required Boolean circuits, users can either rely on hardware syn-

thesis tools [38, 117] or employ specialized compilers that allow to

translate a high-level programming language like ANSI C into a

circuit description [26, 27, 60]. This makes our approach easy to

use, even by non-experts.

Furthermore, to the best of our knowledge, we are the first to

address efficient private function evaluation (PFE) via TEEs, where

one of the parties provides a private function that is to be computed

obliviously on the other party’s input. Similarly to the only available

implementations of PFE [3, 52, 78, 81], we evaluate UCs that can be

programmed via input bits to emulate any function up to a given

size using SFE. Concretely, we evaluate Valiant’s asymptotically

size-optimal UCs [3, 52, 78, 87, 120] inside an Intel SGX enclave.

We provide a fully functional prototype implementation putting

our protocol designs into practice. The implementation includes

a circuit evaluator for Boolean and universal circuits written in

Rust using the Rust SGX SDK [42]. To actually benefit from the

theoretical side-channel resistance of Boolean circuits, we make

2
Fully homomorphic encryption (FHE) [46, 55] also achieves SFE and PFE with optimal

communication complexity, but is not yet practical due to its computation complexity.
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sure to evaluate all supported gate types in constant-time and in-

dependent of the input data. Since the function to be computed

is publicly known (the UC in the PFE setting), we do not have to

prevent leaking the gate type during circuit evaluation.

In an empirical evaluation, we compare the performance of our

Intel SGX-based SFE and PFE protocols to the state-of-the-art im-

plementations of Yao’s GC and the GMW protocol as provided

by the popular ABY framework [41]. To this end, we perform an

extensive analysis in two realistic network settings, measuring

the run-time and communication required for evaluating circuits

with different structures, sizes, and gate types for SFE as well as

for evaluating UCs with different sizes for PFE. Due to the opti-

mal communication complexity of our protocols, we can report

communication improvements by several orders of magnitude.

In a high-latency Internet setting, we improve the run-time by

factor 3x over Yao’s GC protocol for smaller circuits and by more

than an order of magnitude over the GMW protocol for a circuit

with 1 million gates (with equal number of AND and XOR gates)

and AND depth 500 for SFE, and by factor 2.3x over Yao’s GC

protocol and by over two orders of magnitude over the GMW

protocol for a UC generated for a simulated circuit size of 10 000

gates for PFE. For SFE, the measured communication is reduced

from 15.26MB / 15.63MB to 2.47 kB, and for PFE from 23.25MB /

28.85MB to 0.22MB compared to Yao’s GC / the GMW protocol.

In short, we summarize our contributions as follows:

• Design of software side-channel resistant Intel SGX-based

SFE and PFE protocols with optimal communication com-

plexity depending only on the number of inputs and outputs.

• Application-independent prototype implementation in Rust

including a circuit evaluator with constant-time gate evalua-

tion as well as data-independent memory accesses.

• Performance comparison to state-of-the-art implementations

of Yao’s GC and the GMW protocol as provided by ABY [41]

showcasing the advantages and practicality of our approach.

2 PRELIMINARIES
We introduce the necessary background on secure computation

in §2.1 and on Intel SGX in §2.2.

2.1 Secure Computation
2.1.1 SFE. Secure function evaluation (SFE), or secure two-party

computation (2PC), allows two mutually distrusting parties to

jointly evaluate a publicly known function f on their respective

private inputs x and y while ensuring that neither of them learns

anything about the other party’s input. Prominent examples of SFE

protocols based on Boolean circuits are Yao’s garbled circuit (GC)

protocol [127] and the protocol of Goldreich, Micali, and Wigder-

son (GMW) [47]. In both protocols, the evaluation of XOR gates is

essentially free, i.e., requires negligible computation and no commu-

nication [82]. Therefore, the number of AND gates (multiplicative

size) and the maximum number of AND gates on any path from an

input to an output (multiplicative depth) of the circuit are the main

cost metrics in SFE.

Oblivious Transfer (OT) is a two-party protocol where a sender

inputs two values (m0,m1) and the receiver inputs a private selec-

tion bit σ . As a result, the receiver learnsmσ but does not learn

anything aboutm1−σ while the sender does not learn the receiver’s

selection bit σ . The efficiency of OT can be improved using OT

pre-computation [13] and OT extension [8, 71], where so-called

base OTs that are generated using public-key cryptography can be

extended to any number of OTs using symmetric-key cryptography.

Yao’s garbled circuit (GC) protocol [127] is a constant-round

protocol that works as follows. One party, the garbler, generates
the so-called garbled circuit, and sends it to the other party, the

evaluator, who evaluates it in a gate-by-gate manner based on its

own and the garbler’s input wire keys. The evaluator receives its

input wire keys via OTs, i.e., the protocol requires one OT per

input bit of the evaluator. Due to state-of-the-art optimizations,

two symmetric ciphertexts per AND gate [82, 129] are sufficient to

represent the garbled circuit.

In the GMW protocol [47], the two parties XOR share their in-

puts x and y such that x = x0 ⊕ x1 and y = y0 ⊕ y1. One party then

holds x0,y0, the other party holds x1,y1. Thereafter, the parties

evaluate the circuit in an interactive manner. XOR gates can be

evaluated locally on the shares, but AND gates require communi-

cation. Fortunately, all AND gates of the same circuit layer can be

evaluated in parallel, and therefore, the number of communication

rounds in the GMW protocol depends on the multiplicative depth

of the circuit, since it is evaluated layer by layer.

ABY [41]
3
is a state-of-the-art framework for efficient mixed-

protocol secure two-party computation. It combines secure compu-

tation schemes based on arithmetic sharing, Boolean sharing (the

GMW protocol), and Yao sharing (Yao’s GC protocol). ABY provides

security in the semi-honest (passive) adversary model.

2.1.2 PFE. Private function evaluation (PFE) allows two mutually

distrusting parties to jointly evaluate a private function f provided

by one of the parties on private data x provided by the other party

while ensuring that neither of them learns anything about the other

party’s input. In the PFE setting, generally only the party providing

the private data receives the evaluation result z = f (x) since the
function holder could choose an arbitrary function (e.g., f (x) = x )
and therefore compromise the privacy of the other party. Though

there exist different approaches for PFE with O(k) complexity us-

ing homomorphic encryption [75, 97], where k is the size of the

simulated circuit, the most efficient protocols using symmetric-key

cryptography have complexity Ω(k logk) [52, 78, 81, 97]. Among

these, the most efficient instantiation uses secure evaluation of a

so-called universal circuit [52, 78].

A universal circuit (UC) is a special type of Boolean circuit that

can be programmed to simulate any Boolean function up to a given

size k [120]. In addition to the private input x = (x1, . . . , xu ), a UC
takes p = (p1, . . . ,pq ) private programming bits as input. The

same UC can be used to compute many different functions by

specifying different programming bits. In other words, the con-

crete function f is given as the programming pf to the universal

circuit, such that it computes z = f (x) for any input x . In short:

UC(x,pf ) = f (x). Valiant proposed two asymptotically size-optimal

constructions with size Ω(k logk) and depth Ω(k) in [120], one

based on a 2-way and another based on a 4-way recursive structure.

The 2-way UC was brought into practice by Kiss and Schneider [78]

3
https://github.com/encryptogroup/ABY
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and by Lipmaa et al. [87] in concurrent and independent works,

and the latter was implemented by Günther et al. in [52].

Universal circuits allow reducing the problem of PFE to the prob-

lem of SFE [1]: One party provides the private data x and the other

party provides the private programming bits pf for the public UC.

Due to the properties of SFE, nothing apart from the circuit size and

the number of inputs and outputs is revealed. It becomes apparent

that UC-based PFE can easily be integrated into an SFE framework.

PFE can be implemented using different underlying SFE protocols

such as Yao’s GC protocol [127] or the GMW protocol [47] and can

therefore directly benefit from all SFE protocol optimizations.

2.2 Intel SGX
Intel software guard extensions (SGX) is an architecture extension

consisting of CPU instructions and memory access changes to add

trusted execution environment (TEE) capabilities to all Intel Core

processors from the 6th generation on [5, 59, 92]. With Intel SGX,

an application is partitioned into an untrusted and a trusted part

called enclave that is supposed to execute all security-critical code.

The initial enclave content (code and data) is loaded from unpro-

tected memory and is free for inspection and might be subject to

manipulation. Once the enclave has been initialized, its content is

protected from modification and disclosure. Confidential data can

then be provisioned to the enclave over a secure channel. Due to

a mechanism called sealing, the provisioned secrets can be stored

persistently for future enclave executions.

The enclave’s code and data as well as associated SGX control

structures are stored in the enclave page cache (EPC). The EPC and

corresponding meta data are stored inside a special range of the

main memory (DRAM) called processor reserved memory (PRM),

which cannot be accessed by the system software or by peripher-

als. The PRM is encrypted and integrity protected by the memory
encryption engine (MEE). The system software can oversubscribe

the EPC by securely evicting EPC pages to non-PRM DRAM. From

there, they can be further evicted to disk by classical page swapping

mechanisms. When an application tries to access a page that has

been evicted, it is reloaded into the EPC. As this might in turn lead

to the eviction of another EPC page, this process is called EPC page
swapping or EPC paging [36, 92].

For enclaves, Intel SGX guarantees confidentiality of data and

integrity of execution. Software running inside an enclave is isolated

from all other software running on the same machine. Enclave

memory cannot be accessed from the outside, not even by privileged

system software such as the operating system (OS), the virtual

machine manacher (VMM), device drivers, or the system BIOS. The

trusted computing base (TCB) excludes system software and only

includes the CPU (hardware and firmware) and the software inside

the enclave, thereby reducing the attack surface to a minimum.

Due to the strong security guarantees provided by Intel SGX and

its availability in commodity hardware, a wide variety of protocols

and frameworks tailored to specific application scenarios have been

proposed. Example applications include data processing and analyt-

ics in cloud computing [21, 111, 132], genomic data analysis [28, 29],

blockchain technologies [17, 68, 83, 85, 93, 107, 130], contact dis-

covery [91], and machine learning [19, 56, 61, 100]. Furthermore,

so-called shielding systems allow to run unmodified applications in-

side SGX enclaves [6, 12, 101, 116, 119]. Microsoft Azure has rolled

out SGX-capable servers [108], making secure cloud applications

with Intel SGX a reality.

2.2.1 Remote Attestation. In an era of cloud computing, Intel SGX

aims to solve the problem of secure remote computation. It allows
a service provider (SP) to securely execute software on a remote

platform such as a cloud server that is owned by an untrusted party.

Before rendering the service, i.e., before provisioning secrets to

the enclave, the service provider can use remote attestation (RA) to

verify the enclave’s integrity and authenticity.

Remote attestation relies on the ability of the SGX-enabled plat-

form to produce a credential called a quote that accurately reflects

the enclave and platform state. It is generated by the quoting enclave,
which is an Intel-provided architectural enclave devoted to RA. The

quote is signed by the quoting enclave using the Intel Enhanced
Privacy ID (EPID) signature scheme. The resulting signature can

only be verified by the Intel attestation service (IAS) [64], an online

service operated by Intel.

2.2.2 Side-Channel Attacks and Mitigation Techniques. It is im-

portant to note that Intel SGX itself does not provide protection

against software side-channel attacks [5, 65, 66]. Instead, devel-

opers themselves are responsible for building enclaves that are

protected against side-channel adversaries who may gather power

statistics, cache miss statistics, branch statistics via timing, or page

access statistics via page tables [63]. This is extremely difficult,

especially since new side-channel vulnerabilities of Intel SGX are

continuously being discovered by the research community.

For a comprehensive overview of various side-channel attacks

against Intel SGX and corresponding mitigation techniques we refer

the reader to App. A. Here we point out that the underlying problem

is that mitigations and defenses are usually proposed in response

to a newly discovered attack, only targeting that specific attack,

and failing to consider the bigger picture [123]. Many defenses

are therefore unable to offer protection against alternative attack

strategies or even variations of the same attack.

3 RELATEDWORK
In §3.1 we review previous works utilizing Intel SGX for secure

computation and in §3.2 we discuss works which accelerate secure

computation using other forms of hardware tokens.

3.1 Secure Computation Based on Intel SGX
We review related works that investigate the use of TEEs such

as Intel SGX for secure computation. Koeberl et al. [80] proposed

a TEE-based solution as amore efficient alternative to cryptographic

secure multi-party computation protocols. While their work was

purely theoretical in nature, they describe TEEs as neutral envi-

ronments with strong protection, which enable multiple parties to

jointly perform computations under previously agreed security and

privacy policies. The authors list assessing the security properties

of a TEE-based solution, including its resistance to side-channel

attacks, as one of the main challenges that need to be addressed.

Gupta et al. [53] suggest SGX-supported SFE, providing a mali-

ciously secure protocol that allows two parties with SGX-enabled
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machines to perform joint computations on their private data. They

did not implement their proposed solution but expect it to be more

efficient than one based on garbled circuits due to the fact that much

less cryptographic operations are required. The authors recognize

the possibility of side-channel attacks such as memory side-channel

or timing attacks. The latter are protected against by including N
extra loop iterations whenever the number of iterations is deter-

mined by a secret value, where N is a pseudo-random number

which is based on secret information from both parties.

In contrast, we practically implement an Intel SGX-based SFE

approach and compare it against solutions based on cryptographic

protocols. Additionally, we provide security with regards to soft-

ware side-channel attacks. Specifically, memory side-channel and

timing attacks are mitigated by evaluating a Boolean circuit rep-

resentation of the function to be computed inside the enclave and

thereby performing memory accesses independent of input data.

Küçük et al. [84] explore the use of Intel SGX for many-party

applications that involve thousands or tens of thousands of partici-

pants such as privacy-preserving energymetering or location-based

services. Specifically, they use Intel SGX for implementing a trust-
worthy remote entity (TRE), which is a trusted third party providing

strong assurance guarantees about its state and behaviour. They

implement a prototype TRE for the smart grid use case, which ag-

gregates data from different energy meters. Due to the fact that all

many-party applications share certain core features, the authors

of [84] propose it to serve as an architectural template for other

applications. They furthermore emphasize the importance of mini-

mizing the size of the TRE in order to minimize the TCB and the

effort required to verify it. After benchmarking several SGX op-

erations and assessing the performance of their approach, they

conclude that Intel SGX is well-suited for use in large-scale many-

party applications, having a significant performance advantage

over cryptographic protocols.

Our work obviously differs from [84] in that it only targets two-

party applications. However, extending it to the many-party case is

feasible (cf. §4.3.3). What distinguishes our work from many others,

including [84], is that our design allows to re-use the same enclave

for many different applications. This is due to the fact that the

function to be computed is not implemented inside the enclave in

plain. Instead, a Boolean circuit representation of the function is

loaded and evaluated in the enclave during the protocol execution.

By loading different circuits into the same enclave, it can be used to

secure the computation of many different functions and does not

require a per-application redesign and side-channel mitigations.

Bahmani et al. [10] proposed an Intel SGX-based approach for

secure multi-party computation. Their main contribution is the no-

tion of labelled attested computation, which allows multiple parties

to interact concurrently and asynchronously with the same enclave

to obtain attestation guarantees. The authors compare a two-party

version of their Intel SGX-based to a cryptographic solution imple-

mented with the ABY framework. They do not specify the network

settings for the evaluation but report a speed-up of up to 300x for

the total run-time of their considered applications. The authors

of [10] briefly address the topic of side-channel attacks against Intel

SGX and provide protocol implementations for their applications

that are constant-time and thereby able to resist timing attacks.

Similar to [10], our work also implements an Intel SGX-based SFE

solution and compares its performance to an ABY-based solution

but differs from it in that a Boolean circuit representation of the

function to be computed is evaluated. This does not only provide

inherent security against a wide range of software side-channel

attacks but also makes it unnecessary to design a new enclave for

every application, which was necessary in [10]. As a result, the

approach proposed in our work is much easier to use, even by non-

experts. Additionally, our work supports the secure evaluation of

private functions using universal circuits. However, ideas from [10]

can be used to extend our work to securely handle concurrent and

asynchronous enclave interaction.

In [2], Alder et al. target the Function-as-a-Service (FaaS) para-

digm, where customers can easily deploy standalone functionalities

in a cloud infrastructure. To provide various security guarantees

like the confidentiality of the clients’ inputs and the integrity of

the computation, the authors suggest to execute the deployed func-

tionalities within Intel SGX enclaves. However, they can guaran-

tee input privacy only for functions where the control flow and

memory access patterns are input-independent. Naturally, our idea

of evaluating functionalities in a circuit representation inside In-

tel SGX enclaves can be utilized in the work of [2] to guarantee

input privacy for arbitrary functions.

The authors of [35] study an SFE-SGX hybrid approach where

the function to be computed is partly evaluated with Yao’s GC

protocol [127] and partly executed inside an Intel SGX enclave,

depending on the efficiency and the security requirements for the

different parts. However, in the hybrid protocol of [35], intermedi-

ate results are leaked when switching between function partitions

and therefore may allow conclusions about private inputs. In con-

trast, in our work we utilize the efficiency of Intel SGX for the

entire function, do not leak any intermediate results, and eliminate

security concerns regarding side-channel leakage of the enclave

execution by evaluating the function in a circuit representation.

In [43], the authors build the functional encryption (FE) sys-

tem “Iron” using Intel SGX. FE is a cryptographic primitive that

allows the holder of a specially constructed secret key to learn

the output of an associated function on encrypted data, and there-

fore is closely related to fully homomorphic encryption and SFE.

For the implemented and evaluated functionalities, Iron is data-

oblivious, i.e., the control flow and memory accesses do not depend

on sensitive data, and therefore is resistant to various software side-

channel attacks [43]. In our work, we achieve data-obliviousness

by evaluating a Boolean circuit representation of the functionality

while not requiring the developer to manually mitigate side-channel

attacks, which is an error-prone task.

All reviewed existing solutions that implement secure compu-

tation entirely via Intel SGX [2, 10, 43, 84] achieve performance

results that are close to plain evaluation of the functionality and

thus they are orders of magnitude more efficient than cryptographic

protocols. In contrast, evaluating a Boolean circuit representation

of the functionality as done in our work incurs a significant com-

putational overhead. However, this way we can provide a generic

mechanism to effectively prevent various software side-channel

attacks and do not require developers to introduce function-specific

protection measures.
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3.2 Secure Computation Aided with a
Hardware Token

We review several existing works that consider utilizing a hard-

ware token such as a smartcard to improve the computation and/or

communication complexity of secure computation.

Hazay and Lindell in [58] describe a trivial solution to secure

function evaluation using smartcards, where the parties can send

their inputs over a secure channel to the token, which then evalu-

ates the function f and returns the output. A fault tolerant version

of this approach was presented in [44] utilizing multiple tokens.

These hardware tokens have very limited resources and their per-

formance affects the performance of the application. [62] propose

to use secure external memory to circumvent memory limitations,

requiring cryptographic operations in the online phase. Intel SGX

may be a viable alternative for the utilized hardware tokens in the

above mentioned works.

In contrast to our work, these approaches are not generic: the

functionality needs to be implemented on the token every time.

Moreover, the utilized hardware tokens are vulnerable to side-

channel attacks since, for example, execution time and memory

accesses depend on the secret input received from the parties.

In the following, we recapitulate related work that is generic and

supports arbitrary functionalities. Järvinen et al. in [72, 73] design

and implement a token-assisted version of Yao’s GC protocol [127].

They utilize a low-cost tamper-proof token issued by one of the

parties and achieve communication complexity independent of the

size of the circuit. In their implementation they utilize an FPGA

and note that smartcards could also be used as a hardware token.

Demmler et al. in [40] develop token-aided secure computation on

mobile phones based on the GMW protocol [47], offloading the

main workload to a pre-computation phase by introducing a secure

hardware token held by one party. The hardware token is issued by

a trusted third party and provides correlated randomness to both

parties. Moreover, the authors make the communication in the pre-

computation phase independent of the size of the circuit. Secure

outsourced multi-party computation based on linear secret sharing

aided with trusted hardware on each computing server has been

proposed in [90] to decrease the computation and communication

complexities of the evaluated protocol.

Our work differs from these works since we utilize Intel SGX it-

self for securely computing the functionality expressed as a Boolean

circuit, and do not rely on executing any additional cryptographic

protocols within the trusted execution environment.

Recently, virtual black box (VBB) obfuscation was brought into

practice in [98]. The authors deliver the first implementation of

a VBB obfuscation scheme on an FPGA chip that can hide the

evaluated program (and optionally the inputs). To achieve VBB

obfuscation, the authors require hardware Oblivious RAM (ORAM),

hardware scratchpad memories, instruction scheduling techniques,

and context switching. In contrast, we utilize universal circuits to

hide the program and rely solely on the security of the underlying

protocol and widely-available hardware to achieve privacy.

4 INTEL SGX FOR SFE AND PFE
In this section, we describe our Intel SGX-based SFE and PFE pro-

tocols as well as their prototype implementation.

P1 P2

1. RA1. RA

Intel Attestation Service

SGX Remote App.

Enclave

Circuit Evaluator
AB
C
in

C
ou
t

S

2. input1 2. input2

3. output1 3. output2

Figure 1: Overview of our Intel SGX-based SFE and PFE pro-
tocols; in the case of PFE, only P2 receives the output.

In the basic setup as depicted in Fig. 1, we have four parties. Two

parties, P1 and P2, correspond to the parties from cryptographic SFE

and PFE protocols. They have private inputs and want to securely

evaluate a (possibly private) function on these inputs. In SGX ter-

minology, they correspond to so-called service providers where the
service they provide is the provisioning of secrets. The third party

is a so-called Intel SGX remote application that acts as a wrapper

for the SGX enclave. This application with the enclave can be run

either on the machine of one of the protocol participants or can be

hosted by a third party, e.g., a cloud service provider. Finally, the

Intel attestation service (IAS) is required in the remote attestation

phase to verify the signature on the enclave quote.

In the first step of the protocol, both parties perform remote
attestation (RA) in order to verify the enclave’s integrity and au-

thenticity before provisioning it with their secrets (cf. §2.2.1). In

this phase, the parties communicate with both the SGX remote

application and the IAS. This phase also includes the establish-

ment of a secure channel between the parties and the enclave, i.e.,

keys are exchanged. These keys are then used for further secure

communication between the parties and the enclave. Concretely,

the Intel SGX SDK assists developers by providing key exchange

libraries which implement a modified Sigma protocol which is used

forDiffie-Hellman key exchange (DHKE). From the shared DH secret

the parties can derive the key derivation key (KDK). With the help

of a key derivation function (KDF), multiple shared keys serving

different purposes are derived from the KDK.

Once trust is established and the enclave has proven that it was

correctly instantiated and is running on a genuine SGX-enabled

platform, the parties can send their inputs to the remote applica-

tion. Both parties have private inputs to a publicly known function.

In PFE, P1’s private input consists of the programming bits for a

universal circuit. The parties do not transmit the circuit to the ap-

plication as input during the protocol execution. Instead, the circuit

files are stored on the SGX-enabled platform since the circuit (or

the UC) is public and does not have to be hidden. This way, the

communication complexity of our protocol does not depend on

the size of the circuit, but only on the inputs and outputs and is

therefore optimal up to an additive constant caused by the network

protocol overhead. Note that in both cryptographic SFE protocols
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the communication complexity depends on the size of the circuit: In

Yao’s GC protocol [127], the garbled circuit is transferred from one

party to the other, and in the GMW protocol [47], data is exchanged

for each AND gate in the circuit (cf. §2.1).

The input messages input
1
and input

2
sent by the respective par-

ties to the SGX remote application consist of three parts: (i) the role

the party is playing in the protocol execution (i.e., P1 or P2), (ii) a
SHA-256 hash value of the circuit hash that is to be used together

with an AES-128 CMAC computed with amasking key (MK) derived

from the KDK using the KDF, and (iii) the encrypted inputs. The

inputs are encrypted under a symmetric key (SK) also derived from

the KDK using the KDF. As an encryption algorithm, AES in Galois/-

Counter Mode (AES-GCM) is used, which produces a ciphertext

and an authentication tag, thereby providing both confidentiality

and authenticity. In detail,

inputi = rolei | |hash| |CMACMKi (hash)| |AES-GCMSKi (plaini ),

where plaini is the party’s input, i.e., either input or programming

bits for SFE or PFE, respectively. The SGX SDK relies on AES-NI to

implement AES-GCM, thereby preventing leaking the symmetric

key via software side-channel vulnerabilities [65] (cf. App. A).

The SGX remote application is responsible for loading the speci-

fied circuit that is stored on the remote platform into the enclave.

The transmitted hash value is used for identification. Since the

application and the respective other party are untrusted, verifying

whether the enclave contains the intended circuit before evaluat-

ing it is essential for security. The enclave code therefore checks

whether the hash of the actual circuit that was loaded into the

enclave matches the circuit hashes submitted by both parties and

if the CMACs are valid. If this is not the case, the computation is

aborted. After the circuit inside the enclave has been initialized,

the SGX remote application passes the encrypted inputs to the

enclave and triggers input decryption as well as circuit evaluation.

A difference between the SFE and PFE protocols is that for SFE,

both parties receive the output, whereas in the PFE case only P2 re-
ceives the output message outputi . This is because P1 could choose

the programming of the UC such that it compromises the privacy

of P2’s input, e.g., the identity function f (x) = x (cf. §2.1.2). Once

the circuit evaluation is finished inside the enclave, the encrypted re-
sult is sent to the respective party Pi , i.e.,

outputi = AES-GCMSKi (result).

4.1 Circuit Evaluation
We briefly describe how we represent and evaluate Boolean cir-

cuits for SFE and universal circuits for PFE. We consider Boolean

circuits that are composed of the functionally complete set of 2-

input 1-output gates {AND,XOR}. We rely on the ABY circuit

format for SFE and on the UC circuit format of [78] for PFE.

Boolean Circuits. ABY defines the ABY Boolean circuit format
4
,

which can be parsed by the framework [41]. It distinguishes be-

tween circuit input wires, gate output wires, circuit output wires,

and constant wires. In addition, there are function gates with one or

more gate input wires and one gate output wire. Every wire has an

individual wire ID and can serve as input to arbitrarily many gates.

4
https://github.com/encryptogroup/ABY/blob/public/bin/circ/circuitformat.md

The wires are ordered topologically, i.e., a wire ID is always defined

before it is used as a gate input or a circuit output. The ABY circuit

format recognizes four gate types: XOR, AND, MUX (multiplexer),

and INV (inversion).

Therefore, for securely evaluating Boolean circuits, we imple-

ment the same gate types as well for the circuit evaluation in-

side the Intel SGX enclave as shown in Listing 1. For side-channel

protection, it is essential that the evaluation of a function gate is

constant-time and does not perform any secret-dependent memory

accesses (cf. §2.2). Since the circuit topology is public and all possi-

ble paths of the circuit are always executed, the fact that a specific

gate function is being evaluated does not leak any secrets.

Listing 1: Evaluation of Boolean circuit gates in Rust.

1 #XOR
2 return inputs [0] ^ inputs [1];
3

4 #AND
5 return inputs [0] & inputs [1];
6

7 #MUX (cf. Kolesnikov & Schneider [82])
8 return (( inputs [0] ^ inputs [1]) & inputs [2]) ^

inputs [1];
9

10 #INV
11 return inputs [0] ^ 0b0000_0001;

Although the implementation in Listing 1 fulfills these require-

ments, it is important to make sure that aggressive compiler op-

timizations do not introduce data dependent jumps. For example,

in case of the MUX gate implementation, it would be reasonable

to not perform the requested two XOR operations if the selection

bit inputs[2] equals 0 but directly output inputs[1]. Therefore,
we carefully inspected the assembler output for all gate types when

compiling the code in release mode. As illustrated for the MUX gate

in Listing 2, our input data-independent constant-time implementa-

tion is adopted on assembler level without any modifications, even

when inputs[2]=0.

Listing 2: MUX gate evaluation in assembler (AT&T syntax).

1 ...
2 movb 13( %rsp), %al ;copy inputs [1] to a
3 movb 12( %rsp), %cl ;copy inputs [0] to c
4 xorb %al, %cl ;c = c ^ a
5 andb 14( %rsp), %cl ;c = c & inputs [2]
6 xorb %al, %cl ;c = c ^ a
7 ...

Universal Circuits. Kiss and Schneider define a format for uni-

versal circuits
5
in [78], which can also be parsed by the ABY frame-

work [41]. A UC in this format is generated by their UC com-

piler, together with the programming file corresponding to the

desired functionality. Universal circuits are made up of X switches,

Y switches, and universal gates. Beside the inputs, the gate output

wires depend on one or more programming bits, which are read

5
https://github.com/encryptogroup/UC/blob/master/README.md
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from the programming file, each line of which corresponds to a gate

in the UC. X and Y switches take a single programming bit p. An X

switch has two input and two output wires, and either outputs them

in order (if p = 0) or in reverse order (if p = 1). A Y switch is the

same as a multiplexer, it has two input wires but only one output

wire, either outputting the value of the first input wire (if p = 1) or

the second input wire (if p = 0). Universal gates take four program-

ming bits and are able to compute any Boolean function with two

inputs and one output.

We implement the same gate types for the circuit evaluation

inside the Intel SGX enclave as depicted in Listing 3 in order to

privately evaluate Boolean circuits. X switches, Y switches, and

universal gates are implemented using AND and XOR gates [78, 82]

as in ABY to avoid secret-dependent branching and data accesses.

As for the implementation of Boolean circuit gates, we carefully

inspected the compilation result of the listed code on assembler level

to make sure aggressive compiler optimizations do not introduce

input-dependent jumps here either.

Listing 3: Evaluation of universal circuit gates in Rust.

1 #X Switch
2 let e = (inputs [0] ^ inputs [1]) & p;
3 return (e ^ inputs [0], e ^ inputs [1]);
4

5 #Y Switch
6 return (( inputs [0] ^ inputs [1]) & p) ^ inputs [1];
7

8 #Universal Gate
9 let c = ((p1 ^ p2) & inputs [1]) ^ p1;
10 let d = ((p3 ^ p4) & inputs [1]) ^ p3;
11 return ((c ^ d) & inputs [0]) ^ c;

4.1.1 Protection against Side-Channel Attacks. Our implementation

in Rust evaluates circuit gates without branching in constant time.

Furthermore, it does not perform input data-dependent memory

accesses. We also made sure that these properties are equally trans-

lated tomachine code bymanually inspecting the compilation result.

Therefore, we effectively protect against timing and page-table- as

well as cache-based software side-channel attacks (cf. §2.2.2, §A.1

and §A.2 in App. A).

However, there are speculative execution-based attacks like Fore-

shadow [121, 125] that do not require code vulnerabilities in the

victim’s enclave (cf. §2.2.2, §A.3 in App. A). Unfortunately, we

currently cannot guarantee protection against these kinds of at-

tacks and have to rely on the hardware manufacturer to incorpo-

rate mitigation techniques in next-generation CPUs via hardware

changes [67, 69, 125].

4.2 Implementation Details
Our implementation is based on the Rust SGX SDK’s remote at-

testation example
6
. It consists of two separate programs: the SGX

remote application, which includes the enclave, and the SFE/PFE

party. Only the former needs to be run on an SGX-enabled platform.

6
https://github.com/baidu/rust-sgx-sdk/tree/master/samplecode/remoteattestation

The SFE/PFE party and the untrusted part of the application are

written in C++ while the enclave is written in Rust. The RA exam-

ple uses Google protocol buffers7 (protobuf) for message exchange

between the party and the application, where a series of key-value

pairs is concatenated into a byte stream when the message is en-

coded. It therefore becomes obvious that protobuf incurs some

additional communication overhead. We reduced this overhead by

optimizing the encoding taken over from the RA code example,

yielding smaller message sizes, and selecting the optimal encoding

for newly added message types. By default, the communication

between the party and the application is secured with TLS v1.2.

Here, the SGX remote application takes the role of the TLS server.

4.3 Extensions
We propose two possible extensions that can further reduce the

communication of our protocols when used in practice and we also

explain how our protocols can be extended from the two-party

to the multi-party case. However, we leave the implementation of

these extensions as future work.

4.3.1 Re-Usable Inputs via Sealing. For certain applications, one

of the parties might use the same set of inputs for many execu-

tions. For example, in a machine learning inference use case where

one party needs to transmit the sensitive weights for an oblivious

DNN/CNN evaluation [89, 104, 106], or in case of PFE where the

same programming bits need to be transmitted to evaluate the same

private function on different inputs. In the current protocol design,

these inputs must be transferred for every single execution.

For these scenarios, we suggest to make use of the Intel SGX

sealing feature (cf. §3.1). Sealing in this case allows the enclave to

securely store the decrypted inputs persistently for future execu-

tions such that they do not need to be part of the input message.

Implementing this extension requires only minor changes in the

enclave code and the message format.

To illustrate the possible improvement of this extension, consider

privacy-preserving speech recognition as a possible application.

Here, the required neural network parameters and decoding graphs

easily require the transfer of more than 500MB [19]. Using sealing

similar as in the special-purpose architecture of [19], this transfer

is turned into a one-time expense.

4.3.2 On-Site Circuit Compilation. In our protocols, we assume

that the public circuits already reside on the machine performing

the circuit evaluation. However, they must get there beforehand

somehow. Also, there might be use case scenarios where the func-

tion to be computed changes very frequently and requires a new

circuit to be uploaded. Since circuits can get quite large for sophisti-

cated functions, this would incur a high communication overhead.

For these scenarios, we suggest to compile the circuit on-site

from a concise function description in a high-level programming

language for which there exist various tools [26, 27, 38, 60, 117]. This

requires additional steps between performing remote attestation

and sending the inputs. First, one of the parties must distribute

the function description to the other party and the SGX remote

application. Then, each of these three entities runs the deterministic

compilation process and computes the hash value of the compilation

7
https://developers.google.com/protocol-buffers/
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result. Since the compilation result is deterministic, this hash value

can now be used to proceed with the protocol as described before.

To illustrate the possible improvement of this extension, consider

a single double precision multiplication. This simple function can be

expressed in a single line of C code which in turn can be encoded in

a few bytes. In contrast, a Boolean circuit in the ABY circuit format

for performing multiplications between 64-bit IEEE 754 floating

point numbers has a size of 515 kB [38].

4.3.3 SFE and PFE for Multiple Parties. Not all cryptographic SFE
protocols can naturally be extended to the case where more than

two parties provide private inputs. The secure computation litera-

ture therefore also studies secure multi-party computation (SMPC)

protocols (see, e.g., [14, 15, 37]). Similar to cryptographic SFE proto-

cols, they obliviously evaluate the circuit description of a publicly

known function.

Our SGX-based SFE protocol can easily be extended to an SMPC

protocol that supports more than two parties. For this, instead of

parties P1 and P2 in Fig. 1, we consider n parties, P1 to Pn , that
behave similar to P1 and P2, i.e., they provide private inputs over

secure channels to an attested enclave and likewise receive the

computation result. Generating and evaluating circuits that support

input data for more than two parties presents no challenge. For a

fair performance evaluation, a future implementation of this exten-

sion should be compared to cryptographic SMPC frameworks like

SCALE-MAMBA [4]. In contrast to existing works that study the

use of Intel SGX for SMPC protocols, we can re-use the same enclave

for many different applications while providing inherent protection

against a wide range of software side-channel attacks (cf. §3.1).

Extending our protocols to the multi-party case is possible not

only for SFE, but also PFE. For multi-party PFE, still only one party

provides the programming bits to the circuit while not receiving

the function output to prevent a malicious function provider from

obtaining private inputs (cf. §2.1.2). Therefore, extending our PFE

protocol to the multi-party case is analogous to the above described

extension for multi-party SFE. Multi-party PFE was previously

considered only in [76, 96]. A possible application area could be

privacy-preserving matchmaking, where protocol participants are

grouped based on personal information, preferences, and statistics

using criteria the matchmaker does not want to publicly disclose.

5 EVALUATION
We perform all our experiments on an SGX-enabled Intel Com-

pute Stick STK2mv64CC equipped with an Intel Core m5-6Y57

CPU@ 1.10GHz with 3.6GB RAM running Ubuntu 18.04 LTS. The

enclave page cache (EPC) has a maximum size of 128MB, out of

which approximately 90MB are free to use. For evaluations with cir-

cuits consisting of more than a million gates, the maximum enclave

stack and heap size had to be set to 8 kB and 205MB, respectively.

We evaluate all protocols using two realistic network settings

which are simulated using the Linux traffic control (tc) on the loop-

back interface: (i) a LAN setting with 1Gbit/s bandwidth and 1ms

RTT and (ii) a WAN setting with 100Mbit/s bandwidth and 100ms

RTT. The communication between the SGX service providers and

the SGX remote application as well as between the service providers

and the Intel attestation service (IAS) is secured with TLS v1.2.

5.1 Benchmark Circuits
For the SFE setting, we evaluate circuits with different sizes (10

to 1 000 000 gates) and structures.

In Yao’s GC and the GMW protocol evaluating XOR gates is

essentially “free”, whereas for AND gates communication and cryp-

tographic operations are required (cf. §2.1). In contrast, we ex-

pect no difference in run-time for AND and XOR gates for our

Intel SGX-based protocols. Since existing compilers for crypto-

graphic SFE protocols minimize the number of AND gates and

the AND depth of the circuit at the cost of many times the number

of XOR gates [26, 27, 60], using such compilers for our benchmarks

would present an unfair advantage for cryptographic SFE protocols.

Therefore, instead of compiling circuits for example applications

with such compilers, we created synthetic benchmark circuits
8
.

We evaluate circuits with three different gate type compositions:

The first and second consist of only AND (A) / XOR (X) gates and

therefore represent the worst / best case for cryptographic SFE

protocols, respectively. The third seeks to represent an average case

with alternating AND and XOR gate layers (AX).

The performance of the GMW protocol is also heavily influenced

by the circuit topology and the network latency since for each layer

containing an AND gate one round of communication is neces-

sary (cf. §2.1). Therefore, we benchmark “sequential” and “parallel”

circuits where all of the n gates are either evaluated sequentially

in n layers or

√
n gates are evaluated in parallel on each of the

√
n

layers, respectively.

The amount of inputs highly depends on the concrete application

and up to a certain point is rather independent of the circuit size

and structure. That is why we keep the influence of inputs in the

comparison as low as possible and feed only a single pair of input

bits into all benchmark circuits. Due to their structure, all parallel

circuits have

√
n outputs. The construction of the different circuit

structures is exemplified in Fig. 2.
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Figure 2: Example of a sequential X circuit with n = 4
gates (left) and a parallel AX circuit withn = 16 gates (right).

8
For a fair comparison based on real applications, it would be necessary to adapt logic

synthesis tools as done in [38], but with different penalties to minimize the total size

of the circuit for our Intel SGX-based protocols.
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Table 1: Sizes and depths of universal circuits for simulating
arbitrary Boolean circuits of sizes up to k = 10 000 gates.

Size of Simulated Circuit k 10 100 1 000 10 000

# X Switches 42 1 678 32 132 482 656

# Y Switches 11 167 1 191 11 807

# Universal Gates 8 98 998 9 998

AND size 77 2 139 36 317 524 457

Total size 273 8 095 141 083 2 056 027

AND depth 38 465 4 740 47 490

Total depth 114 1 395 14 220 142 470

For the PFE setting, we generated universal circuits using the UC

compiler of [3, 52, 78] to simulate arbitrary Boolean circuits of sizes

up to 10 000 gates. The sizes and depths of the resulting UCs are

given in Tab. 1. The AND size and depth are relevant for PFE with

the evaluation of UCs using cryptographic SFE protocols (cf. §2.1),

while the total size and depth are relevant for our Intel SGX-based

PFE protocol. We note that our largest UC has over 2 million gates.

5.2 One-Time Expenses
Our Intel SGX-based SFE and PFE protocols as well as the ABY

implementation of Yao’s GC and the GMW protocol contain cer-

tain phases that count as one-time expenses. This means that such

phases only need to be executed once when initializing the exe-

cution and their result can be re-used for many computations on

many different functions between the same parties.

For our Intel SGX-based SFE and PFE protocols we count enclave

creation and remote attestation as one-time expenses. Both parties

need to individually perform RA in order to establish a secure

channel with the same enclave. Once RA has been performed, the

same enclave can be used for computing many different functions.

The enclave can even use sealing to persistently store the secret

keys that were established with the parties. The RA phase then does

not have to be performed again until the enclave identity (enclave

measurement) changes.

Creating the enclave takes on average 2.2 s. The RA run-time is

mainly dictated by the speed of the connection with the IAS, which

we did not simulate, and by the amount of data transferred, which

we cannot optimize. On average, RA takes 985ms and 1 722ms in

the LAN and WAN setting, respectively. The total communication

is 64 kB for the parties and 14 kB for the SGX remote application.

For ABY, we count performing base OTs as a one-time expense.

These are OTs that require costly public-key operations and are nec-

essary to bootstrap OT extension protocols (cf. §2.1). Once an OT

extension protocol is bootstrapped, it can be used to generate a vir-

tually unlimited amount of OTs using only cheap symmetric-key op-

erations. On average, performing base OTs took 378ms and 562ms

in the LAN andWAN setting, respectively. The total communication

for each of the two parties is 98 kB.

In summary, ABY has less one-time expenses in terms of run-

time, however, for both implementations the expenses are so small

that they quickly amortize over time.

5.3 Run-Time & Communication
Measurements

In Fig. 3 and Fig. 4 we compare the run-times (in two network set-

tings) and the communication of our Intel SGX-based SFE and PFE

protocols, respectively, to the implementations of Yao’s GC and

the GMW protocol provided by the ABY framework [41]. For SFE

protocols, Fig. 3 contains only the results for the AX circuits (which

reflect the gate composition for real applications most accurately),

for comparisons of the best and worst case scenarios of crypto-

graphic SFE protocols, we refer the reader to Fig. 5 and Fig. 6

in App. B, respectively.

The run-times of our Intel SGX-based SFE and Yao’s GC proto-

col for sequential and parallel circuits do not differ significantly

since they do not depend on the AND depth of the circuit. For

these protocols we therefore specify averages for the computation

of sequential and parallel circuits to simplify the comparison and

furthermore only report the slightly higher communication of par-

allel circuits which additionally depends on the number of output

bits. All run-times are the average of 10 executions. Note that the

communication results for the Intel SGX-based protocols include

overhead caused by TLS v1.2 and TCP whereas ABY reports only

the amount of plain data sent via a TCP socket.

The reported run-times for our Intel SGX-based implementation

contain the time for transmitting the private input of one party over

the network and sending it into the enclave, the circuit evaluation,

and returning the result to that party. For the PFE results we report

the run-time of the party transmitting the UC programming bits

as its input. For a fair comparison to ABY, one-time expenses for

enclave creation, remote attestation, and also the time to read the

circuit and to load it into the enclave are excluded (cf. §5.2).

The measurements for ABY consist of both the so-called setup
and the online phases. In the setup phase, all cryptographic opera-

tions are pre-computed except those required for evaluating garbled

circuits in Yao’s GC protocol. Also, a garbled version of the circuit is

transferred in case of Yao’s GC protocol. In the online phase, inputs

are retrieved, the actual circuit evaluation takes place, and outputs

are revealed. The total run-time measured by ABY by default does

not include the one-time expenses for base OTs (cf. §5.2). Reading

and parsing the circuit from file is also not included.

5.4 Comparison
In terms of run-time, our Intel SGX-based SFE protocol is slightly

faster than Yao’s GC and the GMW protocol in the LAN setting for

small circuits up to 1 000 gates, and only marginally slower than

Yao’s GC protocol for larger circuits. However, for larger circuits

that exceed EPC memory, the run-time of our protocol increases

substantially. This reflects the negative performance implications

of EPC paging: additional enclave transitions are required to handle

page faults and decryption / encryption is necessary when swap-

ping pages into / out of the EPC, respectively [124]. We stress that

this is due to the fact that our Intel SGX circuit evaluator is a first

prototype implementation, whereas the secure computation com-

munity has optimized the performance of the ABY framework over

many years. With an optimized implementation that reduces the

memory requirements of circuits and evaluates large circuits in
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Figure 3: Performance comparison of SFE protocols for AX circuits; for the Intel SGX-based and Yao’s GC protocol, the differ-
ences between sequential (“seq”) and parallel (“par”) circuits are negligible and therefore omitted.
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Figure 4: Performance comparison of PFE protocols; the sizes and depths of the securely evaluated universal circuits are given
in Tab. 1.

smaller parts, we expect to achieve a performance that matches or

even outperforms Yao’s GC protocol.

In the WAN setting, our Intel SGX-based SFE protocol is more

than factor 3x faster than Yao’s GC protocol up to the point where

the circuit size exceeds EPC memory. This is mainly due to the

improved round complexity of our protocol: when excluding re-

mote attestation as a one-time expense, we require only one com-

munication round that consists of sending the private inputs and

receiving the computation result. In contrast, although being a

constant-round protocol as well, Yao’s GC protocol requires addi-

tional communication rounds for performing OT extension in the

setup phase and transferring input keys via OT in the online phase.

Due to its interactive online phase, the GMW protocol is one order

of magnitude slower in the WAN setting for the parallel circuits

and even exceeds a timeout of 10min for large sequential circuits.

One main benefit of our Intel SGX-based SFE protocol is its opti-

mal communication complexity that only depends on the number of

inputs and outputs, but not on the size of the circuit. As a result, we

can report a reduction of communication from 15.26MB / 15.63MB

to 2.47 kB compared to Yao’s GC / the GMW protocol, i.e., a reduc-

tion by three orders of magnitude for evaluating the parallel AX

circuit with 1 million gates.

Similar to the SFE scenario, the run-time of our Intel SGX-based

PFE protocol in the LAN setting roughly matches Yao’s GC protocol

and both outperform the GMW protocol. Due to the lower round

complexity, the run-time in the WAN setting is reduced by a multi-

ple of the round trip time compared to Yao’s GC protocol, whereas

the GMW protocol again exceeds the 10min timeout limit for large

simulated circuits. For PFE, the communication of the party pro-

viding the programming bits grows in O(k logk), where k is the

size of the simulated circuit. Nevertheless, we can report a reduc-

tion of communication from 23.25MB / 28.85MB to only 0.22MB

compared to Yao’s GC / the GMW protocol in our largest example

with k = 10 000, where the UC has over 2 million gates.

All in all, our Intel SGX-based protocols are an attractive alter-

native to cryptographic SFE protocols, especially in IoT settings

where bandwidth and computation power of at least one protocol

participant is limited.
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6 CONCLUSIONS & FUTUREWORK
In this work, we presented the first general-purpose SFE and PFE

protocols and implementations based on Intel SGX. Evaluating

Boolean circuits within a secure enclave instead of the functionality

itself allows us to protect against various software side-channel

attacks caused by code vulnerabilities in the victim enclave. Our

solution can easily be used even by non-experts by utilizing various

existing compilers for translating the high-level function descrip-

tion to a Boolean circuit representation.

However, our experiments revealed that our circuit evaluation

prototype implementation has a substantial computational over-

head for larger circuits due to EPC paging caused by high memory

utilization. As part of future work, we therefore plan to optimize

performance by partially loading and evaluating the circuit, i.e.,

evaluating the circuit layer-wise (in case of parallel circuits with

a low depth) or grouping together a certain number of layers (in

case of sequential circuits with high depth).

While our protocols appear to be trivially secure, a proper anal-

ysis that introduces a formal notion of security and proves this

notion is met by our protocol is currently lacking. Such an analysis

is necessary to conduct as part of future work before deploying our

protocols in practice.
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A INTEL SGX SIDE-CHANNEL ATTACKS AND
MITIGATION TECHNIQUES

In this section, we review existing side-channel attacks and miti-

gation techniques on Intel SGX. The Intel SGX website
9
lists some

of the most relevant works on side-channel attacks. Furthermore,

9
https://software.intel.com/en-us/sgx/academic-research

Lindell [86] gives a good general overview while Wang et al. [123]

provide an in-depth analysis of memory side-channels.

Many of these attacks do not even require the attacker to have

physical access to the machine running the victim enclave. If the

implementation is not constant-time, i.e., its execution time depends

on secret data, such data can be deduced [24, 25]. Furthermore, if

different processes are executed on the same machine, secrets can

be leaked since the processes share physical resources, e.g., caches.

Therefore, achieving co-location of an attacker process on the same

physical machine often suffices. In virtualized environments as

used in cloud computing, multiple virtual machines (VMs) typically

run on the same machine. Researchers have shown that cache

attacks can be performed across VMs running on different cores or

even different CPUs of the same machine [70, 102, 105, 131]. The

different categories of side-channel attacks that have been shown to

be practical against Intel SGX are briefly explained in the following.

A.1 Page Table-Based Attacks
In the SGX security model, the OS is untrusted. Nonetheless, it is

relied upon for memory management, including paging, and more.

A privileged attacker with control over the OS is able to manipulate

the page tables, allowing him to induce page faults. By monitor-

ing their occurrences, he can learn which pages were accessed.

The resulting page-level access pattern was shown to be sufficient

for extracting text documents or outlines of images from widely

used application libraries [126] and bits of encryption keys from

cryptographic implementation libraries [115]. Later, it has been

shown in [122, 123] that page accesses can also be inferred without

inducing page faults, e.g., by monitoring page table attributes.

These page table-based side-channel attacks, a.k.a. controlled-
channel attacks, exploit secret-dependent control transfers and data
accesses. Mitigation strategies include placing sensitive data within

the same page [115] or detecting the anomalously high exception

or interrupt rate often associated with these attacks as T-SGX [114]

and Déjà Vu [32] do. These defenses fall short in the face of more so-

phisticated attacks that avoid producing too many interrupts [123].

An alternative approach is SGX-Shield [113], which implements

fine-grained address space layout randomization (ASLR). The mem-

ory layout is however only randomized at enclave load time and

could still be learned by observing memory access patterns.

A.2 Cache-Based Attacks
Memory caching is used by the CPU to reduce memory access

times. A copy of the most recently accessed code and data is kept

in cache memory, which is an order of magnitude faster and orders

of magnitude smaller than the computer’s main memory (DRAM).

When a memory access is requested, the cache is checked for the

requested data first. If it is found, a cache hit occurs and the request
is served by reading from the cache. In contrast, in case of a cache
miss, the data has to be retrieved from the next level of the memory

hierarchy, from where it is copied to the cache. This typically leads

to some other previously existing cache entry being evicted to

make room. Cache fills and evictions operate on cache lines, which
contain copies of contiguous ranges of DRAM and typically have a

size of 64 B. Modern Intel CPUs have a three-level cache hierarchy.

Each core has its own L1 and L2 caches while the L3 cache, which is
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also called last level cache (LLC), is shared between all cores. The L1

cache is the smallest and fastest. In contrast to the L2 and L3 caches,

it is divided into two separate caches for code and data [36].

Cache-based side-channel attacks take advantage of the fact that

the time it takes to access a memory location depends on whether

it has been cached or not and exploit secret-dependent memory

accesses. Different cache attacks targeting different caches have

been proposed. Popular attack techniques, which are often re-used,

include Evict+Time, Prime+Probe [102], and Flush+Reload [128].

Recent works [20, 48, 54, 95, 112] have demonstrated that known

cache attacks can also be performed on Intel SGX enclaves. They all

use the Prime+Probe approach: First, the attacker process primes
the cache, filling it with its own data. It then waits for the victim en-

clave to access the cache in a secret-dependent manner. This results

in some of the attacker’s cache lines being evicted from the cache.

The attacker process then probes the cache by accessing the data

that he loaded into the cache. From the measured access times the

attacker can conclude which of the cache lines were evicted. Due

to the fact that a memory location is mapped to specific cache lines

based on some of its address bits, this also reveals part of the mem-

ory address that was accessed by the victim. This has been shown

to be enough to extract RSA private keys [20], AES keys [48, 95],

and sensitive information such as genomic data [20], images, and

parts of text documents [54] from cryptographic and application

libraries running inside SGX enclaves. As the L1 cache was targeted,

co-location on the same core was a prerequisite. An enclave-to-

enclave cache attack targeting the LLC was demonstrated in [112].

Some, but not all of the proposed attacks lead to an increased

interrupt rate and can therefore be detected by existing defenses

such as T-SGX [114] and Déjà Vu [32]. These defenses do how-

ever also impose a noticeable overhead. T-SGX and Déjà Vu rely

on Intel transactional synchronization extension (TSX), which pro-

vides support for hardware transactional memory (HTM). HTM

enables multiple threads to optimistically execute transactions in

parallel, to abort, and roll back transactions in case of a conflict.

Current HTM implementations use the caches to keep track of trans-

actional changes. Transactions are therefore also aborted when-

ever transactional memory is prematurely evicted from the cache.

Cloak [50], another approach that aims at providing protection

against cache-based side-channel attacks, leverages this behaviour

of HTM implementations such as Intel TSX. It preloads all sensitive

memory locations into the caches before accessing any of them

in a possibly secret-dependent way. However, Cloak requires the

developer to annotate sensitive data structures manually. Moreover,

Intel TSX is not supported by all Intel SGX-enabled processors.

An alternative approach that has been proposed is data location
randomization for SGX, in short DR.SGX [18]. It prevents informa-

tion leakage due to secret-dependent data accesses by continuously

randomizing the enclave’s memory layout and thereby obfuscating

the link between memory locations and data objects.

Since cache attacks often target cryptographic libraries, great

efforts have been put in designing side-channel resistant, constant-

time variants of encryption algorithms [22, 102]. The recently pro-

posed MemJam attack [94] demonstrates the vulnerability of a

constant-time AES implementation from the Intel IPP library, which

is part of the Intel SGX SDK. The attack has a 4-byte intra-cache line

granularity, breaking the assumption that constant cache line ac-

cesses prevent leakage. Only code with constant time and constant

memory accesses can be expected to be leakage-free. It is suggested

in [94] to exclusively use hardware-based or hardware-assisted

implementations such as AES-NI. However, unfortunately hard-

ware support for cryptographic primitives is limited and support

for AES-NI is in some cases disabled in the BIOS.

A.3 Speculative Execution-Based Attacks
Speculative execution is an optimization technique used by mod-

ern processors. The Meltdown [88] and Spectre [79] attacks have

shown that it also opens the door for powerful side-channel attacks.

Following their discovery, similar speculative execution-based at-

tacks against Intel SGX enclaves were demonstrated. Processors

speculatively execute instructions, for example, when reaching a

conditional branch whose direction is yet to be determined. This

might be either because the direction depends on preceding in-

structions, or because the instruction is being executed out-of-order
to further speed up the program. When this happens, the proces-

sor makes a prediction as to which path will be taken and con-

tinue executing the instructions along that path. If the prediction

was correct, the execution results are committed, otherwise, the

instructions are rolled back. Their transient execution may how-

ever leave traces on the CPU’s microarchitectural state such as

the caches. Spectre [79] attacks including SgxPectre [30] trick the

processor into speculatively executing instruction sequences that

are not part of the victim’s intended execution path, and informa-

tion that the victim (e.g., enclave) is authorized to access is leaked.

Similarly, Meltdown [88] and Meltdown-type attacks such as Fore-

shadow [67, 121, 125] exploit that during a small time window the

results of unauthorized memory accesses can be used in transient

out-of-order instructions before they are rolled back. The attacker

aims to transiently execute secret-dependent operations and alter

the CPU’s microarchitectural state, which is used as a covert channel
over which the secrets are transferred. Foreshadow for example

uses the L1 cache as a covert channel. One of its three variants tar-

gets Intel SGX enclaves, defeating memory isolation, sealing, and

attestation guarantees. Depending on a secret value, the location

of a slot in an “oracle buffer” is computed. The slot is then brought

into the cache, from where it can be recovered by measuring the

time it takes to reload each slot of the oracle buffer.

Spectre-type attacks against Intel SGX require vulnerable code

to be executed within the enclave. This is not the case for Meltdown-

type attacks, which can even be performed without executing the

victim enclave. Foreshadow was able to extract enclave secrets

residing in protected memory or CPU registers but more impor-

tantly, it was the first to extract long-term keys from Intel-provided

architectural enclaves such as the quoting enclave, thereby com-

pletely invalidating remote attestation guarantees. It showed that

Meltdown-type attacks can also be used to breach non-hierarchical

intra-address space isolation barriers. The original Meltdown at-

tack was used to breach the memory isolation barriers between

kernel and user space, allowing an unprivileged attacker to read

kernel memory. It has been mitigated using kernel page table isola-

tion techniques [51], which, however, cannot defend against Fore-

shadow. Intel has released a microcode update to protect enclaves
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Figure 5: Performance comparison of SFE protocols for X circuits; for the Intel SGX-based and Yao’s GC protocol differences
between sequential (“seq”) and parallel (“par”) circuits are negligible and therefore omitted.
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Figure 6: Performance comparison of SFE protocols for A circuits; for the Intel SGX-based and Yao’s GC protocol differences
between sequential (“seq”) and parallel (“par”) circuits are negligible and therefore omitted.

from Foreshadow, which ensures that the L1 cache is flushed upon

enclave exit. As secret data still resides in the L1 cache during en-

clave execution and the L1 cache is shared between logical cores,

this leaves the possibility of cross-logical core attacks when hyper-
threading (HT), Intel’s proprietary implementation of simultaneous
multithreading (SMT), is enabled. Intel has acknowledged the pos-

sible threat by deriving different keys depending on whether HT is

enabled or disabled and includes its status in quotes. Consequently,

service providers can decide whether or not to reject attestations

from HT-enabled platforms. In the long run, in future Intel pro-

cessors, Spectre, Meltdown, and Foreshadow will reportedly be

mitigated through hardware changes [67, 69, 125].

A.4 Combined Countermeasures
Two recent works, HyperRace [31] and Varys [101], aim to offer pro-

tection against a wider range of side-channel attacks. Both defend

against interrupt-based as well as HT-based attacks. HT improves

processor performance by allowing to run two concurrent threads

on a single physical CPU core with two logical cores. Since these

share all the core resources, HT enables or assists same-core side-

channel attacks, e.g., [49, 123]. HT-based attacks typically do not

trigger a large number of interrupts and are therefore not detected

by many existing defenses. Nonetheless, due to its performance

gains, simply disabling HT is not in the developers’ interest. Hy-

perRace and Varys ensure that the enclave thread is executed on

a dedicated CPU core that is not shared with untrusted threads.

Moreover, both works additionally monitor interrupts and therefore

make page table-based side-channel attacks as well as L1/L2 cache

attacks on enclaves more difficult or even impossible to mount.

However, they do not protect against cross-core side-channel at-

tacks such as LLC attacks. Cross-core side channels however tend

to be noisy and are often difficult to exploit in practice.

Unfortunately, assuming that developers can write code that is

resistant to all sorts of side-channel attacks is unreasonable. The

recent MemJam attack [94] shows that even code written by experts

can be vulnerable. Additionally, some attacks like Foreshadow [121,

125] do not require code vulnerabilities in the victim enclave.
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Side-channel resistance is especially important for cryptographic

implementations to avoid leaking secret keys. Hardware-assisted

implementations such as AES-NI have so far withstood attacks,

therefore their usage is strongly encouraged. Though there is in-

enclave support for AES-NI and the SGXDeveloper Guide [65] refer-

ences it as being resistant to timing side-channel attacks, the Linux

SGX SDK does not include it [9, 48], instead using a slower software

implementationwithout side-channel mitigations. Linux developers

can manually link the SDK with a precompiled optimized binary

of the Intel IPP library, which uses AES-NI, improving both the

performance and the security of their SGX applications [57, 94].

B EXTENDED RUN-TIME &
COMMUNICATION COMPARISON

In Fig. 5 and Fig. 6 we compare the run-times (LAN and WAN)

and the communication of our Intel SGX-based SFE protocol to the

implementations of Yao’s GC and the GMW protocol provided by

the ABY framework [41]. Specifically, we compare the performance

results for the X and A circuits (cf. §5.1), which contain only XOR

and AND gates and therefore constitute the best and worst case

scenario for cryptographic SFE protocols, respectively. It should

however be noted that these extreme cases usually do not appear

in practical applications.

Unsurprisingly, the optimized ABY implementation outperforms

our Intel SGX-based prototype in the LAN setting since evaluat-

ing XOR gates is essentially “free” for both cryptographic SFE proto-

cols (cf. §2.1). In Fig. 5, the communication for all cryptographic SFE

protocols is lower than for our Intel SGX-based protocol, which has

optimal communication complexity. This visualizes the somewhat

constant overhead caused by TCP and TLS (since ABY does not

measure TCP overhead, cf. §5.3) as well as by employing Google

protobuf (cf. §4.2).

In the worst case for cryptographic SFE protocols, i.e., evaluating

only AND gates, we can report even higher improvements than for

the average case (cf. §5.4): in the WAN setting, we improve run-

time by factor 1.9x over Yao’s GC and by factor 19x over the GMW

protocol for a circuit with 1 million AND gates; the communication

is reduced from 30.52MB / 31.26MB to 2.47 kB, respectively.

For the Intel SGX-based SFE protocol, the measured difference in

run-times between the A, X, and AX circuits is statistically insignif-

icant. This is expected since evaluating AND and XOR gates differs

only in performing the respective AND and XOR operation on ma-

chine code level. As a consequence, when using tools to compile

high-level functions to Boolean circuits, the total number of gates in

the circuit should be minimized. In contrast, currently existing SFE

compilers that produce output for Yao’s GC and the GMW protocol

try to minimize the total number of AND gates and in case of the

interactive GMW protocol also the AND depth [26, 27, 60].
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