
Efficiently Stealing your Machine Learning Models
Robert Nikolai Reith
robert.reith@t-online.de

TU Darmstadt

Thomas Schneider
schneider@encrypto.cs.tu-darmstadt.de

TU Darmstadt

Oleksandr Tkachenko
tkachenko@encrypto.cs.tu-darmstadt.de

TU Darmstadt

ABSTRACT
Machine Learning as a Service (MLaaS) is a growing paradigm in
the Machine Learning (ML) landscape. More and more ML models
are being uploaded to the cloud and made accessible from all over
the world. Creating good ML models, however, can be expensive
and the used data is often sensitive. Recently, Secure Multi-Party
Computation (SMPC) protocols for MLaaS have been proposed,
which protect sensitive user data and ML models at the expense of
substantially higher computation and communication than plain-
text evaluation.

In this paper, we show that for a subset of ML models used
in MLaaS, namely Support Vector Machines (SVMs) and Support
Vector Regression Machines (SVRs) which have found many appli-
cations to classifying multimedia data such as texts and images, it is
possible for adversaries to passively extract the private models even
if they are protected by SMPC, using known and newly devised
model extraction attacks. We show that our attacks are not only
theoretically possible but also practically feasible and cheap, which
makes them lucrative to financiallymotivated attackers such as com-
petitors or customers. We perform model extraction attacks on the
homomorphic encryption-based protocol for privacy-preserving
SVR-based indoor localization by Zhang et al. (International Work-
shop on Security 2016). We show that it is possible to extract a
highly accurate model using only 854 queries with the estimated
cost of $0.09 on the Amazon ML platform, and our attack would
take only 7 minutes over the Internet. Also, we perform our model
extraction attacks on SVM and SVR models trained on publicly
available state-of-the-art ML datasets.

CCS CONCEPTS
• Security andprivacy→Privacy protections; Privacy-preserving
protocols; • Computing methodologies → Support vector ma-
chines.

KEYWORDS
Machine learning, model extraction, Support Vector Machine, Sup-
port Vector Regression Machine, ideal leakage
ACM Reference Format:
Robert Nikolai Reith, Thomas Schneider, and Oleksandr Tkachenko. 2019.
Efficiently Stealing your Machine Learning Models. In 18th Workshop on
Privacy in the Electronic Society (WPES’19), November 11, 2019, London, United

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WPES’19, November 11, 2019, London, United Kingdom
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6830-8/19/11. . . $15.00
https://doi.org/10.1145/3338498.3358646

Kingdom. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3338498.3358646

1 INTRODUCTION
Machine Learning (ML) is a term that summarizes different algo-
rithms of deriving models from data to make predictions. Such
predictions can be either categorical (called classification tasks),
e.g., for predicting if a picture contains a cat or a dog, or real-valued
(called regression tasks), e.g., for predicting a stocks value. One
such method are Support Vector Machines (SVMs) for categori-
cal predictions, and Support Vector Regression Machines (SVRs)
for real-value predictions. Since ML needs high amounts of pro-
cessing power, new service providers have emerged that offering
Machine-Learning-as-a-Service (MLaaS). These providers, such as
Amazon ML1, Google Cloud ML2, BigML3, and many others, let
their users create ML models on their platforms, and offer them
to monetize their models by letting other users query them for
predictions. In this business model, model providers want to keep
their intellectual property private and their users might want to
keep their concrete data private. This is a classical multi-party com-
putation task, making it an area of interest for Secure Multi-Party
Computation (SMPC). To provide privacy for MLaaS, SMPC pro-
tocols for ML have been introduced, e.g., for SVMs [24, 36, 55],
SVRs [56], and Extreme Learning Machines [57], to name just a
few. These protocols allow for remote predictions without directly
revealing the model to the user, or the user’s data to the model
provider.

However, Tramèr et al. [48] showed for different ML algorithms
that it is possible for users to steal accurate models using solely the
prediction API. In our paper, we extend the findings of [48] from
black-box SVM model extraction attacks to the case of SVRs and
introduce new white-box attacks for SVRs. We show that SMPC
protocols fail to protect the provider’s model privacy, since it is
possible to extract the model. Our attacks target implementations of
MLaaS schemes, and we show that MLaaS schemes are inherently
vulnerable to extraction attacks. Concretely, we show that an at-
tacker can extract a Radial Basis Function (RBF) kernel SVR model
as described in [56] with only 854 queries within 7 minutes for a
cost of $0.09 on the Amazon ML platform and 71MB of bandwidth
for running the SMPC-based protocol.

1.1 Motivation
In recent years, location privacy using SMPC got a considerable
amount of attention [16, 20, 21, 53, 56]. In the paper by Zhang et
al. [56], the authors proposed a privacy-preserving protocol for
indoor localization using Wi-Fi fingerprints. For this, an SVR is
used, which can be queried by users to find their location within
1https://aws.amazon.com/machine-learning/
2https://cloud.google.com/ml-engine/
3https://bigml.com/

Session 6: Social Aspects and Other Privacy Issues WPES ’19, November 11, 2019, London, United Kingdom

198

https://doi.org/10.1145/3338498.3358646
https://doi.org/10.1145/3338498.3358646
https://doi.org/10.1145/3338498.3358646
https://aws.amazon.com/machine-learning/
https://cloud.google.com/ml-engine/
https://bigml.com/

a building. Their scheme uses homomorphic encryption, which
implies a high computation overhead.

Using such a scheme, the provider of the MLmodel can monetize
its knowledge by charging fees for each localization. Such a service
is called MLaaS, a business model being embraced by big companies
like Amazon or Google. These companies have an economic interest
in protecting their intellectual property, i.e., the ML models. A
client unwilling to pay for a big amount of predictions from these
providers, or a competitor trying to copy the business model, have
a financial incentive to steal the ML models. If the cost of extracting
an ML model is lower than the potential financial gain from it,
MLaaS will always be a target for financially motivated attackers.

With the aim of protecting ML models, we study the feasibility
of model extraction attacks on SVM and SVR and propose possible
countermeasures to our attacks. Indeed, we will show that the
privacy of MLaaS providers for these classifiers is not given, even
when employing SMPC protocols such as [56]. With our findings
we show the need for additional protection mechanisms in MLaaS.

1.2 Our Contributions
We make the following contributions in our paper:
• We introduce new equation-solving attacks on linear and qua-
dratic Support Vector Regression Machines (SVRs) and propose
retraining approaches for other kernels, such as Radial Basis
Function (RBF) kernel SVRs.

• We design and implement a framework for Machine Learning
(ML) model extraction attacks in the Python programming lan-
guage. Our framework is open-source and publicly available
at https://github.com/robre/attacking-mlaas.

• We use our framework to examine the accuracy of our attacks on
ML models trained on publicly available state-of-the-art datasets,
as well as their computation efficiency and the number of re-
quired queries to perform attacks, and compare them to the
existing extraction attacks on Support Vector Machine (SVM).

• We further investigate the feasibility of extraction attacks in
realistic scenarios and show that Wi-Fi localization schemes
using SVRs (e.g., [56]) are indeed vulnerable to our extraction
attacks even when protected by Secure Multi-Party Computa-
tion (SMPC) techniques. In a simulated Machine-Learning-as-
a-Service (MLaaS) environment using a RBF kernel SVR, our
extraction attack was able to extract a near-perfect model within
7minutes in a high-latency network using only 854 queries. More-
over, we confirm our results on further publicly available indoor
localization datasets with even more complex ML models.

2 PRELIMINARIES
Notation. We denote vectors as bold latin characters, e.g., x. An-

gled brackets, e.g., ⟨x, y⟩, are used to denote dot products. Sole
features of a feature vector x are denoted by xi .

Basics. Support Vector Machines (SVMs) [7] and Support Vector
Regression Machines (SVRs) [11] belong to a category of ML algo-
rithms known as supervised learning. In supervised learning, the
learning algorithm is provided with a set of data, called training
data, which consists of example inputs with their corresponding
desired outputs. The learning algorithm is tasked with finding the

rules that map the inputs to their corresponding outputs. The out-
puts for binary classifiers, such as SVMs, can be either negative or
positive. For example, they can classify whether an image contains
a cat or not. Multiclass classifiers can distinguish even more classes,
such as if an image contains a black, white, orange, or gray cat.
Regressors, such as SVRs, have real valued outputs. They can be
therefore used to predict continuous values, e.g., stock prices.

2.1 Support Vector Machines
Support Vector Machines (SVM) [7] are a class of machine learning
algorithms that are used for classification tasks. For this, an SVM
defines a hyperplane, which linearly separates a given set of train-
ing data {(xi ,yi)|i = 1, . . . ,m;yi ∈ {0, 1}} with samples xi , their
corresponding targets yi and the number of training datam, into
two classes and classifies new samples by checking what side of
the hyperplane the sample would be on. The hyperplane is defined
in such a manner that its distance to the closest datapoints for each
class is maximized. The closest datapoints are called support vec-
tors. The distance between the hyperplane and the support vectors
is called the margin.

An SVM is defined by a function f (x) = sign(⟨w, x⟩ + b), where
’sign’ outputs 0 for negative inputs and 1 otherwise. The inputs
to this function are a feature vector x, a normalized vector w that
points orthogonally to the defined hyperplane from the origin of
the coordinate system, and bias b, a dislocation of the hyperplane.
The margin is defined in such a manner that its size is the same in
each direction. For a normalized dataset, its size is 1, such that if
w · x + b ≥ 1 a sample is classified as a positive instance and for
w · x + b < 1 a sample is classified as a negative instance, without
providing a confidence score.

To calculate optimal parametersw and b for a given problem, an
optimization problem has to be solved: minimize 1

2 | |w| |22 subject
to yi (⟨w, xi ⟩ + b) ≥ 1 for 1 ≤ i ≤ m, where | |w| |22 denotes the
quadratic Euclidean norm of w. To account for outliers and to
prevent overfitting, which is a common error in ML when a model
corresponds too closely to a specific set of data, a soft-margin
can be used, which allows misclassification in some instances by
introducing a penalty parameter ξi . This parameter is positive for
misclassifications and 0 otherwise. Another positive parameter C
is introduced, which is the proportional weight of the penalties.
The optimization problem is then defined by:

minimize 1
2 | |w| |22 +C

m∑
i=1

ξi subject to

yi (⟨w, xi⟩ + b) ≥ 1 − ξi for 1 ≤ i ≤ m.

(1)

The computation of w and b is done by transforming the opti-
mization problem into a Lagrangian dual problem. With w =∑m
i=1 αiyixi , the Lagrangian dual problem is defined as: maximize

for α :
∑m
i=1 αi−

1
2
∑m
i=1

∑m
j=1 αiα jyiyj ⟨xi , xj ⟩ subject to 0 ≤ αi ≤ C

and
∑m
i=1 αiyi = 0. This dual problem can be efficiently solved using

techniques described in [46, 52].
When a dataset is not linearly separable, a kernel-technique can

be used to map the input space to a higher dimension, where such
separation might be possible. To map the input space to a higher
dimension, a projection function ϕ : Rd1 → Rd2 , x 7→ ϕ(x) is used.
Such a function however can be hard to compute, especially if the

Session 6: Social Aspects and Other Privacy Issues WPES ’19, November 11, 2019, London, United Kingdom

199

https://github.com/robre/attacking-mlaas

Table 1: Popular kernels.

Kernel K(x,x’)
Linear x · x′

Polynomial (x · x′ + 1)d
RBF exp(γ | |x − x′ | |2)
Sigmoid tanh(γxt · x′ + r)

projected dimension is large, or even infinite, as it is the case for
the popular Radial Basis Function (RBF) kernels. In practice, for
the classification, only the dot product of two transformed vectors
ϕ(x) · ϕ(x′) is used, which makes it possible to apply specialized
kernel-functions K(x, x′) = ϕ(x) · ϕ(x′), that simplify the computa-
tion of this product. The resulting classification function is defined
as f (x) = sign(⟨w,ϕ(x)⟩ + b) = sign

(∑m
i=1 αiyiK(xi , x) + b

)
.

Table 1 lists a few kernels that have seen broad use in different
areas. While the linear and RBF kernels are commonly used for
all kinds of tasks, such as cancer classification [34] or bankruptcy
prediction [29], polynomial kernels have seen use in document clas-
sification [27]. The sigmoid kernel gained popularity coming from
its use in neural networks, but hasn’t seen much use in the context
of SVMs, because it only becomes a Positive Semi Definite (PSD)
kernel for a few combinations of its parameters, which is a mathe-
matical condition for kernels in SVM [4].

2.2 Support Vector Regression Machines
Support Vector Regression Machines (SVRs) [11] use the concepts
of SVMs to create regression models. While SVMs classify data into
two classes, SVRs aim to find a function f (x), that approximates
a given training set with error at most ϵ for each yi and is as flat
as possible [45]. Similarly to SVMs, a linear SVR is defined by a
function f (x) = ⟨w, x⟩+b, wherew and b are calculated by solving
an optimization problem:

minimize 1
2 | |w| |22 subject to

{
yi − ⟨w, xi⟩ − b ≤ ϵ,

yi + ⟨w, xi⟩ + b ≤ ϵ .

As for SVMs, we can introduce a soft-margin to account for some er-
rors in the training data. For each condition, we introduce penalties,
ξi and ξ ∗i , indicating a positive and negative error respectively. Also,
the parameter C to weight the errors in trade-off to the flatness
of w is introduced. The optimization problem becomes:

minimize 1
2 | |w| |22 +C

m∑
i=1

(ξi + ξ
∗
i) subject to

yi − ⟨w, xi⟩ − b ≤ ϵ + ξi ,

yi + ⟨w, xi⟩ + b ≤ ϵ + ξ ∗i ,

ξi , ξ
∗
i ≥ 0.

Translating the optimization problem into its dual form, we have:

maximize
{
− 1

2
∑m
i , j=1(αi − α∗i)(α j − α∗j)⟨xi, xj⟩,

−ϵ
∑m
i=1(αi + α

∗
i) +

∑m
i=i yi (αi − α∗i)

subject to
∑m
i=i (αi − α∗i) = 0 and αi ,α∗i ∈ [0,C], where w can now

be written as w =
∑m
i=1(αi − α∗i)xi and, therefore, the regression

function is defined by f (x) =
∑m
i=1(αi − α∗i)⟨xi, x⟩ + b.

Just like for SVMs, we can use the kernel trick to perform regres-
sion on non-linear functions, by substituting the dot-product with
a chosen kernel f (x) =

∑m
i=1(αi − α∗i)K(xi, x) +b. The kernels that

can be used for SVRs are the same as for SVMs (see Tab. 1).

2.3 General Attacks on Machine Learning
Algorithms

ML algorithms can be attacked and manipulated in many different
ways. In [2], Barreno et al. propose a separation of attacks into two
types: causative and exploratory. A relatively new type of attacks,
evasion attacks, was introduced later in [43] and [51].

Causative Attacks. Causative attacks, better known as poisoning
attacks, attempt to sabotage a machine learning algorithm in such a
way, that it fails to perform its intended task. For instance, a poison-
ing attack on a spam filter would manipulate the training data to
cause misclassification of certain spam mails, e.g., having malicious
mails classified as harmless [3, 37]. This attack is performed while
training an algorithm.

Evasion Attacks. Evasion attacks aim at finding input data to a
fully trained algorithm that result in an incorrect output [23]. For
instance, an evasion attack on a spam-filter could find potential
spam-mails that would not be classified as such, or on a malware-
scanner to find an obfuscation of the malware which does not get
flagged. This type of attack can be improved and facilitated by
gathering prior information about the attacked model, i.e., by per-
forming an exploratory attack (see §2.3), specifically an extraction
attack, beforehand.

Exploratory Attacks. Exploratory attacks, which our paper further
explores, intend to unravel information about the algorithm’s con-
figuration, or general inner workings, in order to extract the algo-
rithm or its parameters, to find weaknesses in the algorithm, or to
gain knowledge useful for further attacks, such as evasion attacks.
This type of attack is performed on a fully trained model.

The class of exploratory attacks is defined very broadly and two
subclasses can be defined: model inversion and model extraction
attacks. Model inversion attacks ultimately aim to compromise
users’ privacy by extracting information about training data, such
as if a particular instance was used in the training set or not [12, 17,
41, 44]. Model extraction attacks try to extract parameters from an
ML model. For instance, an extraction attack might learn the exact
decision boundary used by a linear classifier such as an SVM [26].
In a broader sense, such an attackmight learn the general set of rules
that the algorithm follows, or other statistical or logical attributes
of the underlying model. In our paper, we explore model extraction
attacks on SVMs and SVRs that intend to extract or estimate the
model parameters.

2.4 White-Box and Black-Box Attacks
Wedifferentiate betweenwhite-box and black-box attacks onMLaaS.
In a white-box attack, the attacker knows some details about how
the MLaaS provider has implemented a model. Specifically, he
knows or can make an educated guess, which kernel is used in

Session 6: Social Aspects and Other Privacy Issues WPES ’19, November 11, 2019, London, United Kingdom

200

the model. In a black-box attack, the attacker has no knowledge
of the kernel that is used in the model. Most attacks shown in this
paper are white-box attacks. However, if a kernel is not explicitly
known they can still be performed with the assumption of a specific
kernel or, as described in §5.5, in parallel for a subset of all possible
kernels. The extracted model can then be compared to the original
one using a test set of training data. If it performs well enough, the
actual kernel used by the original model was probably guessed cor-
rectly, or is not particularly important, when two different kernels
can separate the same data.

2.5 Secure Multi-Party Computation
SecureMulti-Party Computation (SMPC) allowsmultiple distrustful
parties to jointly compute a public functionд on their private inputs,
while revealing nothing but the result of the computation. This is
achieved by using cryptographic techniques such as homomorphic
encryption [32], Yao’s garbled circuits [54], secret sharing [14], or
combinations thereof [8, 18]. SMPC is used to compute the function
д revealing only what the ideal functionality would reveal, i.e.,
the result of д and nothing else. SMPC guarantees privacy of the
parties’ inputs, however, if the output of the ideal functionality
leaks information about the private data, the use of SMPC is in vain.
This was recognized as a threat for several privacy-preserving
protocols [1, 21, 40].

3 RELATEDWORK
Lowd and Meek [26] worked on evasion attacks specifically target-
ing spam detection in emails and showed an exploratory attack that
extracts parameters from a linear classifier, such as linear SVMs.
Using their algorithm, which we describe in §4, they devised a way
of creating spam emails that are not detected by the spam filter
under attack.

Tramèr et al. [48] further explored model extraction attacks. Tar-
geting MLaaS, they proposed attacks on Logistic Regression [19],
Multilayer Perceptrons [38], Decision Trees [35], SVMs [7], Mul-
ticlass Logistic Regression [13] and Neural Networks [42]. They
found that providing an attacker with confidence scores, which are
values that attest how certain the algorithm is about a prediction,
gives the attacker a big advantage in extracting the model. How-
ever, it is still possible to extract models without confidence scores.
Especially relevant to our work is their research on SVMs. They
introduced an extension to the Lowd-Meek attack [26], enabling an
attacker to extract the model of an SVM using polynomial kernels
which include linear kernels. For the extraction of other kernels,
they propose different retraining schemes (see §4.2 for details). Pa-
pernot et al. [33] explore black-box extraction and evasion attacks
on MLaaS using Deep Neural Networks (DNNs) [15]. Their attacks
consist of retraining a local DNN from class labels obtained from the
MLaaS, and using the local model to craft adversarial samples that
get misclassified by the MLaaS. In [9], Dmitrenko further explores
the model extraction attacks on DNN introduced in [33].

Shi et al. [43] proposed another approach to extract models. They
trained an ML model relying on deep learning and using the MLaaS
provider as an oracle. Kesarwani et al. [22] proposed a mechanism
which they denote as an extraction monitor, which alerts an MLaaS
provider when too much information about a Decision Tree model

was released, enabling an attacker to potentially extract such a
model with techniques described in [48]. Wang and Gong [51] pro-
posed techniques to extract hyperparameters fromMLaaS providers.
Hyperparameters are optimization parameters for ML algorithms,
such as for SVMs the parameterC in Eq. 1 in §2.1. Attacks on SVRs
in particular have not been researched yet. In this work, we fill this
gap by extending known attacks on SVMs to SVRs, finding new
equation-solving attacks on SVR, and putting our attacks into the
context of SMPC for private MLaaS.

The known model extraction attacks on SVMs described previ-
ously are explained in detail below, as extraction attacks on SVMs
and extending them to SVRs are the main focus of our work. Our
attack scenario consists of an MLaaS provider, where a fully-trained
SVM is provided by a server to classify data from a client, who acts
maliciously and tries to extract the SVM parameters. In short, the
attacker can poll an SVM for labels on arbitrary data.

4 THE LOWD-MEEK ATTACK
The first extraction attack on linear classifiers in general and thus
also on SVMs was proposed by Lowd and Meek [26]. Their white-
box attack assumes a third-party oracle, for instance, an MLaaS
API, with membership queries that return the predicted class label
without any confidence values. As some SVMs are linear classifiers,
they are susceptible to this attack. This attack was also described
in the context of privacy-preserving branching programs [1].

To initiate the Lowd-Meek attack, a sample x+ classified as pos-
itive and a sample x− classified as negative have to be provided.
Furthermore, the algorithm takes two parameters, the approxima-
tion threshold ϵ , and the minimum ratio of two non-zero weights δ .
The algorithm starts by finding sign-witnesses s+ and s−, which
are samples that differ only in one feature f , but s+ is classified as
positive and s− as negative. To find such a pair, the algorithm starts
with x+, which is classified as a positive instance, and traverses
through its features, in each step changing one feature value f from
the initial value it had as x+f to the value of x−f and checking if the
classification has changed with it, by querying the server. This is
done until a negative instance is found, denouncing the instances,
where the classification change occurred, as sign-witnesses. Next,
the feature f of s+ or s− is adjusted using line-search, until a nega-
tive instance x with a gap of less than ϵ/4 is found. Now, to have a
weight within 1 and 1 + ϵ/4 on the feature f , a one is added to or
subtracted from xf . Having wf ≈ 1, the other feature weights are
found by adjusting their value to find their distance to the decision
boundary using line search. The found distance is the according
weight for that feature. But first, 1/δ is added or subtracted to their
weight and if their classification does not change, a weight of 0 for
that feature is assumed. Having found all weights, the bias can be
easily found, as we have the inclination w and at least one point is
on or with maximum distance ϵ/4 of the hyperplane.

Given d total features, the algorithm uses a maximum of d − 2
queries to find the sign-witnesses. However, we can add the two
queries back to confirm the initial classes of x+ and x−. To find a
negative instance with maximum distance ϵ/4 to the hyperplane,
O(log(1/ϵ) + size(s+, s−)) queries are needed. To find the relative
weight of each other feature, another O(log(1/ϵ) + size(c)) queries
are needed, where size(c) describes the encoding length. In total,

Session 6: Social Aspects and Other Privacy Issues WPES ’19, November 11, 2019, London, United Kingdom

201

the algorithm uses a polynomial number of queries. This attack
however is limited to the setting, where the feature translation
happens on the server-side. This means that features like strings
or other data types that have to be translated into a numerical
representation get translated by the server and not the client. This
can make it impossible for the attacker to create the queries he
needs for this attack.

4.1 The Lowd-Meek Attack for Nonlinear
Kernels

Tramèr et al. [48] proposed an extension to the Lowd-Meek attack
which enables the attacker to extract some nonlinear kernels, such
as the polynomial kernel. Their attack is performed by extracting
the model within the transformed feature space, where the model is
effectively linear. The hyperplane in the transformed feature space
is described as ⟨wF ,ϕ(x)⟩ + b = 0, where wF =

∑m
i=1 αiϕ(xi).

Therefore, we can use the Lowd-Meek attack to extract wF and b if
we can efficiently calculate ϕ(x) and its inverse. Unfortunately, the
kernel-trick [28] was specifically introduced so that ϕ(x) and ϕ(x′)
do not have to be explicitly computed when calculating their dot
product, because the feature spaces can have infinite dimension or
be very inefficient to compute. For some kernels, such as the polyno-
mial kernel, it is possible to derive the concrete function ϕ(x)which
makes them susceptible to this attack. The RBF-kernel however uses
an infinite feature space so that this attack cannot be performed on
it. The number of queries used in this attack is the same as for the
classic Lowd-Meek attack performed in the transformed feature
space.

Because the extraction happens in the transformed feature space,
we calculate our extraction steps within that space. However, our
queries themselves are not in the transformed feature space, be-
cause the transformation is done by the server. Therefore, we have
to calculate the representation of the desired queries within the
original feature space by calculating the inverse of ϕ(x) before issu-
ing each query, which increases the processing costs in this attack
method for each query.

4.2 Retraining Attack for SVMs
A retraining attack lets the attacked entity classify a set of samples
and uses the resulting sample-classification tuples to train an SVM
itself, which should result in similar model parameters. The amount
of samples used in a retraining attack is capped by a query budget
m. To find an effective query budget, Tramèr et al. [48] introduced
the budget factor α , withm = α(d + 1) and 0.5 ≤ α ≤ 100, where d
is the number of features. They found that with a budget factor of
α = 50 most models could be extracted with 99% accuracy. They
introduce three possible approaches to the retraining attack:
Retraining with uniform queries. The first and simplest ap-
proach works as follows: take a set ofm uniformly random samples,
have them classified by the prediction API and use the result for
retraining.
Line-search retraining. This approach uses line search tech-
niques as they are used in the Lowd-Meek attack (see beginning
of §4), to have samples classified that are close to the decision
boundary, yielding a more accurate result.

Adaptive retraining. The third approach is adaptive retraining,
which utilizes active learning techniques [6] to improve the extrac-
tion. This approach splits the total query budgetm into r rounds
of n = m/r samples each. First, n uniformly random samples are
classified to train an initial model. Next, for each round until the
prediction doesn’t improve, n samples are chosen to be classified
next. The samples chosen are those, the current extracted model is
the least certain about, which are the samples that are the closest to
the decision boundary. In the case of SVMs, the decision boundary
is the hyperplane of the current extracted model.

4.3 Neural Network Retraining Attacks
Shi et al. [43] have shown that it is possible to perform black-
box retraining attacks on Naive Bayes classifiers, Artificial Neural
Networks, and SVMs using Deep Learning. They have also found,
that Feedforward Neural Networks are better at inferring other
classifiers, such as SVMs, than SVMs or Naive Bayes Classifiers
are at inferring other classifiers. Papernot et al. [33] have also
introduced a retraining attack using DNNs, attacking other black-
box DNNs. Their attacks were further researched by Dmitrenko [9].
As a black-box DNN can be substituted by any other classifier with
the same function, these attacks should also work on different
classifiers.

5 OUR NEW ALGORITHMS FOR MODEL
EXTRACTION OF SVRs

We propose the following new algorithms for model-extraction
attacks on Support Vector Regression Machines (SVRs). To the
best of our knowledge, no model extraction attacks for SVRs have
been proposed before. The white-box algorithms described in §5.1
and §5.2 are our new equation-solving attacks that can extract
exact models for linear and quadratic kernels, respectively. The
algorithms described in §5.3 and §5.4 extend the retraining approach
by Tramèr et al. [48] to the extraction of SVR models. The last
algorithm, described in §5.5, is an approach to black-box model
extraction.

5.1 Exact SVR Model Extraction using Linear
Kernels

For SVRs using a linear kernel, the regression function can be
described as f (x) = ⟨w, x⟩ + b with w, x ∈ X and b ∈ R. Since we
can query the oracle for arbitrary x, we get the exact value of b by
querying the oracle with a zero vector x = {0, .., 0}. To find w, we
find the value of each dimension i in w one by one by querying
the oracle with a vector x that is 1 in the corresponding position
and 0 everywhere else, i.e.,wi = f (x) − b with xi = 1, x j,i = 0. In
total, this algorithm needs n + 1 queries to extract the exact model
parameters, where n is the dimension of the feature space.

5.2 Exact SVR Model Extraction using
Quadratic Kernels

SVRs using quadratic kernels can be described as follows: f (x) =∑m
i=1(αi −α∗i)Kquadratic(xi , x)+b, where x denotes the vector to be

classified,m is the amount of training data, αi and α∗i are dual La-
grangian coefficients describing the weight of each training sample,

Session 6: Social Aspects and Other Privacy Issues WPES ’19, November 11, 2019, London, United Kingdom

202

xi describes the training data, and b is the bias, with

Kquadratic(x
′, x) = (⟨x′, x⟩ + c)2 = ⟨ϕquadratic(x

′),ϕquadratic(x)⟩,

where Kquadratic is the quadratic kernel, c is a kernel parameter,
and ϕquadratic is the feature transformation function for the qua-
dratic kernel. Therefore, w =

∑m
i=1(αi − α∗i)ϕquadratic(xi), which is

a weight vector in the transformed feature space and we end up
with a linear regression function in the transformed feature space:

f (x) = ⟨w,ϕquadratic(x)⟩ + b . (2)

For most of the kernels, calculating ϕ(x) is infeasible, which is
the reason why we normally depend on the kernel-trick. However,
for some kernels such as the quadratic kernel, ϕquadratic(x) is rather
simple and allows for extraction [5]. The transformation function
of the quadratic kernel is defined as follows:

ϕquadratic(x) =

x2
n, . . . , x

2
1,√

2xnxn−1, . . . ,
√

2x2x1,
√

2cxn, . . . ,
√

2cx1,

c .

ϕquadratic(x) produces a vector of dimension d =
(n
2
)
+ 2n + 1.

Knowing the nature of the feature transformation ϕ(x), and being
able to query the oracle with arbitrary x and get the corresponding
f (x), we can reconstruct f ′(x) equivalent to Eq. 2. If we look closely
at Eq. 2 and remember howϕquadratic transforms vectors, we can see
that for instancewd , the last feature weight in w when calculating
the function, will always be multiplied by c at the end, after which b
will be added. For our reconstructed function f ′(x)we can therefore
create an equivalent functionality by setting w ′

d = 0 and b ′ =

wdc +b. To find our b ′, we use a zero vector v0 = (0, . . . , 0)T to get
f (v0) = ⟨w,ϕquadratic(v0)⟩ + b = wdc + b = b

′.
Now, we can see that the first n weights w1, . . . ,wn , which

get multiplied with x2
n, . . . , x

2
1 , respectively in the dot product,

can be extracted by sending two queries for each of them. Those
two queries are positive and negative unit vectors v+i and v−i ,
where v+i := (v1, . . . ,vi , . . . ,vn) = (0, . . . , 1, . . . , 0) ∀i ∈ 1, . . . ,n
and v−i := (v1, . . . ,vi , . . . ,vn) = (0, . . . ,−1, . . . , 0) ∀i ∈ 1, . . . ,n.
Putting those values into Eq. 2, we get:

f (v+i) = wn−i+1 +wd−i
√

2c + b ′,

f (v−i) = wn−i+1 −wd−i
√

2c + b ′.
(3)

Next, we compute the following:

wn−i+1 = ((wn−i+1+wd−i
√

2c+b ′)+(wn−i+1−wd−i
√

2c+b ′)−2b ′)/2.

As we can do this for all values i ∈ 1, . . . ,n, we can get allwn−i+1
which is equivalent town . If we instead subtract f (v+i) and f (v−i)
and divide by 2, we end up with:
√

2cwd−i = ((wn−i+1+wd−i
√

2c+b ′)−(wn−i+1−wd−i
√

2c+b ′))/2.

Looking back at Eq. 2, we know that theweights∀i ∈ 1, . . . ,n : wd−i
always will be multiplied by

√
2c . Therefore, for our reconstruction

of f ′(x) we can set ∀i ∈ 1, . . . ,n : w ′
d−i =

√
2cwd−i , so that we do

not have to find the value of c.
Now, all we need to reconstruct Eq. 2 arewn towd−n−1, or these

values multiplied by
√

2. To calculate them, we have to go through

each combination of two ones in v and fix all other values at zero.
Querying for those v we get:

f (v) = wn−i+1 +wn−j+1 +
√

2wr +wd−i
√

2c +wd−j
√

2c + b ′,

with r being calculated as r =
∑n−s+1
i=1 (n − i) − t + n + 1, where

s = max(i, j) and t = min(i, j). By subtracting all the known val-
ues, we can easily get the last unknown coefficients wr . With
the extracted values we can now construct an identical regres-
sion function f ′(x), which however is less efficient than using the
kernel trick, because instead of the more efficient kernel function
(⟨x, x′⟩ + 1)2, the dot product has to be calculated explicitly, which
takes n +

(n
2
)
+ d multiplications and d − 1 additions. Because we

do not know the parameter c explicitly, as we use it integrated in
the weights ∀i ∈ 1, . . . ,n : w ′

d−i and in b ′, we have to adjust the
transformation function that we are using accordingly:

ϕ ′quadratic(x) =

x2
n, . . . , x

2
1,√

2xnxn−1, . . . ,
√

2x2x1,

xn, . . . , x1,

0
and our extracted weights are

w′ =

wn, . . . ,w1,

wn+1, . . . ,wd−n,
√

2cwd−n+1, . . . ,
√

2cwd−1,

0.

The resulting extracted equation looks then as follows: f ′(x) =
⟨w′,ϕ ′quadratic(x)⟩+b

′. This method uses a total ofd =
(n
2
)
+2n+1 =

1
2n

2 + 3
2n + 1 queries, which is in O(n2), where n is the number o

features.

5.3 SVR Model Extraction with Retraining for
Arbitrary Kernels

Just as SVMs, SVR model parameters can be extracted, or rather
approximated using a retraining strategy. By having the model
provider label a set of samples, its predictions can be used as train-
ing data for the attacker’s model. The most simple approach is to
have the model provider label a set of uniformly random samples.
The accuracy of this approach largely depends on which samples
get picked by the algorithm, as some samples contribute more to
the extraction accuracy than others. A larger number of samples
therefore increases the chance of extracting an accurate model.

5.4 SVR Model Extraction with Adaptive
Relearning for Arbitrary Kernels

Using the adaptive retraining approach, the amount of queries used
to extract an accurate model can be reduced. Instead of picking a
random set of samples to get labeled by the model provider, the
samples are picked carefully to achieve a maximum improvement of
the extracted model. Having a total query budgetm, this is done by
performing r rounds on n =m/r samples being labeled at once and
calculating the ideal set of samples of the next round in between.
The first set of n samples to be labeled is picked at random and
sent to the API. An initial model is being trained on the results
obtained from the API. We know that for SVR only support vectors

Session 6: Social Aspects and Other Privacy Issues WPES ’19, November 11, 2019, London, United Kingdom

203

influence the model. We use the approach by Douak et al. [10] of
picking samples by their distance from the support vectors. In other
words, we can take the samples that are located the furthest from
our current support vectors and rank them by the importance of the
closest support vector, which is determined by the support vector
coefficients values’ closeness to the model parameter c .

This algorithm can be rather slow, because in every round the
SVR has to be recalculated. The algorithm’s runtime efficiency also
depends on the number of samplesn to be labeled per round. Rounds
with more samples imply that calculation of a smaller amount of in-
between models is necessary, however, higher amounts of samples
per round also mean, that every round more samples are chosen on
grounds of an inaccurate model. The algorithm’s efficiency can be
increased using online learning techniques for SVRs [25]. Online
learning techniques enable the incremental addition of new train-
ing data to an already fitted model, removing the need to retrain
the model on the whole set of training data. Another approach to
increasing the algorithm’s efficiency would be incrementing the
round size for each round. Since with each round the SVR gets more
precise, we can increase the number of samples to predict, as they
rely on a more precise model. Using exponential increments, the
total number of rounds, and therefore the total number of models
that have to be calculated, can be reduced significantly.

5.5 Kernel Agnostic Extraction
Even though the classic and adaptive retraining approaches can be
applied to any kernel, the attacker has to know which kernel he is
attacking, i.e., they are white-box attacks. This can be circumvented
by employing a kernel agnostic algorithm, i.e., an algorithm that
makes no difference in which kernel it is attacking.

Such an algorithm can be constructed by performing a classic
(randomized) retraining attack, but training multiple models at
once, each with a different kernel. Then, using a test set, the algo-
rithm compares the predictions of each model to the original one.
The model with the lowest error rate is then picked and assumed
as the "correct" one. This approach would not need an additional
amount of queries, as it can train all models on the same set. How-
ever, the computation time increases, because multiple models have
to be calculated instead of just one. In practice, there are only a
handful of classic kernels that see widespread use (see Tab. 1), which
can be parametrized with classic approaches to setting the model
parameters. Therefore, the number of models that have to be trained
and compared is limited.

Theoretically, it would be possible to also use adaptive training
methods for this approach. Then, the training would be divided
into multiple rounds. The first round would use a randomized set of
samples to train the initial kernels. In each subsequent round, the
samples that each kernel is the least certain about are selected into
a subset S . Afterwards, the samples within this subset are ranked
by how many models are how uncertain about them. The queries
that the most models are the most uncertain about are selected to
be queried and trained on. Problematic is that in every round a
number of models have to be trained simultaneously. Even training
a single model can be very slow and although the models can be
trained in parallel, to get the next round of queries, we have to wait
until all models are done.

User

Supervisor Server

Adversary Client

Initializes and Monitors

Query
Model

Extraction

Figure 1: Architecture of our model extraction attack frame-
work.

6 OUR FRAMEWORK FOR MODEL
EXTRACTION ATTACKS

For studying different attacks and finding feasible attack strategies,
we implemented a simulator for the MLaaS paradigm in Python.
Our simulator allows to monitor and tweak all parameters and
test different attacks in an environment, where there are no legal
implications to our attacks. This simulator enables us to compare
extracted models with the original ones in terms of prediction
accuracy and quantify the quality of the extractions. Note that our
implementation works entirely locally by simulating the required
network latency, whereas a real-world attack on MLaaS would be
performed over a real network. Our implementation is open-source
and available at https://github.com/robre/attacking-mlaas.

Architecture
In the following, we give the architecture of our implementation
and show how it can be used to simulate an attack scenario.

Our implementation consists of four classes: Server, Client, Ad-
versary, and Supervisor (see Fig. 1). The Server class represents an
MLaaS provider and stores different trained ML models, providing
answers to classification or regression requests. The Client class
imitates a client who interacts with such a server. The Adversary
class uses a client object to interact with the server and contains
all the attack algorithms to extract the model. The Supervisor class
is used to initialize all the classes and functions, to keep track of
data, and to compare results by calculating errors. Apart from these
classes, we have a main file that features a csv reading function
for parsing the inputs and is the point of initialization and interac-
tion. The user only interacts with the Supervisor class. The classes’
detailed functionalities are described below.

The Server Class. The Server class represents an MLaaS provider
or a similar service that offers ML classification and regression via
an Application Programming Interface (API). Its basic functionality
is to store machine learning models, such as SVMs or SVRs, and to
provide an interface for clients to query these models. The Server
class implements methods that allow to add, delete, get, and query
ML models from its database.

The Client Class. The Client class mimics a user of an MLaaS. Its
only functionality is to poll a server object with data, asking for
prediction on this data. It also implements a query counter, which

Session 6: Social Aspects and Other Privacy Issues WPES ’19, November 11, 2019, London, United Kingdom

204

https://github.com/robre/attacking-mlaas

counts the total number of queries issued by a client. To derive
a time estimate in a real-world scenario, the query count can be
multiplied by the average round-trip time for a packet to reach an
MLaaS provider and added to the server calculation time and the
client calculation time.

The Adversary Class. The Adversary class represents an attacker
who intends to extract model parameters from MLaaS providers.
It provides an attack method which wraps all attacks that are im-
plemented and returns a recreation of the attacked model derived
from the results of the attacks. For the attack method, a number of
variables are in place so that attack type, kernel, maximum number
of queries, and attack specific variables may be tweaked to improve
the results. To interact with the Server class, the Adversary controls
an instance of the Client class. It features the option to attack either
an SVM or an SVR. An SVM can be attacked using the Lowd-Meek
attack (see §4), retraining, or adaptive retraining (see §4.2). An SVR
can be attacked using a set of our newly devised algorithms (see §5).
These new algorithms include an equation-solving attack which
extracts the exact parameters of a linear SVR (see §5.1) and for
quadratic kernels (see §5.2), and furthermore, SVRs can be attacked
using retraining (see §5.3) and adaptive retraining (see §5.4).

The Supervisor Class. The Supervisor class provides utilities to
run and analyze different scenarios. All interaction from the user
goes through the supervisor class which features methods to gen-
erate training data, create models from random or given data, to
compare predictions of the actual model with the extracted model,
and calculate errors. This class also creates plots for visualization
(e.g., those in Fig. 2 and Fig. 3).

7 EVALUATION
To assess the feasibility of our model extraction attacks, we need to
determine what makes an attack successful and what is the cost of
making an attack succeed. This is done for different kernels as they
differ in extraction complexity. We define metrics for the quality
of the extracted models and the costs associated with the extrac-
tion. We then perform extractions with different data, kernels, and
techniques. We compare the measurements across the extractions
and give a conclusion on the feasibility of our proposed model
extraction attacks.

7.1 Model Approximation Accuracy
An extraction attack produces an approximation of a model. The ap-
proximation accuracy can be assessed by comparing the prediction
results of the extracted model to that of the original model.

Approximation Accuracy of SVM Extraction. SVMs produce labels
0 or 1 as predictions. An extracted prediction therefore can be either
correct or wrong. To assess the quality of an extracted SVM, the
quota of wrong predictions in a test set can be calculated as

Pwrong =
#wrong predictions
#total predictions . (4)

We generally try to achieve a minimal percentage of wrong classi-
fications. Extractions with Pwrong ≤ 1 % are considered sufficient
and Pwrong ≤ 0.1 % very good as described by Tramèr et al. [48].

Approximation Accuracy of SVR Extraction. For SVRs, the pre-
dictions are continuous values. Therefore, the Mean Squared Er-
ror (MSE) can be calculated as

MSE =
1
n

n∑
i=1

(oi − pi)
2. (5)

To get a comparable error value between different models with
differently normed data, we can use the Relative Mean Squared
Error (RMSE) calculated as

RMSE =

∑n
i=1(oi − pi)

2∑n
i=1(ō − oi)2

, (6)

where ō denotes the mean of o.

7.2 Cost Factors
A model extraction can be further quantified by considering cost
factors for the attacker. If the monetary cost associated with these
cost factors exceeds the financial value of the extracted model, there
is no financial incentive to perform an extraction, eliminating the
principal motivation for the attack. Consequently, we measure the
subsequent cost factors. We consider the number of queries as the
most implementation-independent cost metric.

Query Cost. A classic business model for MLaaS is to train a
private model and give users the possibility to query this model for
predictions, charging them a fixed amount of money or tokens per
query. A financially motivated attacker could try to extract a model
to circumvent the future query costs or even sell his extractedmodel
to third parties. This type of attacker would have a query budgetm
of queries that they would be willing to pay in order to extract the
model. Hence, low query costs increase the attack feasibility.

Time Costs. Another cost factor is runtime. The extraction can
be considered infeasible if the runtime associated with it is very
high. The extraction runtime has two main factors: local calculation
time and query latency. The local calculation time is the amount
of time needed for all the necessary computations performed by
the attacker during an extraction. The query time considers all
the time factors that play a role when querying the server for a
prediction. The query time consists of the network time, which is
the time that each query has to travel through the network, reach
the server, and come back with the answer, and the server-side
calculation time, which is the time, the server needs to compute a
prediction on a query. The time costs significantly depend on the
specific implementations — which can often be optimized — and
network setting, and we consider it for only a few examples.

7.3 Datasets
For our evaluation, we use a number of datasets from different
sources.We can differentiate the datasets by several factors: firstly, if
the dataset is for classification (SVM), or regression (SVR). Secondly,
if the dataset was generated artificially, or consists of natural data.
Thirdly, the amount of features. Lastly, the size of the dataset and
test set. The real datasets we used are listed in Tab. 2.

Session 6: Social Aspects and Other Privacy Issues WPES ’19, November 11, 2019, London, United Kingdom

205

α

Er
r o
rr
at
e

α

Figure 2: Error rate (see Eq. 4) for different values of budget factor α for randomized (left) and adaptive (right) retraining for
Radial Basis Function Support Vector Machines (RBF SVMs).

Table 2: Natural datasets for regression used in this work.

id Dataset Name Features Size
1 California Housing [31] 8 20 640
2 Boston House Prices [30] 13 506
3 UJIIndoorLoc [47] 520 19 937
4 IPIN 2016 Tutorial [39] 168 927

7.4 Attacker Model
In our attacker model, we assume a financially motived attacker,
such as a competitor, who has the intention to ultimately be able to
predict data himself without paying the MLaaS provider. Therefore,
we can assume that the attacker has access to a substantial set of
unlabeled training data. Particularly, we can also assume that in case
of a classification task, the attacker has access to at least one positive
and one negative sample, an assumption that has also been made
by Lowd and Meek [26], which is crucial to the extraction attack.

We note that an attack without any knowledge of the data to
be predicted, e.g., no knowledge of what each feature is and what
values it may take, is theoretically possible. In low-dimensional set-
tings, values can be guessed until a negative and positive instance is
found. When one classification however is a rare case with high di-
mensions, say the prediction that a certain type of cancer is present,
and derived from a feature vector of 30 features, a very specific
alignment of values is necessary to get this prediction. Finding a
vector that gets classified as cancer with random values is highly
unlikely, therefore the attacker’s knowledge of the data he wants
to have predicted is crucial.

7.5 Benchmarking Results of our Attacks
For each setting, we first perform an attack using the best, i.e.,
most accurate technique we know of. Then, we perform retraining
attacks with a similar and smaller number of queries, and finally

the most accurate attacks, because it only makes sense to use the
retraining attacks in settings where we either do not have a high
enough query budget for the best attack types or where only a
retraining approach is available. As our implementation is local,
the runtimes for each extraction have an optimal latency of near
zero. To arrive at more realistic estimates for the runtimes, we add
a 100ms network latency for each query. We denote this setting
as Internet latency. Some services limit the number of consecutive
queries for a user in a specific time frame. We assume that the
attacker has a sufficient query budget. If the number of allowed
queries is too low for performing an accurate attack, the attacker
could either use multiple accounts eventually using different IP
addresses or cooperates with other attackers.

Extraction of Linear SVMs. To the best of our knowledge, the best
known attack on linear SVMs is the Lowd-Meek attack [26], which
can extract a model with an adjustable accuracy of ϵ . We create
100 random classification problems and perform an attack on them
using the Lowd-Meek attack with ϵ = 0.01 and δ = 0.01.

We find, that the extraction takes on average 17 · n queries for n
features. For 2 features, the extraction took on average 35 queries,
for 9 features 154 queries and for 100 features 1 700 queries. The
execution time was 3ms for 2 features and stayed under 1.5 s for
1 000 features. At 1 000 features, the total amount of queries however
is about 17 000, which would take an additional 17 000 · 0.1 s =
1 700 s (29 minutes) in the Internet latency setting. The extracted
models had 100% accuracy when comparing them to the original
ones.

Next, we perform an extraction on the same 100 models using
retraining and a budget factor α ≤ 17, so that we get a comparable
maximum 17 · (n + 1) queries per attack. We find that we can
extract 100% accurate models in about 0.01 s. Lowering α did not
affect the accuracy — we could extract 100% accurate models with
α = 1. For adaptive retraining, we get the same results. This can be
explained because linear SVMs are Probably Approximately Correct
(PAC) learnable [49] as their Vapnik-Chervonenkis dimension (VC

Session 6: Social Aspects and Other Privacy Issues WPES ’19, November 11, 2019, London, United Kingdom

206

α

M
SE

α

Figure 3: Mean Squared Error (MSE) (see Eq. 5) for different values of budget factorα for randomized (left) and adaptive (right)
retraining strategies for Radial Basis Function Support Vector Regression Machines (RBF SVRs).

dimension) is n + 1 [50]. RBF kernels however have an infinite VC
dimension, and are therefore not PAC learnable.

Extraction of RBF SVMs. To simulate the extraction of an SVM us-
ing the RBF kernel, we create a 20-dimensional dataset with 1 500
samples using the first 500 to train the original model, the next
500 for the attacker, and the last 500 as the test set. In Fig. 2, we
plot the error percentage in dependence of the budget factor α for
randomized and adaptive retraining. We can see that the accuracies
are very similar, being slightly more stable for adaptive retraining.
At about α = 20 we get a sufficiently accurate extraction with 99%
accuracy. Concretely, for 20 features, this means we need about
α · (n + 1) = 20 · (20+ 1) = 420 queries to extract an accurate model.
However, the attacks vary noticeably in speed. While the random-
ized retraining attack takes up to 3 s, the adaptive retraining took up
to 70 s per attack. Considering 100ms Internet latency, such an at-
tack would take about 70 s+420 · 0.1 s ≈ 2 min. Please note that our
Python implementation can be optimized to improve its runtime,
e.g., by using low-level programming languages such as C++.

Extraction of Linear SVRs. We use three different datasets for the
extraction of linear SVRs: the California housing dataset, Boston
house-prices dataset, and an artificial dataset with 100 features.

First, we employ the equation solving attack described in §5.1.
Attacking a linear model trained on the California housing dataset,
we achieved an exact extraction of the model parameters using a
total of 9 queries. The processing for the attack took 1ms (0.9 s with
Internet latency). Attacking the Boston House-prices dataset, we
got an exact extraction with 14 queries in 1ms (1.4 s with Internet
latency). Lastly, extracting the generated dataset took 101 queries
and 59ms (10.2 s with Internet latency).

For retraining strategies to make sense, we need to set α ≤ 1.
However, even with α = 1, the highest setting, we get error rates
of RMSE > 2 when using randomized retraining. Using adaptive
retraining, the error rates get better, at RMSE > 0.02 for α = 1. Still,
we do not consider extractions with such error rates as good.

Extraction of Quadratic SVRs. For the extraction of quadratic SVRs,
we use the same three datasets as in §7.5, but trained with a qua-
dratic kernel. We use the equation solving attack described in §5.2
first. Using this attack, the extraction of the model trained on the
California housing dataset took a total of 45 queries and 7ms (4.5 s
with Internet latency). Extracting the model trained on the Boston
house-prices dataset took 105 queries and 6ms (10.5 s with Internet
latency). Extracting the model trained on the generated dataset
with 100 features took 5 151 queries and 0.589 s (516 s, or about 9
minutes with Internet latency).

The optimal attacks query counts are comparable to setting
α ∈ [9, 50] for the retraining approach. Actually, no concrete value
for α can be determined, because the equation solving attack uses a
quadratic amount of queries. However, using retraining attacks, we
found that the error was unproportionally high when extracting
the natural datasets. Furthermore, at α = 11, the extraction took
over 20 minutes (without Internet latency) when using adaptive
retraining and the generated dataset with RMSE > 0.8. This is due
to the fact that retraining a quadratic kernel SVR is slow.

Extraction of RBF SVRs. For the extraction of Radial Basis Function
(RBF) SVRs, we again use the same three datasets as for Quadratic
SVRs trained with an RBF kernel. As we do not have an equation-
solving or similar attack for RBF kernels, we commence with the
retraining approach. In Fig. 3, the MSE is shown in dependence
of the used α for the randomized retraining approaches. We can
see that for the artificial dataset, the MSE decreases as we increase
α . For the natural datasets however, the MSE fluctuates within a
specific area relatively unaffected by increasing α . In Fig. 3, the MSE
is shown in dependence of the used α for the adaptive retraining
approach. In comparison to the randomized retraining, we can see
that now there is a trend for all datasets, natural and synthetic, to
have a lower MSE with increasing α . Note that we conducted the
experiment for α in steps of 5 for all datasets, and capping at α = 45
for the artificial dataset, because the extraction took up to 20 978 s
(almost 5 hours). For the natural datasets, with lower dimensions,

Session 6: Social Aspects and Other Privacy Issues WPES ’19, November 11, 2019, London, United Kingdom

207

the adaptive retraining took up to 800 s (14 minutes, or 17 minutes
with Internet latency). The randomized retraining was significantly
faster at a maximum of 0.6 s, or 3 minutes with Internet latency.

Extraction of Wi-Fi Localization Models . Here, we show a practical
attack on an implementation of SMPC-protected MLaaS for indoor
localization from Wi-Fi fingerprints using SVRs which is very simi-
lar to [56]. Our implementation guarantees even stronger security
of the ideal functionality than [56] due to the higher number of
access points.

Zhang et al. [56] described an SMPC protocol to protect the pri-
vacy of the user and model provider in an MLaaS setting, where
the server provides a localization service to clients using Wi-Fi
signal strengths. The server uses SVRs to predict the client’s lo-
cation. In their scheme, the server trains an arbitrary number of
SVRs on different subsets of features and returns the prediction of
a randomly chosen SVR. This makes it impossible to extract the
one exact model the service uses because there is no explicit single
model. However, all of their SVRs predict approximately the same
values, so from an outside perspective they can be regarded as one
single implicit SVR with a small rounding error, which does not
effectively prevent extraction attacks (see [48]). Therefore, our ex-
traction efforts are targeted on this implicit model. To simulate an
implicit model for indoor localization using Wi-Fi fingerprints, we
can simply create an explicit model with the same function as there
is no difference to the outside attacker. The scheme that Zhang
et al. proposed, uses as few as 4 access points, however we found
that a similar dataset with such a low number of access points was
unattainable. We use two real-world publicly available datasets for
indoor localization instead: the "UJIIndoorLoc" dataset [47] with
520 access points, and the "IPIN 2016 Tutorial" dataset [39] with
168 access points. We train our SVRs using the RBF kernel and a set
of 100 training samples and use the rest of the data for the attacks
and evaluation. We attack each model using adaptive retraining
with low α values of 1 and 5. Because of the high dimensions, the
extractions using higher values for α would take multiple hours
and the accuracy using the low α values is already very high.

For the "UJIIndoorLoc" dataset, we get an extremely low error
of 4.24 · 10−6 with an α = 1 and an error of 6.36 · 10−7 with an
α = 5. The attacks took up to 1 368 s for computation and 2 605
queries. This attack would run in about 1 629 s (28 minutes) with a
100ms Internet latency. We get a similar result for the "IPIN 2016
Tutorial" dataset, with an error of 1.06 · 10−4 at α = 1 and an error
of 5.16 · 10−7 at α = 5. This attack took 165 s of calculation time and
a total of 845 queries, translating to a total of 250 s, or 5 minutes
of runtime with a 100ms Internet latency. Consistent among our
experiments, we saw that a lower number of features results in a
faster extraction. Considering that this scheme might use much
fewer features than the datasets we conducted our experiments on,
we can deduct that this attack is much faster in a realistic scenario.

Note that an algorithm to protect Sigmoid kernel SVRs was
proposed by Zhang et al. [56]. However, we found it difficult to
achieve consistent results when training models using it. This might
be due to the fact that not every Sigmoid kernel is a valid kernel,
and parameters have to be set precisely. Furthermore, the Sigmoid
kernel behaves more or less similar to the much more common RBF
kernel, which we explored instead.

7.6 Summary
Our evaluation results are summarized in Tab. 3). They show that
firstly, the attacks on SVMs by Lowd and Meek [26], and Tramèr
et al. [48] are very effective and allow an attacker to extract accu-
rate models with a relatively small number of queries. Secondly,
our new equation-solving attacks on SVR proved to be not only
very accurate, but also up to 80 times faster than the retraining
approaches. Indeed, we deduct that for linear and quadratic SVRs,
our equation-solving attacks are the most effective. For RBF-kernel
SVRs, our experiments show that the best results are achieved by
using an adaptive retraining approach, and that the budget factor
α can be set very low, as the extraction does not improve by much
for higher values of α , and the extraction using adaptive retraining
with a low α consistently has a lower error than using randomized
retraining with a higher α .

To translate our results into a real-world scenario, we analyze
the extraction of the model trained on the "UJIIndoorLoc" dataset.
At α = 5, this extraction took a total of 5 · (520 + 1) = 2 605 queries
and 36 minutes of runtime. Using a cost of $0,000 1 per query, as is
the cost at AmazonML, this extraction would have a total cost of
$0.26. The extraction of the "IPIN 2016 Tutorial" model took just 7
minutes of runtime and 854 queries, translating to a total cost of
$0.09. For bandwidth, Zhang et al. [56] show that their protocol uses
(2n + 6)L bits of bandwidth per query, with L = 2 048 and n being
the number of features. For the "IPIN 2016 Tutorial" dataset with
168 features this translates to 80 kB per query. The full extraction
would have a bandwidth cost of 71MB. At these cost factors, we
can safely assume that this extraction would be very feasible to a
financially motivated attacker.

8 COUNTERMEASURES
To help protect from the attacks shown in this paper, we discuss sev-
eral possible countermeasures that MLaaS can employ to increase
the security of their intellectual property, i.e., the ML models.

Rounding. Rounding as a countermeasure was already intro-
duced by Tramèr et al. [48], who proposed rounding confidence
values given by MLaaS providers. They found that in some cases
the attack was weakened, but the attacks stayed viable in general.
Instead of rounding confidence scores, the actual prediction can be
rounded in regression problems. This would decrease the accuracy
of the equation-solving attacks we proposed, but they would still
be usable. Generally, a precise prediction is desirable, which makes
this approach unsuitable in some cases.

Extraction Monitor. Kesarwani et al. [22] propose an extraction
monitor, which observes the queries issued by multiple users of
an MLaaS and gives a warning when the information that a user
or a subset of users might deduct from their queries exceeds a
certain threshold. This threshold is defined by the average number
of queries needed to reconstruct a model with a definable accuracy.
For many attacks, such as adaptive retraining, the number of queries
can be so low that they submerge in normal traffic. Furthermore,
in the case of attacks with more queries, an MLaaS provider has an
incentive to keep clients with more queries, as they bring revenue.
It can, therefore, be a tough decision whether to cut off a client
with more queries, or not, because there might be the possibility of

Session 6: Social Aspects and Other Privacy Issues WPES ’19, November 11, 2019, London, United Kingdom

208

Table 3: Extraction results for SVM and SVR kernels for real and artificial datasets. Accuracy is calculated as
1 − Pwrong (see Eq. 4) for Support Vector Machines (SVMs) and as 1 − RMSE (see Eq. 6) for Support Vector Regression Ma-
chines (SVRs). The attacker runtime is evaluated in our non-optimized simulation environment written in Python.

Type Kernel Method Dataset # Features Accuracy # Queries Runtime
SVM Linear Lowd-Meek [26] Artificial 100 100% 1 700 9min
SVM Linear Retraining Artificial 100 100% 1 800 9min
SVM Linear Retraining Artificial 100 100% 101 30 s
SVM RBF Retraining Artificial 20 99% 420 3min
SVM RBF Adaptive Retraining Artificial 20 99% 420 4min
SVR Linear Equation Solving Artificial 100 100% 101 31 s
SVR Linear Equation Solving Boston Housing [30] 13 100% 14 5 s
SVR Linear Equation Solving California Housing [31] 8 100% 9 3 s
SVR Quadratic Equation Solving Artificial 100 100% 5 151 26min
SVR Quadratic Equation Solving Boston Housing [30] 13 100% 105 32 s
SVR Quadratic Equation Solving California Housing [31] 8 100% 45 14 s
SVR RBF Retraining Artificial 100 99% 4 040 21min
SVR RBF Retraining Boston Housing [30] 13 99% 14 5 s
SVR RBF Retraining California Housing [31] 8 99% 9 3 s
SVR RBF Adaptive Retraining Artificial 100 99% 4 040 7 h
SVR RBF Adaptive Retraining Boston Housing [30] 13 99.9% 14 6 s
SVR RBF Adaptive Retraining California Housing [31] 8 99.9% 9 4 s
SVR RBF Adaptive Retraining UJIIIndoorLoc [47] 520 99.9% 2 605 36min
SVR RBF Adaptive Retraining IPIN 2016 [39] 168 99.9% 845 7min

a model extraction going on. Also, they might be an honest client
using the service extensively.

Monitoring for Suspicious Queries. An MLaaS could monitor in-
coming queries for suspicious qualities that may occur specifically
in extraction attacks. Such suspicious queries could be zero vec-
tors and unit vectors as they are used in equation solving attacks,
vectors that get too close to the decision boundary, as used in the
Lowd-Meek attack [26], and vectors that have unusual values for
specific features, such as −1, when the feature normally takes val-
ues between 1 000 and 10 000. In addition, it is possible to monitor
for queries with very unusual statistical distribution. Yet, retraining
attacks using real datasets issue queries that are indistinguishable
from normal queries, leaving them undetected by such a counter-
measure. Furthermore, deploying such check in privacy-preserving
systems based on SMPC would incur a significant overhead which
contradicts the business model of MLaaS of providing inexpensive
predictions.

Server Side Feature Translation. To prevent an attacker from issu-
ing specific queries, such as vectors arbitrarily close to the decision
boundary, or zero- and unit-vectors, the server might translate
features themselves instead of having the client send translated fea-
tures. Feature translation means, that non-numerical features, such
as strings, get translated into a numerical representation so that
they can be used for calculations. This countermeasure also can not
prevent retraining attacks, as they do not rely on specifically crafted
queries. However, in the case of SMPC when the client does not
trust the server with his data and needs to hide the cleartext values

on each feature, the feature transformation has to be performed by
the client or done within SMPC.

ACKNOWLEDGMENTS
This work was supported by the German Federal Ministry of Educa-
tion and Research (BMBF) and the Hessen State Ministry for Higher
Education, Research and the Arts (HMWK) within the National Re-
search Center for Applied Cybersecurity CRISP, and by the DFG as
part of project E4 within the CRC 1119 CROSSING and project A.1
within the RTG 2050 “Privacy and Trust for Mobile Users”.

REFERENCES
[1] M. Barni, P. Failla, V. Kolesnikov, R. Lazzeretti, A.-R. Sadeghi, and T. Schneider.

2009. Secure Evaluation of Private Linear Branching Programs with Medical
Applications. In ESORICS. Full version: https://ia.cr/2009/195.

[2] M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D. Tygar. 2006. Can Machine
Learning be Secure. In CCS.

[3] B. Biggio, B. Nelson, and P. Laskov. 2012. Poisoning Attacks against Support
Vector Machines. Machine Learning (2012).

[4] G. Camps-Valls, J. D. Martín-Guerrero, J. L. Rojo-Alvarez, and E. Soria-Olivas.
2004. Fuzzy Sigmoid Kernel for Support Vector Classifiers. Neurocomputing
(2004).

[5] Y.-W. Chang, C.-J. Hsieh, K.-W. Chang, M. Ringgaard, and C.-J. Lin. 2010. Training
and Testing Low-Degree Polynomial Data Mappings via Linear SVM. Machine
Learning Research (2010).

[6] D. Cohn, L. Atlas, and R. Ladner. 1994. Improving Generalization with Active
Learning. Machine Learning (1994).

[7] C. Cortes and V. Vapnik. 1995. Support-Vector Networks. Machine Learning
(1995).

[8] D. Demmler, T. Schneider, and M. Zohner. 2015. ABY-A Framework for Efficient
Mixed-Protocol Secure Two-Party Computation. In NDSS.

[9] A. Dmitrenko. 2018. DNN Model Extraction Attacks using Prediction Interfaces.
(2018).

[10] F. Douak, F. Melgani, E. Pasolli, and N. Benoudjit. 2012. SVR Active Learning
for Product Quality Control. In Information Science, Signal Processing and their
Applications (ISSPA).

Session 6: Social Aspects and Other Privacy Issues WPES ’19, November 11, 2019, London, United Kingdom

209

https://ia.cr/2009/195

[11] H. Drucker, C. J. C. Burges, L. Kaufman, A. J. Smola, and V. Vapnik. 1997. Sup-
port Vector Regression Machines. In Advances in Neural Information Processing
Systems.

[12] M. Fredrikson, S. Jha, and T. Ristenpart. 2015. Model Inversion Attacks that
Exploit Confidence Information and Basic Countermeasures. In CCS.

[13] J. Friedman, T. Hastie, R. Tibshirani, et al. 2000. Additive Logistic Regression: A
Statistical View of Boosting. The Annals of Statistics (2000).

[14] O. Goldreich, S. Micali, and A. Wigderson. 1987. How to Play any Mental Game.
In STOC.

[15] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio. 2016. Deep Learning. MIT
press Cambridge.

[16] P. Hallgren, C. Orlandi, and A. Sabelfeld. 2017. PrivatePool: Privacy-Preserving
Ridesharing. In Computer Security Foundations.

[17] J. Hayes, L. Melis, G. Danezis, and E. De Cristofaro. 2019. LOGAN: Membership
Inference Attacks against Generative Models. PETs (2019).

[18] W. Henecka, A.-R. Sadeghi, T. Schneider, and I. Wehrenberg. 2010. TASTY: Tool
for Automating Secure Two-Party Computations. In CCS.

[19] D. W. Hosmer Jr, S. Lemeshow, and R. X. Sturdivant. 2013. Applied Logistic
Regression. John Wiley & Sons.

[20] K. Järvinen, Á. Kiss, T. Schneider, O. Tkachenko, and Z. Yang. 2018. Faster
Privacy-Preserving Location Proximity Schemes. In CANS.

[21] K. Järvinen, H. Leppäkoski, E. S. Lohan, P. Richter, T. Schneider, O. Tkachenko,
and Z. Yang. 2019. PILOT: Practical Privacy-Preserving Indoor Localization using
OuTsourcing. In EuroS&P.

[22] M. Kesarwani, B. Mukhoty, V. Arya, and S. Mehta. 2018. Model Extraction
Warning in MLaaS Paradigm. Computer Security Applications (2018).

[23] B. Kulynych, J. Hayes, N. Samarin, and C. Troncoso. 2018. Evading Classifiers in
Discrete Domains with Provable Optimality Guarantees. In NeurIPS Workshop on
Security in Machine Learning.

[24] S. Laur, H. Lipmaa, and T. Mielikäinen. 2006. Cryptographically Private Support
Vector Machines. In Knowledge Discovery and Data Mining.

[25] J. Liu and E. Zio. 2016. An Adaptive Online Learning Approach for Support
Vector Regression: Online-SVR-FID. Mechanical Systems and Signal Processing
(2016).

[26] D. Lowd and C. Meek. 2005. Adversarial Learning. In Knowledge Discovery in
Data Mining.

[27] L. M. Manevitz andM. Yousef. 2001. One-Class SVMs for Document Classification.
Machine Learning Research (2001).

[28] S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K.-R. Mullers. 1999. Fisher
Discriminant Analysis with Kernels. In Neural Networks for Signal Processing.

[29] J. H Min and Y.-C. Lee. 2005. Bankruptcy Prediction using Support Vector
Machine with Optimal Choice of Kernel Function Parameters. Expert Systems
with Applications (2005).

[30] K. Pace. 1999. Boston House Prices Dataset. http://lib.stat.cmu.edu/datasets/bost
on_corrected.txt

[31] K. Pace. 1999. Califonria Housing Dataset. http://lib.stat.cmu.edu/datasets/hous
es.zip

[32] P. Paillier. 1999. Public-Key Cryptosystems Based on Composite Degree Residu-
osity Classes. In EUROCRYPT.

[33] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami. 2017.
Practical Black-Box Attacks Against Machine Learning. In ASIACCS.

[34] K. Polat and S. Güneş. 2007. Breast Cancer Diagnosis using Least Square Support
Vector Machine. Digital Signal Processing (2007).

[35] J. R. Quinlan. 1986. Induction of Decision Trees. Machine learning (1986).
[36] Y. Rahulamathavan, R. C.-W. Phan, S. Veluru, K. Cumanan, and M. Rajarajan.

2014. Privacy-Preserving Multi-Class Support Vector Machine for Outsourcing
the Data Classification in Cloud. Dependable and Secure Computing (2014).

[37] B. I. P. Rubinstein, B. Nelson, L. Huang, A. D. Joseph, S. Lau, S. Rao, N. Taft, and
J. D. Tygar. 2009. Antidote: Understanding and Defending against Poisoning of
Anomaly Detectors. In Internet Measurement.

[38] D. W. Ruck, S. K. Rogers, M. Kabrisky, M. E. Oxley, and B. W. Suter. 1990. The
Multilayer Perceptron as an Approximation to a Bayes Optimal Discriminant
Function. Neural Networks (1990).

[39] A. R. J. Ruiz, G. M. Mendoza-Silva, R. Montoliu, F. Seco, and J. Torres-Sospedra.
2016. IPIN 2016 Tutorial Dataset. http://indoorloc.uji.es/ipin2016track3/

[40] A.-R. Sadeghi and T. Schneider. 2008. Generalized Universal Circuits for Se-
cure Evaluation of Private Functions with Application to Data Classification. In
Information Security and Cryptology.

[41] A. Salem, Y. Zhang, M. Humbert, P. Berrang, M. Fritz, and M. Backes. 2019. Ml-
leaks: Model and Data Independent Membership Inference Attacks and Defenses
on Machine Learning Models. In NDSS.

[42] J. Schmidhuber. 2015. Deep Learning in Neural Networks: An Overview. Neural
Networks (2015).

[43] Y. Shi, Y. Sagduyu, and A. Grushin. 2017. How to Steal a Machine Learning
Classifier with Deep Learning. In Technologies for Homeland Security.

[44] R. Shokri, M. Stronati, C. Song, and V. Shmatikov. 2017. Membership Inference
Attacks against Machine Learning Models. In S&P.

[45] A. J. Smola and B. Schölkopf. 2004. A Tutorial on Support Vector Regression.
Statistics and Computing (2004).

[46] J. A. K. Suykens and J. Vandewalle. 1999. Least Squares Support Vector Machine
Classifiers. Neural Processing Letters (1999).

[47] J. Torres-Sospedra, R. Montoliu, A. Martínez-Usó, T. J. Arnau, J. P. Avariento,
M. Benedito-Bordonau, and J. Huerta. 2014. Multi-Building Multi-Floor Indoor
Localization Database. https://archive.ics.uci.edu/ml/datasets/ujiindoorloc

[48] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. 2016. Stealing
Machine Learning Models via Prediction APIs. In USENIX Security.

[49] L. G. Valiant. 1984. A Theory of the Learnable. Communications of the ACM
(1984).

[50] V. Vapnik, E. Levin, and Y. L. Cun. 1994. Measuring the VC-dimension of a
Learning Machine. Neural Computation (1994).

[51] B. Wang and N. Z. Gong. 2018. Stealing Hyperparameters in Machine Learning.
arXiv preprint arXiv:1802.05351 (2018).

[52] Q. Wu and D.-X. Zhou. 2005. SVM Soft Margin Classifiers: Linear Programming
versus Quadratic Programming. Neural Computation (2005).

[53] Z. Yang and K. Järvinen. 2018. The Death and Rebirth of Privacy-Preserving WiFi
Fingerprint Localization with Paillier Encryption. In INFOCOM.

[54] A. C.-C. Yao. 1986. How to Generate and Exchange Secrets. In FOCS.
[55] H. Yu, X. Jiang, and J. Vaidya. 2006. Privacy-Preserving SVM using Nonlinear

Kernels on Horizontally Partitioned Data. In Applied Computing.
[56] T. Zhang, S. S. M. Chow, Z. Zhou, and M. Li. 2016. Privacy-Preserving Wi-Fi

Fingerprinting Indoor Localization. In International Workshop on Security.
[57] F. Ö. Çatak. 2015. Secure Multi-Party Computation Based Privacy Preserving

Extreme Learning Machine Algorithm over Vertically Distributed Data. In Neural
Information Processing.

Session 6: Social Aspects and Other Privacy Issues WPES ’19, November 11, 2019, London, United Kingdom

210

http://lib.stat.cmu.edu/datasets/boston_corrected.txt
http://lib.stat.cmu.edu/datasets/boston_corrected.txt
http://lib.stat.cmu.edu/datasets/houses.zip
http://lib.stat.cmu.edu/datasets/houses.zip
http://indoorloc.uji.es/ipin2016track3/
https://archive.ics.uci.edu/ml/datasets/ujiindoorloc

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Our Contributions

	2 Preliminaries
	2.1 Support Vector Machines
	2.2 Support Vector Regression Machines
	2.3 General Attacks on Machine Learning Algorithms
	2.4 White-Box and Black-Box Attacks
	2.5 Secure Multi-Party Computation

	3 Related Work
	4 The Lowd-Meek Attack
	4.1 The Lowd-Meek Attack for Nonlinear Kernels
	4.2 Retraining Attack for SVMs
	4.3 Neural Network Retraining Attacks

	5 Our New Algorithms for Model Extraction of SVRs
	5.1 Exact SVR Model Extraction using Linear Kernels
	5.2 Exact SVR Model Extraction using Quadratic Kernels
	5.3 SVR Model Extraction with Retraining for Arbitrary Kernels
	5.4 SVR Model Extraction with Adaptive Relearning for Arbitrary Kernels
	5.5 Kernel Agnostic Extraction

	6 Our Framework for Model Extraction Attacks
	7 Evaluation
	7.1 Model Approximation Accuracy
	7.2 Cost Factors
	7.3 Datasets
	7.4 Attacker Model
	7.5 Benchmarking Results of our Attacks
	7.6 Summary

	8 Countermeasures
	Acknowledgments
	References

