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ABSTRACT
Biometric authentication is getting increasingly popular due to the
convenience of using unique individual traits, such as �ngerprints,
palm veins, irises. Especially �ngerprints are widely used nowadays
due to the availability and low cost of �ngerprint scanners. To
avoid identity theft or impersonation, �ngerprint data is typically
stored locally, e.g., in a trusted hardware module, in a single device
that is used for user enrollment and authentication. Local storage,
however, limits the ability to implement distributed applications,
in which users can enroll their �ngerprint once and use it to access
multiple physical locations and mobile applications afterwards.

In this paper, we present a distributed authentication system
that stores �ngerprint data in a server or cloud infrastructure in
a privacy-preserving way. Multiple devices can be connected and
perform user enrollment or veri�cation. To secure the privacy and
integrity of sensitive data, we employ a cryptographic construct
called fuzzy vault. We highlight challenges in implementing fuzzy
vault-based authentication, for which we propose and compare al-
ternative solutions. We conduct a security analysis of our biometric
cryptosystem, and as a proof of concept, we build an authentica-
tion system for access control using resource-constrained devices
(Raspberry Pis) connected to �ngerprint scanners and the Microsoft
Azure cloud environment. Furthermore, we evaluate the �ngerprint
matching algorithm against the well-known FVC2006 database and
show that it can achieve comparable accuracy to widely-used match-
ing techniques that are not designed for privacy, while remaining
e�cient with an authentication time of few seconds.
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•Security and privacy→ Biometrics; Access control; Distributed
systems security; Usability in security and privacy;
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1 INTRODUCTION
Motivation. Digital identities are essential to user applications in
our interconnected world. Digital identity theft or impersonation
attacks can compromise the a�ected individuals’ privacy and lead
to severe consequences, such as �nancial loss or legal violations.
This risk creates the need for reliable authentication techniques.
Biometric authentication o�ers the bene�t of high reliability, since,
unlike smart cards or text passwords, biometrics cannot be lost or
forgotten, and biometric forgery or theft is very di�cult.

∗Joint work with ABB Corporate Research.

As a result, �ngerprint authentication is frequently used e.g.,
in smart phones, which store and manage �ngerprint data locally
in trusted execution environments (TEE), such as Trusty TEE [23]
and Secure Enclave [2] for Android and Apple devices, respectively.
The practice of secure local storage protects sensitive data from
leaking to external attackers, however it also prevents the devel-
opment of (e�cient) distributed biometric authentication. A use
case of distributed authentication which we study in this work is a
�ngerprint-based access control system for multiple buildings of an
international company that are equipped with �ngerprint scanners
at their entrances. The scanners allow employees to authenticate
themselves for access to the respective buildings. A distributed
authentication system eliminates the need to enroll �ngerprints
at each site separately, by using a one-time sign up instead and
enabling access to multiple locations afterwards. For this, the em-
ployees only need to swipe their �ngers without worrying about
forgetting passwords, losing a smart card or relying on extra equip-
ment like a smart phone.

Despite its usability and convenience, distributed authentica-
tion is still not widely accepted due to the high risk of biometrics
being stolen when stored online in untrusted environments [22].
In case of �ngerprint data leak, not only can an identity be mis-
used across several locations/applications, but the same �nger can
never be reused for authentication. Revocation of �ngerprint data
is very challenging as each individual typically possesses 10 dif-
ferent �ngerprints. Our work aims at developing a distributed
�ngerprint-based authentication system that protects the users’
sensitive data.

To protect biometric data, most existing works integrate bio-
metric recognition with cryptographic techniques, following one
of two approaches: cancelable biometrics or biometric cryptosys-
tems [27]. Cancelable biometrics include techniques that convert
the biometric into a transformed domain, where the comparison for
user veri�cation also takes place. The inversion of the transformed
biometrics must be infeasible, i.e., an attacker cannot retrieve the
original biometric from the transformed domain. In contrast, a bio-
metric cryptosystem binds a digital key to a biometric or generates
a digital key directly from given biometrics, yielding key-binding
or key-generation schemes, respectively.

An established key-binding biometric cryptosystem is fuzzy
vault [13]. Fuzzy vault is a secure data structure which binds a
secret key with a biometric (in our case, �ngerprint). The key can
only be extracted by a �ngerprint capture su�ciently similar to
the one bound to it so that only the owner can unlock the fuzzy
vault and retrieve the �ngerprint data. Fuzzy vault provides strong
security guarantees by protecting the bound �ngerprint with a lot
of random noise. Extraction of the �ngerprint is immensely di�cult
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without already having a capture of the same �nger, which reduces
the risk of identity theft signi�cantly compared to cancelable bio-
metrics approaches [13]. Furthermore, prototype implementations
of fuzzy vault show promising results in terms of accuracy in �n-
gerprint recognition [20]. Due to its strong security and accuracy,
we base our authentication system on fuzzy vault and present its
�rst deployment in a real-world distributed setting.

Contributions. This paper addresses the problem of developing a
secure and usable distributed biometric authentication system. The
quality of a biometric system is typically evaluated w.r.t. its false
match rate (FMR) and false non-match rate (FNMR), also referred
to as matching accuracy [17]. For security, we aim to minimize the
FMR of the solution. For usability, we aim to minimize the FNMR as
well as the time needed for a successful authentication. Our main
contributions towards these goals are listed below:
• We propose a distributed biometric cryptosystem in which user

�ngerprint data is stored in the cloud and several connected
devices can enroll and authenticate users without maintaining
local �ngerprint copies. Our solution is based on a well-known
technique with proven security properties, i.e., fuzzy vault [13].

• We highlight implementation challenges of certain primitives,
propose alternative solutions and analyze their trade-o�s w.r.t.
security and usability. Based on our analysis, we recommend
using (i) polynomial operations in a Galois �eld to allow ex-
act interpolation during the fuzzy vault decoding phase, (ii)
geometric hashing for the alignment of �ngerprint templates
which improves security and accuracy compared to other align-
ment methods without relying on public helper data, (iii) a
custom con�guration of fuzzy vault matching thresholds de-
pending on the requirements of each individual use case.

• We analyze the security of the distributed biometric cryptosys-
tem and estimate breach probabilities.

• We develop a proof-of-concept implementation with commer-
cial �ngerprint scanners connected with embedded devices
(Raspberry Pis) and a Microsoft Azure cloud.
• We evaluate our system extensively against the well-known

FVC2006 �ngerprint database and demonstrate its applicabil-
ity to real-world scenarios. The system provides comparable
accuracy to widely-used methods for �ngerprint recognition
that were not designed for privacy, with acceptable authentica-
tion times of less than 3 seconds on regular computers. It also
improves upon existing biometric cryptosystems in terms of
security and/or accuracy.

Note that this paper is an extended version of [11].
Outline. In the remainder of the paper, Section 2 presents related
work. Section 3 presents our system and threat model assumptions.
Section 4 contains an overview of the fuzzy vault structure, imple-
mentation challenges that we encountered and the chosen solutions
with their respective trade-o�s. Section 5 details the implementa-
tion of a distributed �ngerprint-based authentication application
for access control in a multinational company. Section 6 presents
the security analysis and Section 7 the empirical evaluation of our
cryptosystem. Section 8 concludes the paper.

2 RELATEDWORK
Fingerprint recognition. Due to the increasing use of biometric
authentication, �ngerprint recognition is a well-studied research
topic. Fingerprint recognition algorithms extract a mathematical
representation from a �ngerprint image, called template, and use
it to verify a match between two �ngerprints. Matching requires
the comparison of several features of the print pattern, such as
the valleys and ridges of the �nger skin. Most recognition algo-
rithms focus on features from minutiae, which are points de�ned
as ridge endings (where a valley splits) or ridge bifurcations (where
a ridge splits), while other techniques include correlation-based or
ridge feature-based matching [17]. Commonly used minutiae-based
matching techniques include the NIST Biometric Image Software
(NBIS) [14], Veri�nger [21] and Minutia Cylinder-Code (MCC) [6].
These algorithms only match �ngerprint templates without guar-
anteeing the security of the templates.

Fingerprint template protection. In literature, the two funda-
mental approaches in template protection are cancelable biometrics
and biometric cryptosystems [17, 27]. In cancelable biometrics,
feature transformation techniques, including non-invertible trans-
forms and salting, transform an unprotected enrollment template
into a protected one with a respective transformation function.
During veri�cation the probe or veri�cation template is also trans-
formed in the same way and comparison is performed in the trans-
formed space. Ferrara et al. [10] implemented the Protected Minutia
Cylinder-Code (P-MCC) based on MCC [6] using non-invertible
transforms. In contrast, biometric cryptosystems either generate
a cryptographic key from a �ngerprint (key-generation) or secure
a key using a �ngerprint (key-binding). A prominent example
of key-generation techniques is the fuzzy extractor [9], where a
cryptographic key is generated from noisy �ngerprint data. As for
key-binding biometric cryptosystems, fuzzy vault [13] is among
the most known techniques. We detail its implementation in Sec-
tion 4.1.

We chose to build our biometric cryptosystem upon fuzzy vault
because of its proven security guarantees [13] and the high match-
ing accuracy compared to other template protection approaches
[20]. Additionally, since our biometric cryptosystem targets dis-
tributed applications, the fuzzy vault is advantageous as the �nger-
print image or template can be directly deleted after locally creating
a fuzzy vault, thus reducing the attacker surface (the raw template
is not stored in any local device). Despite the extensive literature
on fuzzy vaults, to the best of our knowledge, this cryptosystem
has not been employed in industrial applications or evaluated in
real-world settings. Existing �ngerprint-based applications that
have been based on fuzzy vault, like the ones by Uludag et al. [32],
Nandakumar et al. [20] or Theodorakis [30], are implemented in
MATLAB and evaluated with public �ngerprint databases. Li et
al. [16] have implemented an alignment-free fuzzy vault approach
in C++. Our implementation is the �rst to use fuzzy vault in a dis-
tributed setting and also to evaluate it in a real-world setting with
actual �ngerprint devices. The major di�erences w.r.t. previous
implementations lies in our approach for �ngerprint alignment, as
detailed in Section 4.2.
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Fingerprint alignment. Alignment of �ngerprint templates prior
to matching is a great challenge for most �ngerprint identi�cation
systems, incl. fuzzy vault based systems. Je�ers et al. [12] tested
three known alignment approaches with �ve nearest neighbor,
Voronoi neighbors and triangle based structures for fuzzy vault.
Uludag et al. [31] used an orientation-�eld based approach that
relies on public helper data. Li et al. [15] introduced pair-polar
structures that facilitate alignment but need changing functions
to prevent information leakage. Chung et al. [7] applied geomet-
ric hashing in the fuzzy vault setting, which is computationally
more expensive than other methods but uses global features of the
�ngerprint template and does not need public helper data. In our
biometric cryptosystem we use the geometric hashing approach of
Chung et al. [7] due to its favorable performance compared to other
alignment methods. Moreover, this approach does not require any
helper data which strengthens the system security.

3 SYSTEM AND THREAT MODEL
3.1 System Model
Figure 1 depicts our distributed �ngerprint authentication sys-
tem model. This features an arbitrary number of local computers
equipped with �ngerprint sensors (FPS). The computers are con-
nected to the Internet over one or multiple remote servers in the
cloud. The system supports the following operations:

(1) Capture �ngerprint raw image
(2) Create template and secure data structure from raw image
(3) Store secure data structure of �ngerprint
(4) Perform �ngerprint matching for a probe �ngerprint

The three �rst operations are required for the enrollment of a
�ngerprint to the system, which happens once. After an image
of the �ngerpint is captured by a FPS (1), the raw image is pro-
cessed, e.g., binarized, at the connected computer to enable feature
extraction (2). A template is a mathematical representation of the
�ngerprint features (in our system, minutiae) and thus, contains
sensitive data. To protect the template, we convert it to a secure
data structure (in our system, fuzzy vault) and store it in a database
(3). The forth operation uses the stored data structure for user veri-
�cation. This entails extracting the template from a newly captured
(probe) �ngerprint and comparing it to the enrolled template of
the claimed user. The matching algorithm calculates a similarity
score and decides whether it is a match or non-match based on a
similarity threshold. This operation can be executed multiple times.

Our system allows enrolling and verifying a �ngerprint at any
local computer. For instance, a user can enroll a �ngerprint at the
computer labeled 2) in Figure 1 and then authenticate at another lo-
cation, e.g., the local computers labeled 4). The �ngerprint database
(in our system, collection of fuzzy vaults) is stored in the cloud.

3.2 Threat Model
In our system, the attacker either has the intention of extracting
valuable assets or wants to gain unauthorized access by fooling
the biometric system. We consider that the attacker is successful
if she can determine the genuine minutiae in a fuzzy vault or if
she can successfully authenticate against a fuzzy vault without the
appropriate biometrics. In the �rst case, the attacker can perform

FPS (Finger Print Sensor)

Processor

Local 
Computer

Cloud / Server

1)

2)

3)

4)

4)

Figure 1: System and threat model. The components in
green (red) are assumed to be trusted (non-trusted).

identity theft with the extracted biometrics. In the second case, the
attacker can gain unauthorized access and perform identity theft
with the speci�c fuzzy vault as well.

Figure 1 depicts the trusted parts of the system in green and the
non-trusted ones in red, respectively. Note that we do not consider
attacks to the physical part of the biometric system. For instance,
spoo�ng the �ngerprint sensor with a mold is out of the scope
of this work. We also do not investigate side channel attacks on
the physical device. We assume that the FPS is directly connected
to a trusted processor and our application is running in a secure
execution environment. Finally, the injection of fake pro�les to the
system to achieve a successful authentication is out of scope, as
our work focuses on the protection and privacy of genuine users’
biometrics.

Neither the components outside the processor on the local com-
puter are trusted, nor the connections to the server and the server
itself. The attacker can eavesdrop, alter messages or feed in mes-
sages to perform attacks on the channels. We assume that the server
is honest but curious, i.e., when asked for a speci�c �ngerprint data
structure, the server will send the correct data. Denial of service
attacks are not considered. In case of such attacks, the worst-case
scenario is that an authorized user will not be authenticated, but
biometric data privacy will not be compromised.

We assume that the attacker cannot tamper with the internals
of our algorithm, which is only running in the secure execution
environment of the local computer. However, the attacker can have
knowledge over the used parameters in the algorithm except of the
chosen secret. Moreover, we presume that the attacker can present
�ngerprint templates of his/her own to our algorithm without
having to spoof the FPS directly. This allows a brute-force attack
with �ngerprint templates to attempt unlocking a fuzzy vault. We
consider this scenario more realistic than forcing the attacker to
only use the FPS to interact with the whole system.

4 BIOMETRIC CRYPTOSYSTEM
To implement our distributed biometric cryptosystem, we start
by developing a �ngerprint authentication algorithm which uses
a secure construct, i.e., fuzzy vault, for protecting sensitive data.
Section 4.1 presents an overview of fuzzy vault [13]. Section 4.2
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Figure 2: Fuzzy vault: Encoding phase.

details our concrete implementation of the �ngerprint authentica-
tion algorithm and Section 4.3 proposes alternative solutions to
implement certain crypto-primitives with their trade-o�s.

4.1 Fuzzy Vault Concept
The principle of fuzzy vault was �rst introduced by Juels et al. [13]
and is a cryptographic construction which “locks” a secret key
K using a set of elements A. The secret key K can then only be
“unlocked” by a set of elements B which is su�ciently similar to set
A. Since the unlocking criterion is the set similarity, the order of
elements is irrelevant. To obscure the genuine points (from set A)
from a possible attacker, a number of cha� points are added to the
fuzzy vault. Those cha� points are randomly generated and cannot
be distinguished from genuine points by an attacker. When trying
to retrieve the secret, the goal is to determine as many points in set
A as possible with the help of set B (given their similarity).

This approach is suitable for a biometric application like �nger-
print authentication, as the various captures of a �ngerprint always
di�er because of distortions or misalignment. In this case, sets A
and B can be constructed from two �ngerprint captures using the
probe and gallery minutiae, respectively. The probe �ngerprint is
used to generate a fuzzy vault (at every authentication request) and
the gallery �ngerprint (stored at enrollment) is used to verify and
unlock the fuzzy vault and authenticate the user. The goal is to use
the probe minutiae to detect as many genuine gallery minutiae in
the vault as possible.

In the encoding phase, using set A, the secret key K is embedded
in a polynomial p, typically as its coe�cients. An example is given
in Figure 2 with a simple secret K . The elements in set A are then
treated as distinct coordinate values and mapped onto p as can be
seen in red. The cha� points are chosen such that their mappings
do not lie on the polynomial p.

In the decoding phase, using set B, several points are found that
lie on polynomial p (from set A). These are depicted in green in
Figure 3. The secret K can be derived with polynomial interpola-
tion if n + 1 elements in A are found, where n is the polynomial
degree of p. If the correct secret is retrieved, the user is successfully
authenticated since the probe �ngerprint unlocks the fuzzy vault.

The fuzzy vault concept has been adopted for minutiae-based
�ngerprint authentication [20, 32]. The original work [13] sug-
gested error-correction codes for bridging the di�erences between

Secret K [8765]
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Figure 3: Fuzzy vault: Decoding phase.

sets A and B. Uludag et al. [32] identi�ed the di�culty in applying
error correction to biometrics because of large variations that ex-
ceed the error-correction abilities of such codes. They proposed
an algorithm based on cyclic redundancy check and Lagrange in-
terpolation that decodes many candidate secrets, resulting in more
interpolation attempts. Nandakumar et al. [20] further improved
the algorithm by considering non-linear distortion in �ngerprints
and also, orientation in addition to the location of the minutiae.
The algorithm of [32] has been widely used in literature. We build
and improve upon it, especially w.r.t. �ngerprint alignment and
security, as described in the following section.

4.2 Fingerprint Authentication
To use the fuzzy vault concept for �ngerprint authentication, vault
encoding and decoding need to be implemented. In the vault en-
coding phase, the vault is constructed with the minutiae from a
�ngerprint gallery template of a given user and a secret key. The
fuzzy vault can be used afterwards to authenticate the given user.
Vault decoding uses the previously generated fuzzy vault and the
minutiae from a probe template of the user to attempt retrieval of
the secret key. After key retrieval, an integrity check like a cyclic
redundancy check (CRC) is conducted to determine if the correct
secret key has been found. In this case, the secret key does not need
to be stored anywhere to check if there is a match.

Our implementation of vault encoding and decoding follows
similar principles as previous works [20, 32] and is illustrated in
Figure 4 and 5, respectively. Compared to [20, 32], we propose
di�erent solutions for certain steps to enhance security or accuracy
of our algorithm. In the following, we describe concretely each step
and motivate our alternative solutions.

4.2.1 Vault Encoding. The process of vault encoding (steps of
Figure 4) is implemented in our cryptosystem as follows.

1) Fingerprint Gallery Image. The �ngerprint image of the user
is given as input to the enrollment algorithm.

2)Minutiae Extraction. The minutiae are extracted from the given
�ngerprint image. These are points that are de�ned as ridge end-
ings or ridge bifurcations and they have three attributes: an x- and
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8) Polynomial 
Encoding

9) Polynomial 
Projection

10)Vault 
Scrambling

6) Secret K Fuzzy Vault

Figure 4: Overview of vault encoding process.

y-coordinate and an angle θ which represents the degree of orienta-
tion of a ridge ending or the angle in the middle of a bifurcation. We
call the extracted minutiae from a real �ngerprint image genuine
minutiae to distinguish them from cha� points or cha� minutiae.

3) Minutiae Selection. As the amount of points in the fuzzy vault
is assumed to be constant, not all extracted minutiae are used for
generating the fuzzy vault but typically only the ones that have
good quality in terms of contrast, �ow curves and curvature [14]. In
our implementation, we rank all extracted minutiae by these quality
measures and select the best depending on the chosen parameter
for #selected minutiae. Furthermore, we specify a parameter points
distance, which is the minimum euclidean distance between two
minutiae according to the x and y coordinates so that they can
be selected for the vault. This reduces the probability of multiple
matchings with a single probe minutia.

4) Cha� Points Generation. In order to obscure the genuine minu-
tiae from a possible attacker, random cha� minutiae or cha� points
are generated. In our implementation, we create 10 times as many
cha� points as there are genuine minutiae, which yields a rea-
sonable balance between complexity of a brute force attack and
performance [20]. To create a cha� point, we randomly select x
and y coordinates within the �ngerprint image dimensions and
θ ∈ [0, 360]. We apply the same constraint of a minimum points
distance threshold as in Minutiae Selection and only accept cha�
points whose representation is at least half of the smallest genuine
minutia selected in the previous step Minutiae Selection to avoid
creating points that an attacker can easily identify as non-genuine.

5) Minutiae Encoding. For vault encoding we use genuine minu-
tiae extracted from a real �ngerprint template and the randomly
generated cha� points. In order to create tuples and polynomial
mappings for the fuzzy vault, both minutiae types need to be en-
coded in the same way. In our implementation, we encode the
three attributes of each minutia as a bit string of size 32 (11 bits
for each x ,y coordinate, 10 bits for θ ). We choose this con�gura-
tion to accommodate typical �ngerprint image sizes and allow easy
conversion to an unsigned integer for the minutia representation.
The unsigned integers for all genuine minutiae and cha� points are
later used for the Polynomial Projection and forming the vault.

6) Secret Generation. In our algorithm, the secret K is randomly
generated as an integer and used for CRC coding. The secret size

1) Fingerprint 
Probe Image

2) Minutiae 
Extraction

3) Minutiae 
Selection

4) Minutiae 
Decoding

5) Alignment & 
Matching

6) Lagrange 
Interpolation

7) CRC Error 
Detection

8) Secret K found1) Fuzzy Vault

Match! No Match!

correct incorrect

Figure 5: Overview of vault decoding process.

needs to satisfy two constraints. First, its bit length needs to be
divisible by 8 to allow smooth conversion to bytes. Second, the
length of the secret plus the length of its CRC encoding needs to
be divisible by n + 1, where n is the polynomial degree, so that
the secret can be split equally to polynomial coe�cients. In our
implementation, we determine a suitable secret length sl which
satis�es both constraints and generate a random integer between 0
and 2sl − 1 for the secret.

7) CRC Coding. CRC coding of the chosen secret is needed so that
an integrity check can be conducted during CRC Error Detection in
vault decoding. We choose a 32-bit CRC over a 16-bit CRC that was
used in [20, 32] to achieve lower collision probability and hence
better reliability.

8) Polynomial Encoding. This step is very similar to Minutiae
Encoding. The secret and its CRC coding are both converted to a
bit string and the CRC coding is then appended to the generated
secret. Afterwards, the whole bit string is split into n + 1 parts to
get the speci�c coe�cient representations of the secret polynomial
p. The bit string parts are then interpreted as unsigned integers
to get the speci�c coe�cients which are needed for Polynomial
Projection.

9) Polynomial Projection. The structure of the fuzzy vault is a
set of (X ,Y ) tuples, where (X ,Y ) speci�es a point in a coordinate
system. The �rst element of a vault tuple, X , contains a genuine
minutia or cha� point, which we also call the vault minutia. The
second element, Y , is generated di�erently for the two minutiae
types. Every genuine minutiae representation X is mapped on the
secret polynomial p and the resulting value is saved as the second
element of the tuple, i.e., Y = p(X ). The polynomial mapping is
conducted in a Galois �eld so that exact polynomial interpolation
in vault decoding is possible. The cha� points are then randomly
mapped to a number in the possible result space of the polynomial
projection, so that they do not lie on the polynomial. This mapping
yields the second element of the tuple, Y , where Y , p(X ).

10) Vault Scrambling. The fuzzy vault is �nalized by shu�ing
all vault tuples so that the tuples with genuine minutiae cannot be
distinguished from the ones containing cha� points.

4.2.2 Vault Decoding. The process of vault decoding is illus-
trated in Figure 5 and implemented as follows.

5



1) Fingerprint Probe Image and Fuzzy Vault. The �ngerprint im-
age and the existing fuzzy vault of the (claimed) user is given as
input to the veri�cation algorithm.

2) Minutiae Extraction. The minutiae are extracted from the
probe �ngerprint image in the same way as in vault encoding.

3) Minutiae Selection. The best-quality minutiae are selected in
the same way as in vault encoding.

4) Vault Minutiae Decoding. For matching purposes, the vault
minutiae, which are the �rst elements of the vault tuples, need to be
decoded to actual minutiae from their representation as unsigned
integers. The decoding process is the reverse of step Minutiae
Encoding in vault encoding. The unsigned integers are interpreted
as bit strings with 32 bits length, from which the values of the x , y,
θ attributes can be retrieved.

5) Alignment and Matching. When matching two �ngerprint
captures, variations such as translation and rotation di�erences are
common because having two captures recorded in the exact same
way by the �ngerprint sensor is extremely unlikely. This problem
a�ects the matching of probe minutiae with genuine minutiae in
the vault, and to address it, previous fuzzy vault implementations
rely on pre-aligned �ngerprint images [32] or helper data [20, 31].

In our implementation, we use the approach of geometric hash-
ing [33]. Geometric hashing is a technique that originated from
computer vision to match geometric features against a feature data-
base. Chung et al. [7] applied this method to fuzzy vaults to reduce
intra-class variations, speci�cally the discrepancies between dif-
ferent captures of the same �nger. We choose geometric hashing
as our alignment method because it uses only the points in the
fuzzy vault. Hence no supplementary public helper data is needed
like in other global alignment schemes, e.g., orientation �eld-based
schemes [31], which can leak information about the genuine minu-
tiae. Additionally, compared to local alignment approaches, like
�ve nearest neighbor or Voronoi neighbors [12], geometric hashing
can achieve higher matching accuracy [7].

We implement the basic approach of geometric hashing without
an actual hash table. We create a list of lists, which we call geomet-
ric table. Both the top list and the sublists have the same length,
equal to the number of vault minutiae. Each sublist or element of
the geometric table is associated with one speci�c vault minutia
(�rst element of a vault tuple) as basis and contains all other vault
minutiae transformed according to the selected basis. The basis
minutia is moved to the origin (0, 0) of a coordinate system, which
represents the x and y minutia coordinates on its axes. Then the
basis minutia is rotated, so that its orientation points horizontally
to the right. The same translation and rotation is then applied to
all other vault minutiae. Each vault minutia is chosen as basis once
and we align all other vault minutiae to it in its element in the geo-
metric table. We still keep the original vault tuples, which are now
referenced by the transformed vault minutiae. We repeat the same
procedure for the minutiae extracted from the probe �ngerprint
and also create a geometric table, where we choose each probe
minutia as basis once and transform all others accordingly.

We use these two geometric tables for matching. Our algorithm
iterates through all probe minutiae as a basis once and tries to �nd a
similar basis in the geometric table of the fuzzy vault. The purpose

Minutiae of fingerprint A and B
before transformation

Minutiae of fingerprint A and B
after transformation

Figure 6: Geometric hashing applied on �ngerprint minu-
tiae.

of those transformations is to �nd two minutiae that are selected
as basis and are actually the same minutia on a �nger. In this case,
all other minutiae should be well-aligned and can be matched with
small thresholds. In Figure 6, we illustrate the transformation with
two minutiae that are identical but from two di�erent captures, one
from a gallery template found in a vault and the other from a probe
template. The two chosen basis minutiae are depicted in red and
blue dotted lines, respectively.

After �xing one element of the probe geometric table, we look
for a suitable element in the vault geometric table whose basis
has similar orientation to the one of the probe geometric table.
After �nding two suitable bases within the basis θ threshold, every
corresponding transformed minutia from the probe is matched
against all transformed vault minutiae of the selected basis in the
geometric table of the vault. This implies that the minutiae are only
compared in a transformed space according to their assigned bases.

To match two minutiae, we use three primary thresholds, i.e.,
for x , y, θ . If two minutiae satisfy all thresholds, i.e., all di�erences
in the attributes are lower than the respective thresholds, the two
minutiae are considered to be a match and we place the correspond-
ing vault tuple into a candidate set. This set contains vault tuples
which are used for Polynomial Interpolation in the next step.

After all minutiae from two chosen bases have been evaluated, a
polynomial interpolation is attempted if the amount of vault tuples
in the candidate set is larger than n + 1, where n is the polynomial
degree. Otherwise, another similar basis is chosen to repeat the
minutiae matching. If all probe minutiae have been chosen as basis
once and no match has been registered, a failure for unlocking the
vault can be reported already at this step.

6) Polynomial Interpolation. Polynomial interpolation is initiated
if the size of the candidate set is larger than n + 1 at the end of one
run with two given bases. If fewer candidates are found, the secret
polynomial cannot be interpolated. In case of su�cient vault tuples
in the candidate set, all subsets of size n + 1 need to be evaluated
as not all candidate tuples contain genuine gallery minutiae. For
each subset, Lagrange interpolation is conducted in a Galois �eld
GF (232) using n + 1 vault tuples, which are interpreted as (X ,Y )
data points with X and Y being the �rst and second element of
the vault tuple, respectively. The resulting interpolated polynomial
is passed to the next step. If the CRC error detection reports an
error, the algorithm continues to interpolate other subsets of the
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candidate set and eventually proceeds to match vault minutiae with
other bases if no subset has given a match.

7) CRC Error Detection. The interpolated polynomial represents
the concatenation of the original secret and its CRC coding of the
fuzzy vault. Therefore, we can use CRC as an integrity check and
apply the reverse scheme as in step CRC Coding of vault encoding.
The coe�cients of the polynomial are encoded as a bit string. The
last 32 bits, which represent the CRC coding of the actual secret,
are cut from the bit string. Afterwards, CRC coding is applied to
the secret, i.e., the rest of the bit string. If the resulting CRC coding
is equal to the 32 bits cut from the representation of the polynomial,
then with high probability the correct secret was retrieved and
our algorithm reports the successful unlocking of the vault and
therefore a match.

8) Correct Secret. If no error is detected, the correct secret has
been retrieved and the user is successfully veri�ed.

4.3 Implementation Alternatives & Trade-o�s
4.3.1 Exact Calculations in Galois Field. An exact polynomial

interpolation is essential in the vault decoding phase for the in-
tegrity check to succeed. For this, all polynomial projections of the
genuine minutiae as well as the polynomial interpolation have to
be calculated in a Galois �eld. If the interpolations are conducted
without a Galois �eld, e.g., by least-square �tting, the interpolation
result will not be exact and thus, the integrity check cannot succeed.

In our implementation, we use the Galois �eld GF (232) so that
all possible minutiae representations, which are 32-bit unsigned
integers, can be uniquely represented without quantization. To
convert the 32-bit unsigned integer to GF (232), we �rst transform
the unsigned integer to a bit string representation. As a Galois �eld
can be seen as a set of polynomials, we interpret the bit string into
coe�cients of a polynomial. With 32 bits we get exactly 232 ele-
ments forGF (232). An irreducible polynomial is found iteratively in
our algorithm so that the same irreducible polynomial is calculated
for a particular Galois �eld. Operating inGF (232) prevents the need
for quantization that existed in previous works [20, 32] at the cost
of increased computational complexity.

4.3.2 Alignment with Geometric Hashing. The security bene�t
of using geometric hashing over other alignment solutions has
been justi�ed earlier. Increased security and relative simplicity
of implementation may come at the cost of runtime performance
though, as a lot of bases and minutiae need to be matched. By
introducing parameter θ basis threshold and only considering as
bases those minutiae in the vault that have a similar orientation to
the minutiae received from the probe template, we can considerably
decrease the matching possibilities and therefore the matching
runtime. Using such a threshold is a reasonable assumption as
typically the �ngerprint captures do not di�er by more than 10 to
20 degrees. In our experiments (Section 7), we observe that the
total runtime without θ basis threshold is more than three times
higher compared to using a θ basis threshold of 10 degrees.

4.3.3 Minutiae Matching Thresholds. The speci�cation of minu-
tiae matching thresholds points distance, x, y and θ thresholds has
a signi�cant impact on the accuracy of our algorithm. Optimal

parameters depend greatly on the input �ngerprint database as
well as the particular use case and its requirements for usability
and security. We have analyzed the impact of di�erent parameters
extensively for the FVC2006 DB 2A [5] in Section 7.

A sensitive point in choosing thresholds is the possibility that a
probe minutia could match multiple gallery minutiae in the vault.
This is possible if two gallery minutiae lie near to each other and the
probe minutia is also close, when matched in the transformed space
de�ned by two suitable bases. It would not matter if cha� points
are by chance matched as they would not provide information to
retrieve the secret. In the worst case, an attacker would need fewer
probe minutiae to match multiple correct minutiae.

We could avoid such a scenario by only allowing one probe
minutia to match one vault minutia. However, if the probe and
gallery �ngerprint templates only have few matchable minutiae
and a few of the probe minutiae are matched with cha� points, then
we would have an incorrect match and lower accuracy. Because
the order of matching minutiae is random in our algorithm, we
could even get inconsistent results depending on whether a cha�
point or a genuine minutia matches with a probe minutia. The
addition of parameter points distance can prevent such a scenario if
the thresholds are chosen accordingly. This would mean that all
vault minutiae need to be separated by at least the points distance,
which needs to be larger than the minutiae matching thresholds.

However, in practice this approach also does not work as the
higher points distance is, the more di�cult it gets to �nd cha� points,
as a newly generated cha� point needs to keep the points distance to
all previous vault minutiae. If we decrease the minutiae matching
thresholds instead, the accuracy of our algorithm drops consider-
ably as the matching becomes too conservative and few matches
can be reported. In our implementation, we accept the risk that
an attacker gains a small advantage by possibly matching multiple
correct minutiae with a single probe minutia. Our algorithm adds
all vault tuples to the candidate set whose vault minutia is within
the minutiae matching thresholds of at least one probe minutia of
the user who wants to authenticate.

4.3.4 Generation of Candidate Subsets. In order to extract the
polynomial coe�cients and therefore the secret, subsets of size n+1
need to be found from the whole candidate minutiae set, which is
typically much larger. We implemented three di�erent approaches
to generate candidate subsets in our system, each with its own
bene�ts and drawbacks:
• Iterative Selection: With iterative selection the subsets are

created in order. This means that only one element is swapped
out at a time. If the selected �rst subset contains very few
genuine minutiae, a lot of iterations are needed to eventually
swap out the cha� minutiae tuples. Our experiments show a
much slower average time for subset generation, by almost a
factor of 10, compared to the other two approaches. However,
this method guarantees a deterministic result as all possible
subsets are considered.

• Random Generation: In random generation, all possible subsets
are created and iterated after shu�ing. This typically avoids
the situation described in iterative selection and leads to smaller
average times. This method also guarantees deterministic re-
sults as all possible subsets are traversed. Nevertheless, this
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approach has a big drawback in having to generate all subsets
upfront. If the candidate minutiae set is very large, such as
more than 35 elements, and the chosen polynomial degree is
higher than 12, there could be a memory over�ow on a normal
computer with 8 GB of RAM. Moreover, the generation of the
subsets upfront takes a �xed amount of time, independent on
when a match is found.
• Random Selection: In random selection, the subsets are ran-

domly chosen on the �y. In each iteration, the algorithm ran-
domly chooses a subset out of the candidate set. The number of
iterations is set to be the same as the total number of possible
subset combinations in the candidate set. This typically leads
to small average execution times and does not incur memory
problems. In our experiments, the random selection method is
10 to 25% faster than the random generation technique. How-
ever, this method has the drawback of being non-deterministic,
as not all possible subsets need to be selected.

In our implementation, we recommend random selection for the
generation of candidate subsets. The probability of having ambigu-
ous results is empirically very small and random selection yields
the fastest runtimes.

4.3.5 CRC versus SHA. Most fuzzy vault-based algorithms use
CRC as an integrity check [20, 32]. We consider SHA as a potentially
better alternative as fewer collisions can be expected. For example,
SHA-256 maps to 256 bits while CRC-32 only maps to 32 bits, i.e.,
integrity check with SHA-256 is more reliable.

However, there is a trade-o� with security when using a hash
function with a large digest. In our current algorithm, we operate
in a Galois �eld GF (232) and map each 32-bit unsigned integer
to exactly one element in the �eld. This implies that each of the
coe�cients in the secret polynomial can only be 32 bits, so that
we can convert each of them into one speci�c GF (232) element.
If we, for example, choose SHA-256 as our integrity check, we
would already need 8 coe�cients just to encode the SHA-256 digest.
Therefore, at least a polynomial degree of 8 is needed to have 9
coe�cients available. With a polynomial degree of 8, the secret
would only be 32 bits. Of course, choosing a very small secret
also brings the risk of a potential attacker trying to brute-force the
secret directly. If the attacker �nds the 32-bit secret, the SHA-256
digest can be calculated and thus the secret polynomial. Therefore,
the attacker only needs to check the vault pairs to see which pairs
map onto the polynomial to extract the genuine minutiae.

5 DISTRIBUTED ACCESS CONTROL
Our distributed access control application serves as a proof of con-
cept for the applicability of �ngerprint-based authentication with
fuzzy vault in a real-world setting. We present a prototype setup
using commercial �ngerprint sensors and a cloud environment.

5.1 Setup and Services
We use the following hardware, libraries and services to build our
distributed system:
• Adafruit Fingerprint Sensor [1]: We use the Adafruit optical

sensor to capture �ngerprint images from users. We do not use
the in-built matching algorithms of the sensor.
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Figure 7: Distributed access control application to enroll and
verify �ngerprints.

• Raspberry Pi [26]: Raspberry Pis serve as our local computers
and run our algorithm including vault encoding and decoding
(Section 4.2) locally.
• Py�ngerprint [4]: We use the Py�ngerprint library to connect

Adafruit �ngerprint sensors with Raspberry Pis.
• Azure Cosmos DB [18]: The Azure Cosmos DB serves as our

database and storage in the cloud.
• PyMongo [19]: To access Azure Cosmos DB, we use PyMongo

and the MongoDB API provided by Cosmos DB.
The data �ow between the hardware, libraries and services is illus-
trated through arrows in Figure 7. In our prototype system, we use
two Raspberry Pis; one is used for enrolling and the other for veri-
fying �ngerprints. Both local computers have the same capabilities
and can enroll and verify �ngerprints interchangeably according
to the system model of Section 3.1.

5.2 Application Features
Our application has two features, i.e., enrolling a �ngerprint to
the database on Microsoft Azure and verifying if a �ngerprint
is registered. For example, a possible use case would be access
control for multiple buildings. In this case, the user can enroll
his �ngerprint once at any building to gain access to all related
buildings afterwards. Of course, the enrollment process has to be
restricted to authorized people in a real-world setting.

5.2.1 Enroll Fingerprint. To enroll a �ngerprint, the user is
prompted for an ID number, which is later used to verify the �nger-
print. After issuing an ID number, the user can enroll a �ngerprint
by placing a �nger on the Adafruit �ngerprint sensor. The image
is downloaded to the connected Raspberry Pi and the minutiae
are extracted. If the amount of extracted minutiae is smaller than
the �xed parameter of #selected minutiae, the user is prompted to
rescan the �nger. Typically the threshold is set to be between 25
and 50, while a �nger usually has 50 to 80 minutiae. Hence, a rescan
is normally only needed if the �nger is not scanned correctly.

If a suitable �ngerprint image with enough minutiae is captured,
a fuzzy vault is created according to vault encoding. The previously
de�ned ID number is attached to the fuzzy vault and the whole
structure is serialized to a JSON object using Python dictionaries
and sent to Azure Cosmos DB with PyMongo. The JSON object
contains an internal object ID, the ID number provided by the user
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and an array of (X ,Y ) vault tuples. After the database con�rms the
reception of the vault, the local vault as well as the �ngerprint image
and template are deleted. This concludes a successful �ngerprint
enrollment.

Note: Besides fuzzy vault, the whole geometric table could be
stored in Azure Cosmos DB to avoid computing the geometric
table on the local computer after receiving the vault for decoding.
This approach was infeasible with Azure Cosmos DB due to the
document size limit of 2 MB (the geometric table is in practice larger
than 3 MB), but can be considered if no such constraints apply.

5.2.2 Verify Fingerprint. To verify a �ngerprint, the user is
prompt-ed for an ID number �rst, so that the corresponding fuzzy
vault can be retrieved from the database. The fuzzy vault in JSON
format is fetched from Cosmos DB and deserialized for vault decod-
ing. The user is asked to place his �nger on the Adafruit �ngerprint
sensor, so that a probe �ngerprint with su�cient minutiae accord-
ing to the parameter #selected minutiae can be captured.

After a suitable �ngerprint image is scanned, vault decoding
is run with the fuzzy vault. If the vault is successfully decoded,
meaning that the CRC of the secret matches, a match is reported.
Otherwise, the system reports an authentication failure. The probe
�ngerprint template and the corresponding image are then deleted
from the local computer.

Note: Throughout the paper, we consider user veri�cation rather
than identi�cation (N-to-1 matching) because identi�cation with
large �ngerprint databases poses critical security risks and should
thus be avoided [22]. Instead, we use an ID number and �ngerprint
veri�cation, which only matches one vault with one probe �nger-
print. The ID number serves as a PIN and does not necessarily need
to be unique. As long as there are not too many same entries for a
speci�c ID, �ngerprint identi�cation can be used for the same ID
numbers. In this case, a match would be attempted for all fuzzy
vaults that are assigned to the same ID and only one needs to match.
If ID numbers are restricted to be unique, �ngerprint veri�cation is
guaranteed and better security can be achieved.

6 SECURITY ANALYSIS
Security and privacy guarantees strongly depend on where the
assets, like �ngerprint templates, are used and stored. According to
our threat model (Section 3.2), in our distributed system, �ngerprint
enrollment and veri�cation run on local computers within a secure
execution environment and the cloud server where the vaults are
stored is honest but curious. Computer storage outside the secure
execution environment and cloud storage are not trusted.

By creating the fuzzy vault locally, we do not need to transfer the
sensitive �ngerprint image to the server. The image can be deleted
right after vault creation and so can the probe �ngerprint that is
used for veri�cation. However, as the fuzzy vault is stored and
transferred in unencrypted form, an attacker can potentially steal a
fuzzy vault and attempt to unlock it. In this section, we describe an
o�ine brute-force attack which iterates through all possible vault
pair subsets and attempts to interpolate the secret polynomial. If
a subset is found to correctly interpolate the secret, the attacker
can generate a �ngerprint template with the �rst element of the
vault pairs in the respective subset to unlock the fuzzy vault in the

online algorithm. The attack is analyzed theoretically in Section 6.1
and empirically in Section 6.2.

Note that, alternatively, the attacker can attempt to generate
similar minutiae to match the genuine vault pairs and therefore
�nd su�cient genuine minutiae to interpolate. This method is
harder for an attacker to achieve and for brevity, its analysis is
omitted.

6.1 Theoretical Analysis
For a secret polynomial p(x) with polynomial degree n, a subset of
vault pairs of size n+1 is needed for its interpolation. In this case all
n + 1 vault pair elements need to contain genuine gallery minutiae
assuming that the integrity check with CRC works correctly and
cha� points do not lie on the secret polynomial.

We assume that there are in total v = д + c vault pairs in the
fuzzy vault, where д is the number of genuine gallery minutiae
and c is the number of cha� points de�ned at vault creation. This
gives the attacker vs =

( v
n+1

)
possible vault pair subsets of size

n + 1 overall. Out of those sets, дs =
( д
n+1

)
subsets contain genuine

gallery minutiae entirely, which can be used to interpolate the
secret polynomial correctly. This leaves cs = vs − дs cha� pair
subsets that can contain genuine vault pairs but include at least one
cha� vault pair. If only one element of the candidate subset of size
n + 1 is a cha� vault pair, the interpolation of the secret polynomial
fails due to the cha� vault pair not lying on the secret polynomial.

The attacker has no information about which vault pairs contain
genuine gallery minutiae and therefore he/she can only randomly
choose one subset after another to interpolate. For 1 ≤ i ≤ cs ,
let Ci be a random variable that returns 1 if the ith cha� subset is
selected before selecting any of the genuine subsets, otherwise it
returns 0. The expected number of attempts an attacker needs to
�nd a suitable subset for correct interpolation of the secret can be
calculated as follows:

E(дs , cs ) = 1 +
cs∑
i=1
E(Ci ) = 1 + cs ·

1
дs + 1

=
дs + cs + 1
дs + 1

=
vs + 1
дs + 1

(1)

The �rst term (1) represents the terminating �rst genuine subset
that is selected. 1

дs+1 is the probability that the ith cha� subset is
selected before any of the genuine subsets, where дs + 1 represents
the total number of genuine subsets and the ith cha� subset. We
repeat this calculation for each cha� pair subset.

To calculate the expected time of a possible attacker to unlock
a fuzzy vault by subset interpolation randomly, we multiply the
expected time to choose a genuine subset with the average Lagrange
interpolation time per subset l(n):

E(дs , cs ) · l(n) =
vs + 1
дs + 1

· l(n) (2)

Note that the average interpolation time increases linearly with the
polynomial degree n.

In the following, we summarize the impact of parameters д, c
and n on the expected time an attacker needs to unlock the secret.
To better show the security impact, we represent the expected value



Parameter Con�guration 1 Con�guration 2
д 35 35
c 300 300
v 335 335
n 8 12
l(n) 0.01 s 0.01 s

Table 1: Parameters of empirical security analysis.

E(дs , cs ) with expanded binomial coe�cients:

E(дs , cs ) =
vs + 1
дs + 1

=

( v
n+1

)
+ 1( д

n+1
)
+ 1
=

v !
(n+1) !(v−n−1) ! + 1

д !
(n+1) !(д−n−1) ! + 1

(3)

• By increasing the number of genuine minutiae д, the expected
value E(дs , cs ) decreases as only the denominator grows, hence
security decreases.

• By increasing the number of cha� points c , E(дs , cs ) increases
as well, as v = д + c in the nominator increases. Therefore, the
attacker needs more attempts to unlock the vault on average.

• By changing the polynomial degree n, both binomial coe�-
cients in nominator and denominator change as well. The
relations are shown in Eq. 4 for v , but apply similarly to д.
In our algorithm, v is an order of magnitude larger than n,
which implies that when n is increased,

( v
n+1

)
increases. д is

not as large as v but at least twice as large as n + 1 in our
con�gurations, so the same relation applies.

n increases

( v
n+1

)
decreases, if n + 1 ≥ dv2 e( v

n+1
)

increases, if n + 1 < bv2 c( v
n+1

)
stays the same, otherwise

(4)

Both binomial coe�cients in Eq. 3 therefore increase with
increasing n. However, the term (v −n − 1) ! is shrinking faster
than the term (д − n − 1) ! as v = д + c > д with c > 0. This
implies that the fraction with n in the nominator is growing
faster than the fraction with д in the denominator, i.e., the
expected value increases overall. As E(дs , cs ) increases with
increasingn, the attacker needs more attempts to �nd a suitable
subset to interpolate the correct secret, thus enhancing security.

6.2 Empirical Analysis
We estimate how many attempts and how much time an attacker
needs to unlock a fuzzy vault with the strategy mentioned above
by using typical values for the parameters д, c and n and a realistic
average time l(n) for a single interpolation. l(n) is measured for our
implementation of Section 5 using a normal server instance. We
present two parameter con�gurations in Table 1. Although both
con�gurations look almost identical, the di�erence in bit security
is signi�cant.

For con�guration 1, Eq. 1 yields approximately 1.86·109 expected
attempts for an attacker to correctly interpolate the secret. This
roughly corresponds to a 30-bit security level as 1.86 · 109 ≈ 230.
By increasing the polynomial degree to 12 as shown in Table 1,
we get a completely di�erent result. We keep the average subset
interpolation time unchanged, as in practice the di�erence in time
between polynomial degree 8 and 12 is negligible. For con�guration
2, the expected number of attempts increases to approximately
6 · 1013, which roughly corresponds to a 46-bit security level.

FVC2006 DB 2A Adafruit FPS
# �ngers 140 10
# captures per �nger 12 5
Sensor BiometriKa (optical) Adafruit FPS
Image size 400 x 560 px 256 x 288 px
Image resolution 569 dpi 96 dpi

Table 2: FVC2006 DB 2A and Adafruit FPS speci�cations.

Note that a 46-bit security level is generally not considered secure
nowadays. One possibility to enhance the security level is to use
multiple �ngers to create multiple fuzzy vaults that all need to be
matched in order to authenticate. Another possibility is to increase
the number of cha� points or the polynomial degree, which will
have an impact on the runtime performance and accuracy. The
right balance between security and usability needs to be found
depending on each particular use case.

7 EVALUATION
This section presents an evaluation of our biometric cryptosystem
implementation. Section 7.1 describes the experimental setup. In
Section 7.2 we evaluate the fuzzy vault algorithm using a public
�ngerprint database and compare it to widely-used algorithms for
�ngerprint recognition. In Section 7.3 we analyze the impact of
parameter choices on security and usability, and in Section 7.4 we
present results speci�c to the distributed access control application.

7.1 Experimental Setup
7.1.1 Data Sets and Protocols. We run the authentication algo-

rithm of Section 4.2 against the Fingerprint Veri�cation Competi-
tion 2006 (FVC2006) database 2A [5] with images from optical sen-
sors. These images are similar to images obtained by the Adafruit
optical �ngerprint sensor and have the highest image resolution
across all FVC2006 databases. Database 2A consists of �ngerprint
images from 140 �ngers with 12 captures each, resulting in 1’680
pictures in total. For the experiments of Section 7.4 we do not use a
�ngerprint database, as the system is tested with people enrolling
and verifying their �ngerprints on an Adafruit FPS. The speci�ca-
tions of the FVC2006 database 2A and the Adafruit FPS are listed
in Table 2.

For our experiments with FVC2006, we consider three di�erent
protocols. The all vs all protocol analyzes every possible match
in database 2A. The FVC protocol and 1vs1 protocol are often used
in literature to evaluate FVC databases. For example, Ferrara et
al. [10] evaluated their P-MCC approach using both protocols
against FVC2006 2A. Since the results of all protocols show very
similar trends, we present only the results for the FVC protocol for
brevity.

In the FVC protocol, to evaluate the FNMR, each �ngerprint
capture is compared against the remaining captures of the same
�nger. The FMR is determined by comparing the �rst template of
each �ngerprint against all other �rst templates of the remaining
�ngers. Symmetric comparisons are not executed. IfT 1 is compared
againstT 2,T 2 is not matched againstT 1. This results in 9’240 total
matches for the evaluation of the FNMR and 9’730 matches for the
FMR, respectively, in FVC2006 2A.
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Conf. n g c pd xthres ythres θthres θ -basisthres
1 8 30 340 10 12 12 12 15
2 8 34 300 10 12 12 12 10
3 8 40 300 10 15 15 15 10
4 10 30 300 10 12 12 12 10
5 12 40 300 10 15 15 15 10
6 14 30 300 10 15 15 15 10
Table 3: Con�guration of FVC protocol experiments.

7.1.2 So�ware & Hardware Configuration. To evaluate the accu-
racy (i.e., FMR and FNMR) and runtime performance of our fuzzy
vault algorithm, we use server instances with Intel i5-3470 quad-
core processors clocked at 3.4 GHz and run against the FVC2006
database 2A. Our algorithm runs in a Docker container [8] using
PyPy [24], which is a just-in-time compiler for Python. For the eval-
uation of the algorithm, the �ngerprint images are preprocessed
with MINDTCT from NBIS [14] to perform minutiae extraction
and quality assessment and to provide the minutiae templates as
input to the algorithm. Additional library dependencies include the
Python binascii library [25] for CRC coding and Galoistools from
Sympy [29] for calculating polynomial mappings and performing
Lagrange interpolation in a Galois �eld. For future evaluation, the
source code of our implementation can be downloaded from [3].

For the distributed application, our algorithm runs on a Rasp-
berry Pi 3 with an ARM Cortex A53 CPU running at 1.2 GHz. Two
Raspberry Pis are connected to equal Adafruit �ngerprint sensors
and the Azure Cosmos DB. MINDTCT [14], binascii [25] and Ga-
loistools [29] are integrated in the application as before.

7.2 Evaluation of Authentication Algorithm
For our experiments with the FVC protocol, we consider various
parameter con�gurations as listed in Table 3. The considered pa-
rameters are the polynomial degree n, the #genuine minutiae д and
#cha� points c , points distance pd , the minutiae matching thresh-
olds xthres , ythres , θthres and the θ basis threshold θ -basisthres .
We only list con�gurations of interest. Certain thresholds are the
same in the shown con�gurations and have been selected due to
their good performance. The results of the experiments w.r.t. ac-
curacy and runtime performance of the authentication algorithm
can be found in Table 4. The achieved accuracy of the various
con�gurations is illustrated in Figure 8.

As can be seen in Figure 8, our algorithm can be tuned to achieve
very di�erent FMR/FNMR ratios. It always depends on the use case
to decide on the desired trade-o� between security and usability.
For instance, con�guration 3 has the lowest FNMR in all of our
experiments with roughly 3%, however, it would be unacceptable
security-wise in most use cases with a 4.22% FMR. Con�guration
2 provides an alternative with a relatively low FNMR of 3.89% but
with a much lower FMR of 0.74%, which is still considered high and
therefore only usable in lower-security use cases. Con�guration
4 has the smallest FNMR with no single false positive (FMR=0),
which makes it suitable for a high-security application, where users
are willing to accept some compromise in usability. Con�guration
6 shows that by being more conservative with the parameters,
here by choosing a higher degree polynomial, the FNMR increases
drastically. We presume that con�gurations 1 and 5 achieve a
reasonable balance for most practical applications. With these two

Exp n g FMR [%] FNMR [%] encode [s] decode [s] total [s]
1 8 30 0.08 10.38 0.11 0.9 1.01
2 8 34 0.74 3.89 0.11 1.19 1.3
3 8 40 4.22 3.08 0.1 1.39 1.5
4 10 30 0 18.03 0.11 0.75 0.86
5 12 40 0.06 9.13 0.13 2.23 2.36
6 14 30 0 33.16 0.15 1.84 1.99

Table 4: FVC protocol: Accuracy and runtime performance.
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Figure 8: FVC protocol: Accuracy.

con�gurations we achieve an FNMR that is close to the one we
get with NBIS BOZORTH3, the �ngerprint matching algorithm of
NBIS [14], which is a common reference in literature. The respective
authentication runtime is also acceptable (up to 2.3 sec).

Furthermore, we compare our algorithm to P-MCC64 by Fer-
rara et al. [10]. Their implementation achieves less than 1% FNMR
with 0% FMR against FVC2006 2A. For FMR ≤ 0.1%, P-MCC64 can
achieve an FNMR of less than 0.5%. Note, however, that our al-
gorithm provides higher security guarantees as the chance that
a randomly selected minutia in a reversed template is real is al-
most 25% with P-MCC64 [10] (compare our reference results in
Section 6.2).

We also compare our algorithm to a fuzzy extractor prototype
based on the �ndings by Sutcu et al. [28]. Their method revolves
around feature vector extraction to obtain minutiae information
that is di�cult to invert using cuboids. We implemented and ran a
basic implementation of the fuzzy extractor against the FVC2006
2A database using the FVC Protocol and the same server instances
as in Subsection 7.1.2, but using Python3 instead of PyPy3, since
this led to better runtime performance. Our results show an FMR
of 7.16%, FNMR of 80.63% and average total runtime of roughly 7
seconds. Compared to this simple prototype, our algorithm achieves
a signi�cantly higher accuracy with a lower runtime.

A direct comparison to previous fuzzy vault implementations [16,
20, 30, 32] was not feasible as their algorithms are evaluated against
non publicly available �ngerprint databases or older FVC databases.
Our results on FVC2006 indicate equal or higher accuracy com-
pared to their reported results. Recall that security is also expected
to be better as our approach does not depend on helper data for
�ngerprint alignment.

7.3 Evaluation of Parameter Impact
Table 4 indicates that the accuracy in terms of FMR and FNMR and
the veri�cation runtime vary signi�cantly for di�erent parameter
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con�gurations. Here, we evaluate the impact of all parameters on
accuracy and runtime (for impact on security, see Section 6.1). We
run experiments by �xing all parameters but the one whose impact
we analyze. Table 5 summarizes our experimental results. The im-
pact of each individual parameter is analyzed below to help system
developers select appropriate parameters for their applications.

Polynomial degree n: A higher polynomial degree increases the
minimum amount of minutiae in the candidate set. This implies
that more genuine minutiae need to be matched and makes match-
ing more conservative, with lower FMR but higher FNMR. In our
experiments, a higher n only marginally increases the total runtime:
although interpolation time increases, there are less interpolations
because the threshold for a suitable candidate set also increases.

#genuine minutiae д: A higher number of genuine minutiae
means more selected minutiae in the vault encoding phase and
more genuine minutiae found in the vault. Therefore, the probabil-
ity of a match between two �ngerprint captures increases, which
leads to a higher FMR and lower FNMR. For higher д, the total
runtime also increases due to more candidates being found and
thus needing more interpolation attempts.

#cha� points c: The number of cha� points does not impact the
accuracy of the algorithm. However, the runtime increases with
increasing c because more traversals have to be conducted in vault
decoding with a larger geometric table.

Points distance pd: If minimum points distance is selected to be
reasonably small, it a�ects neither the runtime performance nor the
accuracy. Reasonably small in this context refers to similar values
as minutiae matching thresholds. However, if pd is set too high,
the runtime performance drastically decreases as a lot of time is
required to �nd random cha� points that �t the requirement to be
at least pd apart from all other vault minutiae. Accuracy is a�ected
considerably only if the pd is so high that not enough good quality
genuine gallery minutiae can be selected.

Minutiaematching thresholdsxthres ,ythres , θthres : The lower
these thresholds are, the more conservative the algorithm becomes,
with lower FMR but higher FNMR. When increasing the thresholds,
the opposite e�ect can be observed. A threshold increase also in-
creases the runtime because more minutiae are matched, through
which it takes longer to iterate.

θ basis threshold θ-basisthres : We evaluated the impact of chang-
ing θ basis threshold between 10 and 20 degrees. Since no �ngerprint
captures in the database actually di�er by more than 15 degrees,
increasing θ basis threshold led to a decrease in FNMR and slight in-
crease in FMR when changing θ -basisthres within [0,15]. However,
the runtime increased slightly with increasing θ -basisthres because
the decoding takes longer due to more possibilities to match a basis
minutia and therefore more iterations. If we remove the θ basis
threshold by setting it to 360 degrees so that all bases match, the
runtime increases dramatically. In our experiments, we observe
a total runtime that is more than three times higher than with a
θ -basisthres of 10 degrees.

Increase of Parameter FMR FNMR Runtime
polynomial degree n lower higher slightly higher
#genuine minutiae g higher lower higher
#cha�points c unchanged unchanged higher
points distance pd refer to paragraph refer to paragraph higher
minutiae matching thresholds higher lower higher
θ -basisthres slightly higher lower slightly higher

Table 5: Impact of parameter increase on accuracy/runtime.
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Figure 9: Distributed application runtimes.

7.4 Evaluation of Distributed Application
In this section, we focus on the evaluation of the runtime perfor-
mance of our distributed authentication application. We do not
consider accuracy because the evaluations with the FVC2006 data-
base 2A are more extensive, and representative conclusions have
been drawn in previous sections. Moreover, the Adafruit FPS pro-
vides �ngerprint images with lower resolution and quality than the
ones in database 2A, thus negatively a�ecting accuracy.

To test our algorithm in the distributed setting, we conduct ex-
periments for both enrolling and verifying a �ngerprint. We enroll
10 �ngers with 5 captures each, which results in 50 invocations
of fuzzy vault encoding. Each of the invocations generates an
individual fuzzy vault. If a particular �ngerprint image has too
few minutiae, the application prompts the user for a rescan of the
�ngerprint. Those rescans are not recorded in the experiments.

To verify the �ngerprints, we conduct two di�erent experiments
with two con�gurations. In the �rst one we verify against each
of the 50 fuzzy vaults once, with a capture belonging to the same
�nger with which the fuzzy vault was generated. This covers the
use case of a genuine user trying to authenticate. In the second
con�guration we also verify against each of the fuzzy vaults once,
but use di�erent �ngers than were used to create the fuzzy vault.
This corresponds to an impostor trying to authenticate. We also
evaluate this scenario to show the runtime di�erence in case of
no match. The results from our experiments on the distributed
application are depicted in Figure 9.

Our experiments show that the FPS capture runtime, i.e., the time
the application needs to download the �ngerprint image and run
MINDTCT from NBIS [14], represents the largest part of the overall
runtime. Given that MINDTCT is very fast on average, we conclude
that the FPS capture runtime is constrained by the hardware of
the Adafruit FPS which does not allow faster transmission to the
Raspberry Pi. Furthermore, the encoding and decoding runtimes



are much higher compared to our results when running the authen-
tication algorithm on a server in previous sections. This is expected
due to the limited resources of Raspberry Pi. The di�erence in
decoding runtimes between genuine user and impostor con�gura-
tions can be justi�ed as generally more iterations are needed in the
impostor con�guration. When the genuine user con�guration is
run, the algorithm only runs until a match is found for an average
of 14 sec.

8 CONCLUSION
In this work, we designed and built a proof-of-concept biometric
cryptosystem based on fuzzy vault that can be used for distributed
authentication with strong security and privacy guarantees. We
presented real-world implementation challenges and proposed so-
lutions and their respective trade-o�s. The experimental results
and the prototype implementation with commercial hardware show
that an application of this cryptosystem is feasible in practice, as it
is more secure than widely-used �ngerprint recognition algorithms
without compromising accuracy or runtime performance. At the
same time, it improves upon existing cryptosystems in terms of
security due to the independence from helper data for �ngerprint
alignment. Hence, we consider it a realistic solution for secure and
usable distributed authentication.

In future work, we intend to evaluate our access control applica-
tion on various hardware platforms and use cases and customize it
to their requirements in order to assess its performance (incl. com-
munication costs) in industrial settings, based on extensive user
studies.
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