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ABSTRACT
Self-checksumming (SC) is a tamper-proofing technique that en-
sures certain program segments (code) in memory hash to known
values at runtime. SC has few restrictions on application and hence
can protect a vast majority of programs. The code verification in
SC requires computation of the expected hashes after compilation,
as the machine-code is not known before. This means the expected
hash values need to be adjusted in the binary executable, hence
combining SC with other protections is limited due to this adjust-
ment step. However, obfuscation protections are often necessary,
as SC protections can be otherwise easily detected and disabled via
pattern matching. In this paper, we present a layered protection
using virtualization obfuscation, yielding an architecture-agnostic
SC protection that requires no post-compilation adjustment. We
evaluate the performance of our scheme using a dataset of 25 real-
world programs (MiBench and 3 CLI games). Our results show that
the SC scheme induces an average overhead of 43% for a complete
protection (100% coverage). The overhead is tolerable for less CPU-
intensive programs (e.g. games) and when only parts of programs
(e.g. license checking) are protected. However, large overheads
stemming from the virtualization obfuscation were encountered.
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1 INTRODUCTION
Man-at-the-end (MATE) attacks are a threat to software execution
integrity and intellectual property of the entity that developed the
software. Unprotected software that is distributed to end-users
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makes it possible for malicious end-users to tamper with it (also
called code manipulation) both statically and dynamically, because
they can control the execution environment. Dynamic tampering
can be achieved by changing the memory of a running program, for
example by attaching a debugger to the process. Tampering with
software in a static context is achieved by altering specific bytes of
the executable. If performed correctly, this can cause the program
to divert from its intended behavior and potentially offer premium
features at no cost. Such a behavioral change could for example
be the program skipping license key validation, making way for
illegal distribution. The 2018 Global Software Survey1 by the BSA,
indicates that 37% of software installed on personal computers
is unlicensed. In BRIC countries the share of pirated software is
estimated to be twice as large at around 60% [3, 12]. This constitutes
an economic loss to software developers and it should not only be
dealt with by legal means. It is therefore of interest to software
developers to use software protection techniques to hamper code
tampering and reduce illegal distribution.

Problem. Self-checksumming (SC) is a software protection tech-
nique that allows programs to detect changes in their binary repre-
sentation and memory using so called guards [14]. Upon detection,
SC may call a response mechanism, for example aborting the execu-
tion or self-repair. However, since these checks have to be executed
at runtime, the expected checksum values need to be pre-computed
and, after compilation, inserted into the executable. Not only does
this approach require knowledge of the underlying system’s archi-
tecture, it also mandates a post-patching step to put these expected
checksums (hashes) into predefined places. This is an extremely
tedious and error-prone process [5]. This process also limits the
use of other obfuscation techniques, as one needs to maintain a
set of placeholders (i.e. contiguous sequences of 4 or 8 bytes in the
code segment) for the pre-computed checksums at known offsets
in the executable. Applying obfuscation would likely change the
offsets and contiguous layout of the placeholders.

To eliminate this post-patching step, we leverage the compiler
framework LLVM [27] to implement self-checksumming atop vir-
tualized instructions. For this, we also implement virtualization ob-
fuscation. LLVM already implements backends for different system
architectures, which removes the required architecture knowledge
and post-patching. Applying the guards at a higher abstraction
level removes the post-patching process at binary level entirely.
This is achieved by first applying virtualization obfuscation [23]
and then adding the guards in the custom interpreter bytecode.

Contributions. This work makes the following contributions:
• A novel design for combining self-checksumming and virtu-
alization obfuscation (Section 3).

1https://gss.bsa.org/
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• A performance evaluation of the implementation, using a
dataset of 24 real-world programs (Section 4).

• An attack-tree based security analysis of the design and
implementation (Section 4).

The rest of this paper is organized as follows. Section 2 presents
the necessary background knowledge for this paper and related
work. Section 5 discusses performance and security tradeoffs. Sec-
tion 6 presents the limitations of this approach and implementation.
Finally, the conclusions are presented in Section 7.

2 BACKGROUND AND RELATEDWORK
In this section we first present the two essential parts of our ap-
proach, i.e. virtualization obfuscation and self-checksumming. Af-
terwards, we present related work about combining the two tech-
niques.

2.1 Virtualization Obfuscation (VO)
VO’s primary goal is to transform a program’s control flow to a
semantically equivalent, yet less comprehensible version. Given
a program, this technique lifts all instructions to a new, random
Instruction Set Architecture (ISA). Thereafter, an interpreter specific
to the newly generated ISA is created. Lifted code along with the
interpreter are what the end user receives.

The interpreter’s job is to fetch, decode and dispatch execution
to the original instructions’ handler. Each handler emulates the
original instructions’ behavior. Furthermore, all program memory
allocations are done via a virtual memory (VM). A virtual program
counter (VPC) keeps track of the last executed instruction at runtime.
This obfuscation technique can be applied at different representa-
tions of programs such as source code [16] or binary level [28]. The
level at which the technique is applied plays an important role in its
composability with other protections. To the best of our knowledge,
there is no publicly available implementation of VO as a compiler
pass particularly in LLVM.

VO intuitively reduces the comprehensibility of protected pro-
grams for attackers. VO can resists automated attacks imposing
additional cost [4, 7, 13] at the perpetrator’s end. For instance, the
utilization of opaque predicates [17] or range dividers [6] can sig-
nificantly hamper attacks based on symbolic execution [32].

2.2 Self-Checksumming (SC)
Self-checksumming is a software tamper-proofing technique [14].
The idea is to equip a software with a set of interconnected guards.
Each of these guards carries out hash calculations over the code
segment (in the process memory) during runtime to detect poten-
tial code manipulations. Guards need to be pre-seeded with the
expected hash values of the code that they are protecting. Upon
detection of code tampering (i.e. hash mismatch), a response mech-
anism is triggered [29].

Since all calculations are done at runtime over the binary (ma-
chine code), the expected hashes can only be known after compi-
lation of programs. That is, if an SC protection is to be developed
as a compiler pass, the expected hashes need to be adjusted once
the binary representation of the program is finalized. For this pur-
pose usually placeholders along with post-patching mechanisms

are utilized [1]. Alternatively, a backend pass (similar to the one
described in [25]) can be used to adjust placeholders.

Both of the mentioned adjustment approaches have a tight de-
pendency on the underlying architecture. That is, the adjustment
shall be tailored for each and every architecture for which the bi-
nary is compiled. The architectural dependency imposes extra cost
in terms of development and maintenance of protections.

Furthermore, SC guards are susceptible to pattern matching at-
tacks [1, 2, 5]. Therefore, without proper utilization of obfuscations,
SC is rather easily identifiable, and perhaps defeatable. However,
obfuscation inherently alters the syntactical representation of pro-
grams. This comes with two drawbacks in the case of SC protection:
i) the placeholders need to be preserved (not obfuscated) otherwise
some adjustments may fail; and (ii) obfuscating programs (after SC
is applied) could potentially break SC guards (as expected hashes
may no longer hold true). These setbacks may result in having
no obfuscation on overlapping guards and expected hash values
(placeholders before adjustments), which in turn negatively impacts
the resilience of SC. As a direct consequence, the composability of
SC with other protections is heavily limited and thus the overall
security. In this paper we propose a technique to overcome the
identified drawbacks and to fix the composability problem of SC.

2.3 Combining Virtualization and Integrity
Protection

Since our proposal is based on combining VO and SC, we reviewed
existing literature on protection schemes that use VO to add re-
silience to their schemes.

Ghosh et al. [23] proposed a protection technique that com-
bines process virtualization (comparable to VO), encryption, and
self-checksumming. In their technique, program instructions to-
gether with their protection guards are encrypted and subsequently
shipped into the binary. The decryption key is also placed in the
binary but protected using white-box cryptography [15]. The pro-
cess virtualization is rather used as a proxy to decrypt protected
instructions. Since the SC protection is directly applied on the in-
structions, utilizing further protections (after the application of SC)
could break the SC protection. In another similar work Ghosh et al.
[22] used SC to protect dynamically generated (cached) instructions
of the virtualized programs.

Gan et al. [21] proposed a technique that uses protected virtual
machines acting as the root of trust. Several hardening techniques
including white-box cryptography, obfuscations, etc. are also uti-
lized to protect the virtual machine. The authors indicate such a
virtual machine can be relied on to carry out integrity checks.

In contrast to the related work, our proposal rather aims at
improving composability of protections and removing architectural
dependencies and thus reducing costs.

3 DESIGN
In this section we present the architecture of our approach, the
design decisions and the reasoning behind them.We end this section
describing the optimizations that were added to the design.
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Figure 1: Solution’s high level architecture

3.1 High-level Architecture
The architecture of a protected program using our technique is pre-
sented in Figure 1. Every program utilizes its own Random (Virtual)
Instruction Set Architecture (RISA). The RISA (depicted in the top-
left corner of Figure 1), is a volatile data structure capturing a set
of random instruction mnemonics and their actual semantics. The
RISA only exists at the time of transformation and it is discarded
afterwards. The RISA is created sequentially while visiting program
instructions.

Our technique can be applied on either the entire application or
a subset of its functions. Users can annotate the desired functions
with a sensitive tag. By iterating over instructions (of annotated
functions) a Virtual Program Array (VPA) containing the transla-
tion of the original instruction to the new RISA is created (top-right
of Figure 1). That is, if an instruction does not have an equivalent
mnemonic in RISA, a corresponding mnemonic and a reference
to its semantics are inserted into RISA. Next, all memory accesses
(constants, variables and registers) are altered to use a sequential
Virtual Memory (VM), which is depicted in the middle-left side
of Figure 1. In addition to mnemonics, which are captured as ran-
dom opcodes, the VPA keeps a reference to the indexes at which
corresponding data of instructions are persisted in the VM.

At this stage, self-checksumming guards according to the speci-
fied protection requirements are injected into the VPA (center of
Figure 1). Guards, similar to the original program instructions, use
the VM to carry out their calculations and subsequently verifica-
tions. Simply put, the computed hash as well as the expected hash
values are stored in and retrieved from the VM. It is important to
note that SC guards protect the VPA; i.e. they compute hashes over
the VPA (not the original program instructions).

For the lifted instructions to be executable an Interpreter is
needed (bottom of Figure 1). The Interpreter fetches instructions
from the VPA. It decodes the RISA’s semantic of mnemonics to
execute the fetched instructions. Within the interpreter a Virtual
Program Counter (VPC) keeps track of the last executed instruc-
tion (see middle-right part of Figure 1).

3.2 Detailed Design
This section presents several architectural components from Sec-
tion 3.1, and their inner workings in more detail.

3.2.1 Random Instruction Set Architecture (RISA). The RISA is a pro-
gram/function specific contract comprised of Opcode, Operand(s),

and Semantics. The opcode, in essence, captures mnemonics of the
RISA. Opcodes are randomly generated 16-bit integers. Operands
refer to indexes in the VM where either the input or output of the
computation should be “retrieved from” or “stored to”.

3.2.2 Virtual Memory (VM). The VM holds all operands needed
by the translated instructions. Values are stored contiguously, and
accessed by index. As types are known beforehand, we can deter-
ministically compute the amount of elements we need to read or
write upon load and store operations, respectively. To do so, we
simply set a pointer to the index corresponding to the “beginning
of” and “operand of” interest followed with a cast to the known
type. After dereferencing this pointer, the value can be used by the
interpreter. Persisting changes to VM values includes splitting the
data into chunks of 8-bit integer values.

3.2.3 Virtual Program Array (VPA). The VPA is a static array con-
taining the lifted instructions. As we are using an interpreter per-
function (see section 3.2.5), each function has its own VPA and
its checksum can be verified by any other function in the same
module. In the case of a control-flow changing instruction the next
VPC value is provided in the bytecode, which the interpreter will
assign to the VPC. Since we are using 16-bit integers as Opcode, all
elements in VPA are 16-bit integers. This includes indexes to the
VM. The VPA is a constant, global array. This allows any function
to calculate the hash of any other virtualized function. Being de-
clared as constant in LLVM also means we cannot generate code
that modifies the array at runtime.

The decoded instruction’s result will be written back into the
VM to be used by subsequent instructions. The VM is allocated on
the heap. When handling an instruction that returns execution to
the caller, we clean up the allocated memory before returning (also
see Section 6.2).

3.2.4 Instruction Lifting and Translation. In our design, we gen-
erate an interpreter for each virtualized function. Function level
virtualization enables us to maintain the program’s original func-
tion symbols and thus no linking problem will be incurred. As our
solution is implemented as a transformation pass based on LLVM,
the maximum number of instructions we have to translate in our
VO is limited by the maximum of instructions in LLVM, i.e. 58 dis-
tinct instructions. PHINode is the only instruction that we cannot
directly translate. To cope with PHINode instructions, we resort
to LLVM’s reg2mem pass yielding replacement of PHINodes with
corresponding allocations, load and store instructions. Exceptions
are not supported in the current implementation (see Section 6.1).

Based on the user’s list of sensitive functions, we sequentially
virtualize each one individually. The virtualization step first iterates
over all instructions in the current function. For each instruction
visited, we generate a random 16-bit integer value to be used as
the opcode. If an instruction of this type has already been added,
(granted that operands’ types match) we reuse that instruction’s
opcode. Next, for each operand, we add the value to VM and append
the index to the VPA. For instructions that change the control flow,
such as branch instructions, we append a placeholder instead.

After all instructions have been visited, we iterate over the trans-
lated instructions and, for instructions that change the control flow,



replace the placeholders with correct indices of the branch desti-
nations. Despite the flat nature of the VPA, we can still translate
branch instructions. Given that LLVM branch instructions point
to target basic blocks, we need to translate the target to an index
in the VPA. The index should refer to the first instruction of the
original destination block in the VPA. This is as simple as assigning
the target instruction index to the VPC. Such assignments mimic
jumps in programs.

For conditional branches, the situation is slightly different. Each
conditional branch has two destinations depending on whether
the condition holds true or false. Therefore, we need to translate
both target blocks to their corresponding indexes in the VPA and
subsequently set the VPC accordingly. The branch translation step
needs to be done after all instructions have been virtualized to
guarantee that the index is correct. Otherwise, we might not find
the correct instruction, if it has not yet been virtualized.

After all instructions have been virtualized, we add the current
function with its hash to a temporary list. This list is later used
while crafting SC checkers (see Section 3.2.6). If the current function
is a checker (dictated by the randomly created network of check-
ers Section 3.2.8), we insert a guard for each checkee at random
locations into the VPA of the function.

3.2.5 Interpreter. An interpreter is generated for each individual
function. Interpreter generation starts with allocating a VM and
storing all needed constant values and function arguments into it.
The VPC is initialized to zero. Next, a loop is added, which fetches
the next instruction, decodes it and dispatches execution to the
corresponding handler. The interpreter starts with the instruction
at index zero, and then increments the VPC by one for each fetched
opcode from the VPA. In case of control-flow changing instructions,
the VPC is set to indexes of target destinations in the VPA.

The main body of the interpreter is in fact a switch statement
that takes the current opcode as an argument. Each case in the
switch body corresponds to a distinct opcode in the RISA. Cases
are handlers of virtualized instructions. Handlers contain code that
emulates the original instruction(s). This involves loading operands
from the VM, executing the decoded instruction, and writing the
result back into the VM.

Several instructions coded with the same opcode in the program
will end up using the same handler. In addition to reducing the
binary size, reusing these handlers has several advantages. For one,
there is no one-to-one mapping of handler and original instruc-
tion. This also implies that if an attacker wants to change how
one specific instruction is handled, for example changing a jump
destination, it will result in side-effects at different locations of
the function. Therefore, it is intuitively harder to tamper with the
program control-flow or, generally, instructions.

Using function-level virtualization has the advantage that once
a function’s interpreter has been successfully reverse engineered,
the attacker cannot transfer this knowledge to the other functions;
instead, each function’s interpreter has to be reverse engineered in-
dividually. Moreover, having virtualization at the level of functions
yields a simpler linking process.

Since the ret (return instruction in LLVM IR) can be emulated
in the function-level virtualization, passing the return values be-
tween functions becomes trivial. However, a module-level inter-
preter would need to read and write the return values from a shared
memory, which entails addressing challenges such as race conditions
and memory management issues.

In our design, the default case of the interpreter’s switch state-
ment will invoke the response mechanism. That is we treat invalid
opcodes as well as VPC issues as tampering attacks.

3.2.6 Self-Checksumming Guards. Oneway to tamper with the pro-
gram behavior is tomanipulate VPA values. Our self-checksumming
protection utilizes a set of code snippets, referred to as guards, that
verifies the VPA values of different (virtualized) functions. In a
nutshell, a guard hashes a function’s VPA to ensure that it matches
the expected value at different intervals during program execution.

SC protection is added after virtualization. Guards obtain a
unique opcode similar to other instructions. Each guard has a target
function (checkee) as well as an expected hash value. That is, for
every guard opcode in VPA there exists two operands in VM. An-
other memory slot is reserved in VM for the runtime hash value of
guards. During program execution, upon fetching a guard opcode
the interpreter loads the address of the target function’s (checkee’s)
VPA along with the expected hash from VM. For the given target
VPA a cumulative byte-by-byte hash is computed that is persisted
in the preserved runtime hash in VM. The runtime hash is subse-
quently matched with the expected hash. In case of mismatches the
response mechanism is triggered. Bear in mind that depending on
the desired protection configuration (see Sections 3.2.7 and 3.2.8)
more than one guard might be injected into the VPA of a given
function.

As per the hash function, we use the binary XOR operator which
comes with two clear benefits. First, the operation occurs quite
often in normal programs, e.g. to clear a register value. So, it offers
a higher stealth. Second, XOR is fast as it requires only a single
operation on many X86 processors [20]. Nonetheless, our imple-
mentation can easily be extended to use different hash functions, if
needed.

3.2.7 Guards Connectivity. If a guard in function A checks the code
of function B, then we call function A the checker and function
B the checkee. Connectivity refers to the number of checkers per
each sensitive function. In the generated network, this is given by
the number of incoming edges to a (sensitive) node. Since in our
implementation we do not support cyclic checks, the connectivity
is restricted by the number of functions in the module.

3.2.8 Network of Checkers. We generate a random network of
checkers in the form of a directed acyclic graph. For each function
in the sensitive set, we pick a number of functions equal to the
desired connectivity to be checkers to the function of interest. In
cases where the desired connectivity value is simply not achievable,
for example because it is higher than the number of functions in
the module, our pass will use the highest possible connectivity.
This results in each sensitive function being checked by all other
non-sensitive functions in the module.

3.2.9 Response Mechanism. Hash mismatches in our solution are
redirected to the default case in the interpreter’s switch statement.



Listing 1: A simple demonstration of an interpreter utilizing
the indirect threading optimization

1 int some_func() {
2 uint8_t ∗DataArray = ...; // store constants and function params
3 uint64_t PC = 0; // program counter
4 goto handler_1;
5 handler_1: // this handler is being reused
6 handle_op_1() ;
7 PC += ...;
8 next = CodeArray[PC]; // dynamically determine next handler
9 goto handlers[next ];
10 handler_2:
11 handle_op_2() ;
12 PC += ...;
13 goto handler_3;
14 ...
15 }

The response mechanism in our solution is straight-forward ter-
mination of the process by calling the C library function abort.
This can be extended to use a stealthier response (such as stack
pollution) or a multitude of them, one of which is randomly selected
at runtime. Since the intrusiveness and hostility of the response
mechanism depend on the use case (e.g. termination is not an op-
tions in browsers [8]), we let the users of the tool develop their
desired responses.

3.3 Optimization
The machine code that will be generated by our scheme is likely
to be quite inefficient. The switch statement can, in the worst case
(with no reuse of handlers), get as large as the number of instruc-
tions of the original function. This results in a multitude of com-
parisons and conditional branches. In some cases, the value that
is used in the switch has to be compared against each case value
until a match is found. Therefore, the generated code, in the worst
case, has to iterate through plenty of cases and compare them to
the given opcode value. Only on a match, will it jump to the speci-
fied block. Thereafter the same routine is repeated until no more
instructions are left in the function’s VPA.

It is noteworthy to mention that some compilers reduce the
number of comparisons by translating switch statements to indirect
jumps through jump tables [10]. This optimization can improve
the performance at the cost of adding a multitude of jumps in the
program binary.

Despite handler reuses and indirect jumps, the performance
impact particularly for instructions within loops can be significantly
high. To cope with this limitation, we extend our interpreter to
support indirect threading [9]. This optimization enables directly
connecting the handlers with each other, instead of having to iterate
through the switch cases. The cornerstone of this technique is to
compute the successor handler for each handler. Afterward, a direct
jump to the successor is placed at the end of handlers. If there exists
more than one successor for a given handler, we compute the list of
possible targets and insert an indirect branch. Listing 1 illustrates
(using pseudo-code) how the control-flow looks like after applying
this optimization. Note the goto instructions at the end of each
handler.

In LLVM, indirect branches require a list of possible destinations
and an address to jump to. While we can statically determine the
list of destinations, we only know the correct addresses during
execution. Not only are the actual addresses not calculated at the
point of our pass, we are also using the handler for more than one
instruction, so we also have more than one successor and need
to account for multiple addresses. Since each instruction by itself
only has one successor, we can simply use an index into the list of
possible destinations and resolve the correct destination address at
runtime. This is shown in listing 1 on lines 8 and 9.

Despite the potential performance improvements, we believe
the optimization negatively impacts the security of the protection.
Connecting the handlers with each other also makes the resulting
control flow more linear. Linear control flows makes the resulting
machine code easier to analyze both for a human and static analysis
tools. As a switch in machine code is nothing more than a sequence
of comparisons and conditional jumps, symbolic execution tools
quickly run into path explosion problems. Linear control flow for a
human makes the sequence of executed instructions more intuitive
than a series of comparisons and conditional jumps. Furthermore,
the handlers without reuse can readily be spotted by attackers.

Therefore, we keep this optimization optional, to be used in cases
where large overheads are not tolerable. In the remainder of this
paper we refer to the unoptimized implementation as the secure
implementation.

4 EVALUATION
In this section we conduct a set of experiments to measure the
performance and to evaluate the security of our proposed scheme.
As pointed out earlier, our optimization is set to enhance the per-
formance. However, the actual performance improvement as well
as security implications of the optimized approach are rather un-
known. Throughout this section we run our evaluations on both
approaches to precisely capture advantages and disadvantages of
each approach.

4.1 Dataset
To carry out our evaluations we use a subset of 22 programs from
the MiBench suite [24] along with three open source CLI games,
namely tetris2, snake3, and 20484, summing up to a total of 25
programs. It is worthwhile to mention that technical difficulties in
compiling some MiBench programs to a single LLVM IR bitcode
file (e.g. use of a mix of assembly and c code) forced us to exclude
them from our evaluations. The first four columns in Table 1 show
details (#Instruction: number of instructions, #Function: number
of functions, and #Block: number of basic blocks in LLVM IR) for
each program in our dataset.

4.2 Coverage
The goal of this experiment is to determine the effectiveness of the
protection scheme. One way is to measure the protection coverage.

2https://github.com/troglobit/tetris
3https://github.com/troglobit/snake
4https://github.com/cuadue/2048_game
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qsort_s 107 2 18 74 69
crc 152 4 20 135 89
qsort_l 166 2 22 128 77
dijkstra_l 338 6 59 304 90
dijkstra_s 338 6 59 304 90
rawcaudio 437 3 78 389 89
rawdaudio 437 3 78 389 89
basicmath_s 538 5 63 186 35
basicmath_l 649 5 83 186 29
sha 666 8 57 619 93
tetris 669 13 129 564 84
bitcnts 705 15 82 669 95
fft 760 7 91 483 64
2048 803 17 146 699 87
search_l 873 10 159 741 85
search_s 873 10 159 741 85
snake 1124 13 172 1071 95
patricia 1201 6 169 867 72
bf 3667 8 168 3383 92
rijndael 5924 7 147 5074 86
say 7447 75 1302 7135 96
susan 12996 19 916 12760 98
toast 15374 94 1542 15268 99
djpeg 54496 379 6518 53204 98
cjpeg 56735 391 6788 55396 98
Mean 6699.00 44.32 761.00 6430.76 83
Median 760.00 8.00 129.00 669.00 89
Std 15253.74 104.82 1817.06 14937.38 18

Table 1: Protection coverage of instructions including the
network of checkers using SC atop VO (Prot. Inst.% column)

Coverage of protection in this case refers to the number of instruc-
tions that are virtualized as well as the number of instructions (in
the VPA) that are protected by SC guards.

We generated a set of protected binaries (VO+SC) with a function
coverage of 100%. A coverage of 100% indicates that the protection
deems all the program instructions as security sensitive and thus
tries to protect them all. Since the checkers of SC guards are ran-
domly selected, we repeat the binary generation 20 times to weed
out potential noises yielding a total of 480 programs, 20 × 24 (pro-
grams). Bear in mind that utilizing optimizations has no impact on
the coverage of SC. Columns #Prot. Inst. and Prot. Inst.% of Table 1
capture the number and percentage of SC protected instructions,
respectively. Section 5.1 discusses the impact of the protection cov-
erage on the scheme security.

4.3 Performance
The goal of this experiment is to measure the overhead of the
added protection in both secure and optimized modes. We intend to

capture the actual overhead of VO in both modes. Then, we repeat
the same set of experiments for the combination between VO and
SC. This way of measurement enables us to single out the overhead
of each scheme separately.

To measure the impact of our protection, we generate protected
binaries with a range of partial protections (i.e. 10%, 20%, and 50% of
functions) as well as a complete protection (i.e. 100% of functions).
For every protection level we generate 20 random combinations of
functions to be deemed as sensitive. Thereafter, if the SC protection
is enabled, we generate 10 protected programs for each combination
to weed out the noise of SC’s random network of checker creation.
That is, for the VO+SC benchmarkswe end upwith 800 (20 [function
combinations] × 4 [protection levels] × 10 [network of checkers])
protected instances for each mode (secure and optimized). However,
when only VO is applied we generate 80 (20×4) protected instances
per mode. It is noteworthy that we set connectivity=2 for SC
throughout our experiments. That is, every sensitive functions is
checked by 2 other functions, if enough functions are available in
the module.

We use benchexec5 [11] to precisely measure the performance
of our programs before and after applying protections. We run each
program 100 times with the exact same inputs and measure the
overhead. For games we pipe in constant input by intercepting the
necessary library calls (e.g. getch). According to our experiments
all the protected programs execute correctly with respect to the
provided inputs.

4.3.1 Secure Mode. Figure 2 illustrates the overhead of VO as well
as VO+SC in the secure mode . The average overhead of VO (ap-
plied single handed) is 89.34%, 314.95%, 445.41%, and 1018.46% for
protection levels of 10, 25, 50 and 100, respectively. When VO and
SC are combined the average overhead rounds to 109.74%, 193.64%,
468.72%, and 1055.51% for protection levels of 10, 25, 50 and 100,
respectively. Note that the average of VO+SC overheads for the
25% protection level are smaller than the corresponding overheads
when only VO is applied. We believe this is due to the random-
ness of function selections, the frequency of check executions, and
potential LLVM optimizations.

4.3.2 Optimized Mode. In this section we report on the average
overhead of our protection in the optimized mode. Figure 3 captures
the results of our experiments. In sum, the induced overhead for
VO-only is 48.27%, 151.59%, 231.65%, and 458.42% for protection
levels of 10, 25, 50 and 100, respectively. For VO+SC protection, the
captured results indicate an average overhead of 32.64%, 150.54%,
231.65%, and 501.04% for protection levels of 10, 25, 50 and 100,
respectively.

It it noteworthy to mention that some protected (VO+SC) in-
stances (in both secure and optimized modes) perform better than
the unprotected version (VO only). We investigated those binaries
manually but were not able to find any problems in them. They ap-
pear to benefit much more from the LLVM optimizations compared
to other protected binaries.

5https://github.com/sosy-lab/benchexec
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Figure 2: Overhead of VO vs. VO+SC protection in the secure mode; the gray-margined bars capture VO+SC protection while
the black-margined bars depict VO protection results
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Figure 3: Overhead of VO vs. VO+SC in the optimized mode; the gray-margined bars capture VO+SC protection while the
black-margined bars depict VO protection results

4.4 Security
We analyze threats to the security of our protection from three
perspectives: threats to SC protection, threats to VO, and threats
to the combined protection. The utilization of secure or optimized
approaches naturally impacts the protection level. Since our op-
timization is merely applied on the interpreter of VO, the other
components are not impacted. Therefore, we make a distinction
between the two approaches only in the security analysis of VO.

4.4.1 Threats to SC protection. Disabling the self-checksumming
is one way to tamper with a protected program. Figure 4 repre-
sents attacks on SC protection [5] in the form of an attack tree.
Dashed lines and solid lines stand for disjunction and conjunction
refinements. The following paragraphs describe each of the nodes
at depth one in more detail.

Disable Checkers. An attacker may disable the checkers for the
targeted function. The first difficulty in this case is identifying



Figure 4: Attacks on SC depicted in the form of attack tree
notation [5]

all guards in functions that are checkers. If attackers successfully
identify such checkers, they still might need to identify checkers
covering the target checkers (overlapping guards). Since we utilize
VO at the function level, attackers have to analyze and reverse
engineer the interpreters of all checkers individually. Therefore,
the complexity and the amount of work needed for a successful
attack is considerably higher.

Qiu et al. [30] present a generic approach for defeating SC
protection using taint analysis. However, as also pointed out by
the authors, such attacks fail to affect our protection due to the
utilization of VO. Their attack identifies the verification of SC hashes
(conditional branch) in a given program. Thanks to VO multiple
branches (not only SC verifications) may reuse the same handler
rendering the attack ineffective.

It is worthwhile to mention that we consider attacks that require
a modification in the OS (such as [33]) limited for mass distributions
and therefore less critical.

Disable Response Mechanism. Disabling the response function
is unlikely to be successful, but possible. After detecting a hash
mismatch, the interpreter/guard branches to a specific handler and
calls the abort function. If an attacker were to disable this function
call, the program will likely run into a segmentation fault or, at the
very least, undefined behavior. Mainly because the value of VPC in
such cases is not properly set.

Completely removing the call to the response function from the
handler or changing the jump address after the comparison of hash
values are considered as an attack against the interpreter. These
attacks are explained in section 4.4.2.

Patch Code Bytes & Preserve Checksum. VO tends to significantly
hinder this attack. For machine code it is possible to find a sequence
of instructions that perform a useful task, while hashing to the
same expected hash. However, the fact that the changes need to go
through the interpreter further limits the range of possibilities.

Patch Hash Function. An attacker can modify the hash function
to always return the correct value for the current checkee. The
actual hash value is stored in the function VM. Therefore, reverse
engineering VO, particularly the interpreter’s accesses to VM, is
a prerequisite for the success of such attacks. To find the correct
location where the precomputed checksum is stored, it is also nec-
essary to reverse engineer the interpreter, which we discuss in the
following section.

4.4.2 Threats to VO. It is important to make a distinction between
the approaches (namely optimized and secure) when discussing
threats to VO. The optimized approach (without further hardening)

stands worse chances against attacks. Mainly because VPC is re-
placed with direct jumps to the next block(s). This on the one hand
enhances the performance. On the other hand, the optimization
eases the control flow recovery of the obfuscated code using static
analysis. Utilizing resilient opaque predicates can enhance this sit-
uation. We believe the rest of security analysis remains indifferent
for both approaches. Therefore, we refer to both approaches as VO
in the remainder of this section.

Attacks on VO can be classified into two categories: i) generic
attacks on VO; and ii) manual attacks on the interpreter.

Generic attacks on VO. Table 2 summarizes a few state-of-the-art
attacks on VO along with their advantages and disadvantages.

The approach by Kinder [26] requires knowledge about the VPC
used in the interpreter. They assume there exists a function to
reliably detect the storage location of the VPC. After our transfor-
mation (in the program binary representation) we cannot reliably
make assumptions about the location of the VPC. Compiling with
different levels of optimizations (e.g. -O3) might reserve a register
value for it, but it might also end up being written to and loaded
from memory.

Coogan et al. [18] propose to use taint analysis in order to identify
the relevant instructions, i.e. instructions that affect the values of
program outputs in a system trace. This approach is able to identify
and remove interpreter instructions from traces. However, it does
not remove the SC guards. Moreover, the output of this approach
is a simplified trace for each different input, which does not tell
the attacker how to identify and disable the SC guards from the
protected program.

Yadegari et al. [34] significantly improve the attack by Coogan
et al., by more advanced trace simplification techniques, symbolic
execution and recombining the simplified traces into a simplified
control flow graph (CFG). The drawback of this approach is the
large input space that the protected program may accept as input,
because in order to reconstruct an accurate CFG, all possible paths
in the code must be exercised first. Even if this is achieved, the
attacker still has to detect and remove the SC guards, which requires
significant effort overall.

Salwan et al. [32] developed a novel approach to defeat VO by
combining taint analysis, symbolic execution and code simplifica-
tion. Compared with known attacks that target the control-flow
graph, the output of their script 6 is expected to be a clean devirtual-
ized executable. Their technique also symbolizes the VPC. We were
unable to successfully use their tool against executables protected
with our protection, due to an error during execution. We have
already reported the bug but have not yet heard back from the
authors. Nevertheless, we believe that attacking our approach will
run into the path explosion problem for the real-world programs
in our dataset.

Attacks on the Interpreter. In addition to known attacks against
VO, it is also possible to attack the interpreter itself without reverse
engineering the executed bytecode. In the executable, it is possible
to change the jump address of a specific block to another location.
This can happen in functions with few branches, where the handler
for the branch instruction is not reused. We try to mitigate this by

6https://github.com/JonathanSalwan/Tigress_protection
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Attack
Type SA1 TA2 bit-level TA2

SA1& TA2,
formula simpl.,
code simpl.

Attacker
Goal

approx.
data values

significant
trace CFG

extract
original code

Output CFG
and invariants simpl. trace simpl. CFG simpl. code

Drawback
assumptions
on interpreter
structure

equation
to CFG
conversion

large
input space

path explosion,
symb. reasoning

1 Static Analysis
2 Taint Analysis

Table 2: Known attacks on virtualization obfuscation [7, 32]

reusing handlers and thus increasing side effects when a handler
has been tampered with. Changing the address of a jump will then
be changed for all branches using this specific handler. This effect
can further be increased by adding opaque predicates, generating
even more branches and increasing the number of instructions
using the same handler.

Identifying a handler that is only used by a single instruction in
a function not being checked seems to be one of the most promising
attack scenarios. However, this means that the instruction is not
a sensitive instruction and may not be useful for the attacker to
tamper with.

In general, the interpreter can be hardened by other protection
techniques like any other piece of software. This is also one of the
main reasons we have decided to implement our solution using
LLVM: to increase the composability with other, existing software
protection techniques.

4.4.3 Threats to the Combined Protection. As mentioned in sec-
tion 4.4.1, attacking SC requires reverse engineering the virtual-
ization obfuscation. SC is implemented on top of VO and thus
protected by it. Changing opcodes in the generated bytecode can
be identified by having SC guards in place. We can conclude that
it is necessary to first reverse engineer our VO, in order to defeat
SC guards. Ignoring these protections and attacking the interpreter
itself, as outlined earlier generates side-effects across each function
due to the reuse of handlers.

5 DISCUSSION
This section discusses tradeoffs between the performance and the
security of our approach. We conclude this section by discussing
how the security of our approach could be improved.

5.1 Protection Coverage
Our results confirm that our implementation is capable of virtualiz-
ing all instructions in the given programs. The SC protection on
top of VO is capable of protecting a large portion of instructions (a
median of 89%) including the network of checkers. Some instruc-
tions however were left unprotected. Our investigations indicate
that such instructions reside either in the root of the network of
checkers or in the nodes with no incoming edges. Since we do not
support cycles, some nodes might be left unprotected. Bear in mind
that we can easily achieve 100% coverage over the original pro-
gram instructions by not checking the guards themselves to avoid

cycles. We believe not checking guards downgrades the resilience
of the protection. Nonetheless, supporting cycles is a matter of
engineering efforts.

5.2 Performance vs. Security
As with every software protection, there is a trade off between
performance and security. Adding security, for example in the case
of our secure interpreter, results in additional code to be executed.
The extent to which added protections impact the performance
depends on various factors such as the number of comparisons,
loops, etc.

As showed in the performance evaluation 4.3, our secure imple-
mentation yields on average an overhead of 1055.51%. Being ≈ 10x
slower than the unprotected executable is on the upper end of worst
case performances for regular interpreters. However, this approach
is also hard for symbolic execution engines to analyze, due to path
explosion. An important remark here is the low overhead that SC
protection, with a connectivity of 2 checkers per checkee, imposes
on the protected binaries. For the 25% protection level the VO+SC
protected binaries outperformed VO-protected binaries. As pointed
out earlier, the randomness of the network of checkers appears
to be the cause of this phenomenon. It is worth mentioning, that
the interpreter in this solution has no optimizations whatsoever
applied to it.

Further research needs to be conducted to develop and subse-
quently utilize a set of potential optimizations that do not down-
grade security.

The optimized implementation, which utilized indirect threading
in the interpreter, resulted in far more efficient protected binaries.
Our results indicate an approximate decrease of ≈ 50% in the over-
head of protection. More importantly, in the optimized mode, the
contribution of SC protection to the overhead is significantly de-
creased. That is, in 10, 25, and 50% protection levels SC did not
impose any extra overhead but overheads dropped. However, one
can not conclude that utilizing SC yields better performance as
other factors such as randomness of checkers and LLVM optimiza-
tions need to be taken into account. For the 100% protection level SC
constitutes only ≈ 43% of the protection overhead (501.04% VO+SC -
458.42% VO only). It appears that LLVMmanages to significantly op-
timize the SC protection. A large portion of the reported overheads
stem from LLVM’s inability to optimize VO. The use of VM intro-
duces a complexity in the framework’s analysis as it transforms
direct variable accesses into dynamic array lookups. This makes
it difficult for LLVM to analyze control and data flow and thus
hinders further native optimizations in IR. Besides, the VM itself
imposes indirect accesses by storing and subsequently retrieving
values from memory instead of registers, which substantially slows
down the execution. In the case of the secure version, the switch
statement is translated to multiple comparison and jump instruc-
tions, which decreases the effectiveness of the branch prediction.
As the value to switch over is loaded dynamically, this can not be
improved by static analysis nor compiler optimizations. Instruction
prefetching in these cases is also impacted due to the number of
jump instructions generated by the switch statement.

We believe as the optimization removes the switch statement
and connects each handler with its successors, it becomes easier



for LLVM to analyze and run additional optimizations. Despite the
performance gain, the indirect threading optimization makes the
generated code easier for a human to analyze. Removing the switch
also reduces the amount of possible paths allowing more efficient
symbolic execution based attacks.

Lastly, the introduced performance overheads heavily depend on
the nature of the program to protect. The structure of the program’s
call graph, number of nested loops, and the degree of IO dependency
play important roles in the overall overhead of the protection.

5.3 Security
By using a switch statement to dispatch all opcodes, we were able
to force symbolic execution engines to run into the problem of
path explosions. Even if the original program did not contain many
different paths, after transformation every case in the switch state-
ment corresponds to one path. The highest possible number of
cases in the generated switch statement is equal to the number of
instructions in the original function. This happens when we cannot
reuse a single handler. Usually, certain instructions appear more
than once, for example to load a value. We try to reuse as many
handlers as we can to increase side-effects of attacking the inter-
preter (see Section 4.4.2). This heavily depends on the structure
of the original module, for example the number of instructions in
functions. The amount of possible paths can be further increased
by introducing opaque predicates [19] in our interpreter.

Our protection can fall short when an attacker can identify a
handler that is neither reused, nor protected by SC. Supporting
cyclic checks in SC can mitigate this kind of attack. One great
benefit of our approach is that any type of LLVM-based software
protection can be employed on top or before our transformation to
increase the resilience of the protection.

6 LIMITATIONS
This section presents limitations of our approach and implementa-
tion. Several of these limitations can be overcome and we plan to
address them in future work.

6.1 Unsupported Instructions
There are a fewWindows-specific instructions regarding exception-
handling that we do not support. This is in part due to the fact that
Windows does not allow for loadable modules, and our infrastruc-
ture is almost exclusively based on *nix. Since our pass is loaded via
LLVM’s opt tool, we would need to integrate the pass into LLVM’s
internal optimization pipeline. Doing so increases development
time significantly, because every change made to the pass results in
having to rebuild a lot of LLVM’s tools. We have decided to move
support for Windows to future work.

6.2 VM Restrictions
Calling free on VM can be problematic, when exceptions are in-
volved. This is a well-known source of memory leaks. If a called
function were to throw an exception that is not caught, the VM
will never be cleaned up. In C++, this is typically solved with a
technique called RAII [31], but we do not have access to this in
LLVM IR. Therefore, in these special cases, our implementation is

leaking the memory of the VM. This is an issue that we hope to
resolve in future work.

There are instructions in LLVM that require their operands to
be constant, meaning they have to be known at compile time. Con-
sequently, we are unable to load those dynamically from the VM.
An example for this is the intrinsic LLVM memcpy function. Two
of its parameters, alignment and volatile, are required to be con-
stant. Due to the fact that values loaded from the VM at runtime
are not constant, in these cases we reuse the original instruction’s
operands.

Another restriction of using a VM is that we cannot add global
variables to it. Since all of our generated instructions operate solely
on the VM, we would not assign to the global variable. Calling
another function that depends on the updated value would change
the program’s behavior. This could, in theory, be solved by updating
both the global variable, as well as the VM. However, calling a
function that updates the global variable would require us to update
the value in the VM. This requires performing non-trivial control
flow analysis to determine read and write accesses to the global
variable. A simple solution to this issue is to not add global variables
to the VM, but instead simply use the global variable itself.

7 CONCLUSIONS
We designed, implemented and evaluated an LLVM-based protec-
tion that effectively combines virtualization obfuscation (VO) and
self-checksumming (SC). Our approach removes the need for bi-
nary post-patching of SC pre-computed hash (checksum) values. As
a direct consequence, SC is completely architecture-agnostic and
better yet, fully composable with other protection techniques. More
importantly, our SC scheme benefits from the hardening added by
VO and thus exhibits a higher resilience.

Regarding VO, we presented and later evaluated two implemen-
tations, namely secure and optimized. We conducted a set of perfor-
mance as well as security evaluations, where a set of 25 real-world
programs (MiBench and CLI games) were used. The secure version
stands better chances against symbolic execution attacks. However,
it imposes an average overhead of ≈10x for full protection (i.e. 100%
of instructions are protected), of binaries. In contrast, the optimized
version imposes an average overhead of 5x for the same protection
level. The SC protection itself imposes only 43% overhead for full
protection with a connectivity of two. We believe such overheads
are acceptable when protection is applied on a subset of sensitive
segments of programs (e.g. license checking).

In the security evaluation we discussed attacks on SC and VO.
Possible mitigations were also explained in our evaluations. Since
our solution adds SC on top of VO, an attacker has to first break
the obfuscation, in order to be able to attack SC. To the best of our
knowledge, there exists no tool that can automatically carry out
such attacks. Therefore, a combination of tools need to be manually
applied by attackers to break the scheme.

As future work we plan on implementing cyclic checks for SC.
Another interesting area is to further investigate means to optimize
VO without (or with less) security sacrifices.
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