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Abstract

This work studies sequential social learning (also known as Bayesian observational learning),
and how private communication can enable agents to avoid herding to the wrong action/state.
Starting from the seminal BHW1 model where asymptotic learning does not occur, we allow
agents to ask private and finite questions to a bounded subset of their predecessors. While
retaining the publicly observed history of the agents and their Bayes rationality from the BHW
model, we further assume that both the ability to ask questions and the questions themselves
are common knowledge. Then interpreting asking questions as partitioning information sets, we
study whether asymptotic learning can be achieved with finite capacity questions. Restricting
our attention to the network where every agent is only allowed to query her immediate prede-
cessor, an explicit construction shows that a 1-bit question from each agent is enough to enable
asymptotic learning.

1Bikhchandani, Hirshleifer, and Welch, 1992 [1]
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1 Introduction

In social networks, agents use information from (a) private signals (knowledge) they have, (b)
learning past agents actions (observations), and (c) comments from contactable experienced agents
(experts) to guide their own decisions. The study of learning using private signals and past agents’
actions, i.e., private or public history, in homogeneous and Bayes-rational agents was initiated by
the seminal work in [1, 2, 3]. Key results in [1, 2, 3] state that in the model where countably infinite
Bayes-rational agents make decisions sequentially to match binary unknown states of the world,
named social learning or Bayesian observational learning in the literature [4, 5, 6, 7, 8, 9, 10, 11, 12],
an outcome called Information Cascade occurs almost surely with fully observable history and
bounded likelihood ratio of signals. An information cascade occurs when it is optimal for agents
to ignore their own (private) signals for decision making after observing the history. Though
individually optimal, this may lead to a socially sub-optimal outcome where after an information
cascade, all agents ignore their private signal and choose the wrong action, referred to as a wrong
cascade. In models of social learning, there is another possible outcome known as (asymptotic)
learning2. This occurs when the information in the private signals is aggregated efficiently so that
agents eventually learn the underlying true state the world and make socially optimal decisions.

Literature studying social learning, i.e., making socially optimal decisions, is mainly focussed on
using channels (a) and (b) above for Bayes-rational agents; works using channel (c) mostly study
learning by modeling it as a communication channel in distributed (sequential) hypothesis testing
problems, but with non-Bayes-rational agents. Inspired by behaviors in social networks, where peo-
ple usually query their friends who have prior experience before making their own decisions, using
information via (c) by communicating with contactable past agents may reveal another channel to
achieve asymptotic learning for Bayes-rational agents. Another reason to explore this channel is
the following statement by Gul and Lundholm in [10]: “Informational cascades can be eliminated by
enriching the setting in a way that allows prior agents’ information to be transmitted.” This general
principle, however, does not reveal whether learning can be achieved with finite-bit questions3.

Problem Statement: Motivated by behaviors in real social networks and the quoted statement
in [10], we want to study if querying past agents with bounded number of finite capacity questions
sequentially, but without relaxing assumptions of (a) and (b) used in BHW model [1], can achieve
asymptotic learning or not. More precisely, we assume the essential features of the problem of
sequential social learning with a common database recording actions of agents [1, 2, 3], but allow
each Bayes-rational agent to ask a single, private and finite-capacity (for response) question of each
among a subset of past agents (friends or assumed experts). Note that the Maximum Aposteriori
Probability (MAP) rule is still individually optimally and will be used by each agent for her decision.
We emphasize here that the BHW model [1] has private signals with a bounded likelihood ratio,
and with Bayes-rational agents only the ideas in Theme 2 are known to yield the learning outcome.
In this paper, allowing for private questions, we want to answer the following three questions: 1)
What is the minimum set of agents that need to be queried as a function of the agent’s index and
information set? ; 2) What is the minimum size of questions needed to achieve learning?, and 3)
Can we construct a set of questions that will achieve either minimum?

Before stating our main contributions, we highlight the main differences between this work and
the existing literature. In the literature, there are three well-developed themes to achieve social
learning: one, the presence of many agents with rich private signals (with unbounded likelihood
ratios); two, the obfuscation of the history of agents’ actions when viewed so that at least a minimal

2See Definition 1 in Section 2.
3Appendix B.3.1 shows a learning example where the total bits agent n spends on questions is not bounded.
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number of agents have their private signal revealed by their actions; and three, the presence of many
(or all) non-Bayesian algorithmic agents. We briefly describe4 these three themes in the following:
Theme 1: Compared to the seminal BHW model [1], models in this theme use information
from (b) and generalize the information content in (a). Unlike BHW and our model considering
private signals with bounded likelihood ratios, the seminal work by Smith and Sørensen [4] allowed
generalized models for richer signals characterized by the (unbounded) likelihood ratio of the two
states deduced from the private signals; and learning is achievable under richer signals.
Theme 2: Unlike BHW and our model disclose full history to every agent, works in this theme
use partial history in (b). By revealing a random or a judiciously designed deterministic subset of
past agents’ actions in networks, [8] and [13] respectively showed the asymptotic learning can be
achieved through revealing either a random subset of history or at most d past agents in a special
class of networks. However, presenting reduced or distorted views of the history of agents’ actions
is philosophically troubling as it implicitly assumes that the distortions made are always benign or
for efficiency, and also posits an implicit trust in the system designer on the part of the agents.
Theme 3: Here, by allowing non-Bayesian agents or changing payoff structures, there is a class of
literature on distributed binary hypothesis testing problems that follows Cover [14] and Hellman
and Cover [15] and falls under (c). In this model, agents can only observe the actions from their
immediate predecessor, and their actions now try to transmit information and to learn collabora-
tively the true state of the world. It is shown in [15] that the learning, often called optimal decision
rules in this literature, cannot be achieved under bounded likelihood ratio of signals. However, if
observing K ≥ 2 immediate predecessor is allowed, authors in [16] showed that asymptotic learning
can be achieved using a specific set of four-state Markov chains. From the perspective of informa-
tion design, this approach of designing Markov chains for learning is similar in spirit to partitioning
of information sets, but for non-Bayesian agents.

Main Contributions: Our analysis of the modified BHW model [1] described above yields two
main contributions:
1) To the best of our knowledge, we are the first to highlight the ability to change information
structures among agents to achieve learning in social learning problems. The approach used in this
work, namely partitioning information sets, is closely related to the Bayesian persuasion [17, 18].
Designs achieving asymptotic learning in our work can be viewed as a “relayed Bayesian persuasion”
by persuading agents in “possibly wrong cascades” to avoid the information cascades eventually.
2) With an explicit construction of 1-bit question corresponding to the agent’s possible information
set and index value in the network and where agents are only allowed to query their immediate
predecessors, we show that learning is achievable and answer the three questions addressed above
in a single construction.

Note that in our approach, the system designer commits to a specific information structure (full
public history of previous agents’ actions plus private communications) without any reductions or
distortions, and also provides the agents with a question guidebook, whose performance each agent
can verify independently. The minimal nature of our learning achieving question guidebook also
reveals the fragility of information cascades (Sec.16 in [19]), as a small amount of strategically
delivered information leads to learning. The information revelation in our question guidebook is
strategic in contrast to reviews that are [20] generated via an exogenous process (and revealed only
for some specific actions), and furthermore, lead to learning [7] only if the signals are rich. A subtle
but rather interesting point of our approach is the “relayed persuasion” aspect wherein we only
aim to persuade particular agents chosen by our design instead of agents chosen by nature as is
commonly seen in Bayesian persuasion [21, 22].

4See Related Work in Appendix C for a detailed discussion.
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2 Problem Formulation

BHW Model and Information Cascade Starting from the seminal BHW model[1], we consider
a model with binary states of the world Θ = {A,B} that are equally likely to occur and a countable
number of Bayes-rational agents, each taking a single action sequentially as indexed by n ∈ {1, 2, ...}.
At each time slot n, agent n shows up and chooses an action Xn = {Ā, B̄} with the goal of matching
the true state of the world. Formally, for every agent n, the utility function un(Θ, Xn) is defined
as un(A, Ā) = un(B, B̄) = 1 and un(A, B̄) = un(B, Ā) = 0.

Before agent n takes her action, she receives an informative but not revealing private signal
sn. Her private signal is received through a binary symmetric channel (BSC) with a time-invariant
crossover probability5 1−p, where p ∈ (0.5, 1), sn ∈ {A,B} for all n. An agent can also observe
the full history of actions taken by her predecessors (agents with index lower than her, if any),
Hn ∈ {Ā, B̄}n−1. The agent then computes the posterior belief of the true states of the world
(alternatively, the likelihood ratio of one state versus the other), and takes the action corresponding
to the most likely state. As in [23, 24], if indifferent between the two actions, we assume that the
agent follows her private signal, instead of randomizing, following the majority, etc.

Definition 1. In a model of Bayesian observational learning, asymptotic learning (in probabil-
ity) is achieved if limn→∞ P ({Xn = Ā|Θ = A}) = limn→∞ P ({Xn = B̄|Θ = B}) = 1. If asymptotic
learning is not achievable, we say that an information cascade has occurred.

Under the above setting, we know that the BHW model[1] has an information cascade because
all agents will ignore their private signals and imitate their immediate predecessor’s action when
the difference between the number of actions observed is greater than or equal to two6.

Deterministic Network Topology with Finite Channel Capacity Agents’ communication
is modeled by a deterministic network G(N, E) with directed edges. On each such edge, agents
are allowed to transmit information up to pre-determined K bits through a perfectly reliable com-
munication channel. Since agent m takes action prior to n for all m < n, only directed edges
(m,n),m < n are allowed in the network. Using these additional directed edges, agent n can ask
questions individually and privately to predecessors in the set Bn = {m|(m,n) ∈ E} ⊆ [n − 1] in
line with the network topology, before making her decision. Agent n asks the set of questions after
receiving her private signal. Critically, the deterministic7 network topology is common knowledge.

Questions and Information Sets Since the network topology is pre-determined, the set of agents
that a particular agent can query for information is exogenous. Given the topology, we allow the
information designer to supply the agents with questions that they can ask the set of contactable
predecessors Bn, n ∈ N (in order to distinguish which information set they are at). Assume m ∈ Bn,
questions being asked by agent n to agent m are allowed to be dependent not only on the private
signal and history observed by agent n, but also on the answers of questions asked to other agents
in Bn prior to asking agent m. In short, the order that agents in Bn are queried in matters in the
general framework. However, in this paper, we restrict our attention to only allow agents to ask
questions simultaneously8 to predecessors in Bn to avoid complex analyses owing to the recursive
analysis required to understand the engendered higher order beliefs. With this degeneration, such
a collection of a set of questions is called a question guidebook (QGB). With this background in
mind, we formally define a QGB.

5The time-invariance assumption is mainly for the ease of algebraic complexity. The assumption we need for the
model is the crossover probability of agents is common knowledge.

6See Section 16.2 in [19].
7Discussions about the difference between deterministic and randomized network on this problem are in Ap-

pendix B.2.
8The general framework is discussed in Appendix B.3.
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Definition 2. A question guidebook Q is a function Q(n,Hn, sn,m) that gives agent n a set of
predetermined questions conditioned on agent n’s private signal, the observed history, and the pre-
decessor agent m who agent n queries.

We assume that agents being queried are truthful in their responses, which is natural as they
cannot gain from lying since their (payoff relevant) action has already been taken.

A QGB should have two important properties: feasibility and incentive compatibility. Intu-
itively, a QGB is feasible if agent n only asks questions that she knows queried agent m < n can
answer. This avoids the ambiguity of what would happen if agent m does not have the information
to answer the question asked of it. Formally, we call an observed history Hn feasible for a guidebook
Q if there is a nonzero probability of obtaining this history given all of agents follow the guidebook
Q, that is P(Hm|Q is followed) > 0, ∀m < n; to avoid cumbersome notation we will simplify this
to P(Hm|Q). Similarly, we call a question asked of agent m by agent n > m feasible if for every sn
and feasible history Hn, the question can be answered by agent k using only the information that
it possesses.

Definition 3. A question guidebook Q is feasible if for every agent n, under every feasible observed
history Hn

9 and sn, all questions provided by Q are feasible.

A QGB is incentive compatible if agent n always asks a question from the set of questions that
maximizes her expected payoff.

Definition 4. A question guidebook Q is incentive compatible if for every agent n > 1, under
every feasible observed history Hn and sn, the set of questions provided to her maximizes her
expected utility among all feasible questions she can ask to agents in Bn.

Given a feasible and incentive compatible QGB, each question serves to partition sequences of
private signals to information sets: the possible states of randomness (underlying σ-algebra) into
subsets (sub-σ-algebras to be more precise). Note that the answer to such a question specifies the
set where the current realization belongs to. Viewing questions from the perspective of partitions
helps in justifying the following assumption.

Assumption 1. We assume that there is no cost in asking questions. Thus, if no feasible question
will change the expected payoff of an agent, there is no restriction for an information designer
to design any question guidebook demands that this agent asks any provided questions within the
prescribed capacity limit.

Assumption 1 stands when a limited number of questions are asked at no cost; and every agent
is willing to help her successors, in essence bringing in some level of cooperation. The reason for
this assumption is because even though no questions can benefit the current agent, her information
could be beneficial to future agents. This is inspired by behavior in social networks, where is
common to see people are willing to help their friend/neighbor nodes. Henceforth, we will assume
such behavior. Additionally, we will also assume that the QGB is common knowledge10.

3 Telephone-game Network, Strategy, and Question Guidebooks

To exhibit how designing QGBs can achieve learning, in the following sections, we consider a
special network, called telephone-game network. In this network, we only endow each pair of
consecutive agents with a communication channel of finite capacity. In other words, the topology
of this communication network is a directed line graph. Therefore, besides observing the actions

9Since the history is fully observable in our model, Hi ⊂ Hj for all i < j, it is sufficient to check P(Hn−1|Q) > 0
for the feasibility of history Hn. However, the above definition still works when the history is only partial observable.

10A subtle weaker assumption is discussed in Appendix B.4
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in history, the only source for an agent to get additional information is asking finite-bit questions
to her immediate predecessor (if any). Since the capacity of every channel between each agent
and her immediate predecessors is finite, agents may not be able to get the information of all
private signals observed by all her predecessors. This is a very basic model11 to start studying if
the asymptotic learning is achievable by finite-bit questions.In this Section, we will first propose a
high-level strategy that may achieve asymptotic learning, then study the following two important
questions: first, how to design QGBs to get and accumulate the information we want, we will use
the term Information set partition in the following paragraphs; second, what are the necessary and
sufficient conditions to implement the strategy we proposed to achieve learning?

3.1 Threshold-based Strategy
Capacity constraints may make agents incapable of getting the information of all their predecessors’
private signals. However, there are some “clues” that agents can learn from a fixed length sequence
of private signals owing to the different signal distributions among states of the world, e.g., when the
true state is A, private-signal sequences containing three consecutive As will occur more frequently
than when the true state is B. With this intuition in mind, we propose the following strategy.

Suppose we are in an Ā cascade, i.e., every following agent ignores her private signal and takes
action Ā if no information from questions is provided. As we all know, if the true state is B, agents
are less likely to get multiple private signal As in a row. Hence, we propose the following strategy:
Step 1: Given a predetermined threshold K, agents in an A cascade ask questions to know if the
event “K consecutive private A signal are received by agents” occurs or not.
Step 2: Using the information of whether the event occurs or not, an agent updates her likelihood
ratio of state B versus A. Starting from agent m with a fixed likelihood ratio of B versus A, there
will be the first agent n > m with a positive probability that her updated likelihood ratio B versus
A will cross 1.
Step3: If agent n has likelihood ratio B versus A ≥ 1, her best strategy is to stop the cascade. If
she doesn’t stop the cascade, then we use this agent n as a new starting agent (agent m in previous
step) and start a new round checking if the event occurs in the following agents.

Let’s defer the details of the implementation of this strategy to the end of this Section and
to Section 4. Suppose there is a way to implement the threshold-based strategy presented above
without any incentive compatibility issues, then an important feature we can observe here is that
not every agent in a cascade gets the chance to stop the cascade, i.e., some of them just ask
questions and forward the information of whether the event occurs or not to their successor. Note
that Assumption 1 grants the flexibility of designing a QGB with these questions.

Prior to designing QGBs to implement the threshold-based strategy, we know that for agents
who have a chance to stop the cascade conditional on the observed history, the questions designed
for them are restricted to the set of questions that maximize their expected utility. However, for
agents indifferent to any questions, we can design any question for them. Thus, in order to design
questions systematically, we categorize agents into two types conditional on the QGB in practice
and the observed history.

Definition 5. Given an observed history in a feasible and incentive compatible QGB, an agent is
active if she has a positive probability to stop the cascade, otherwise she is called silent.

To further clarify the above definition, conditional on the history, agents who may benefit from
the answer of questions are active agents, otherwise they are silent.

11The telephone-game network has the same topology as a tandem network, but the literature on learning in tandem
networks uses one-way communication made before the next agent sees her private signal. In contrast, our questions
are conditional on the received private signals. To avoid any confusion, we avoid the tandem network terminology.
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3.2 Questions and Information Set Partition
Here, we detail how questions help gather information, and how the capacity constraints limit the
(lossless) information aggregation. To begin, let Tn be the set of sequences of private signals from
agent 1 to n−1, Tn 3 (si)

n−1
i=1 . The information space of agent n, corresponding to a observed

history Hn and the question guidebook Q, is the set of all feasible sequences T ∗n(Q,Hn) ⊆ Tn.
The questions assigned to agent n help her to update her posterior belief of the true state by
partitioning T ∗n into information sets In(Q,Hn) and telling agent n at which set she is in. For
simplicity of notation, we denote the collection of information sets In(Q,Hn) by In(Q,Hn).

By viewing question as an information set partition tool, studying the transition from In(Q,Hn)
to In+1(Q,Hn+1) can help us understand how information aggregates. A well-known approach to
analyze this class of problems systematically is by mapping these information-set transitions to
Markov chains with transition matrices12. To formulate the mapping, we associate a QGB with a
sequence of sets of Markov chains sharing the same state space. Denote (G, (Mn)) to be a sequence
of sets of Markov chains, where G is the state set and Mn is the set of Markov chains at time n.
To represent all distinguishable information sets, an inequality |G| ≥ supn,Hn∈H,sn |In(Q,Hn)| is
required for the corresponding (G, (Mn)). Since state space G is shared by all Mn, hereafter, we
simplify words “agent knows her information set corresponding to state Gi” to “agent goes to Gi.”

3.3 Conditions for Asymptotic Learning
In the threshold-based strategy proposed above, with the threshold is fixed and supposing that
we are in a cascade, the number of silent agents between two active agents (if any)13 is only
determined by the (prior) likelihood ratio of the first silent agent who arrives right after an active
agent. Denote the number of silent agents between the k-th and k+ 1-th active agents by mk. One
necessary condition to achieve asymptotic learning is having mk go to infinity with k. If this does
not happen, then we always have a positive probability (lower-bounded by a constant) to stop a
cascade, which will stop every correct cascade too. However, if mk goes to infinity too fast, then
we cannot guarantee that a wrong cascade will eventually be stopped. Ergo, to achieve asymptotic
learning, the key is to choose questions that carefully control the growth rate of mk. In the next
Section, we will detail an implementation only using a 1-bit question for each agent. The precise
necessary and sufficient conditions to achieve learning for threshold-based QGBs will be presented
in Lemma 2.

4 Implementation of Threshold-based Strategy – Asymptotic
Learning achieved in One-bit Questions

In this section, we present our main result: asymptotic learning is achievable via an explicit con-
struction of a question guidebook that uses a threshold-based strategy in the telephone-game net-
work where agents ask exactly a single one-bit question.

Theorem 1. In the telephone-game network, there exists a question guidebook using 1-bit capacity
questions that achieves asymptotic learning.

Before presenting the proof, we first construct the QGB, and argue the feasibility and incentive
compatibility of the designed QGB. Then, we provide the necessary and sufficient conditions when
this class of QGBs achieves asymptotic learning. Finally, we prove the theorem by showing the
conditions are satisfied in the constructed QGB.

12To allay readers’ concerns on what typical questions should look like and why we use Markov chains to model
the QGBs, an example demonstrating the delicateness of the design problem is in Appendix B.1.

13We show that active agents cannot come consecutively in the proof of Claim 1 in Appendix A.1
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Construction of the Question Guidebook Here we implement a QGB using the threshold-
based strategy introduced in Section 3.1. Under the constraint of 1-bit capacity on questions, we
choose K = 2. In other words, in the QGB we are going to construct, we know that once two
consecutive silent agents get a private signal of the same type as the current cascade, there is no
chance to stop the cascade at the immediate next active agent.

Without loss of generality we assume that the true state of the world is B so that an Ā cascade
is a wrong cascade and a B̄ cascade is a correct one. Moreover, to avoid trivial questions in the
QGB, the question guidebook becomes operational only when a cascade is initiated. Thus, an agent
not in a cascade uses her private signal and does not need the guidebook.

As described in Section 3.1, we design different questions for active and silent agents in a cascade.
Since only 1-bit questions are allowed, Section 3.2 and accompanying details in Appendix B.5
suggest that the QGB will consist of the partition of the (evolving) history into five sets. Next
we illustrate the QGB by providing the corresponding Markov chains first and then detailing the
questions actually being asked in each possible state. The Markov chains are depicted in Figure
1 assuming that a Ā cascade is underway14, and they prescribe how the information space gets
partitioned based on the type of the agent (active or silent), the private signal of the agent and the
response from the immediate predecessor to the question (if it is asked).

𝐺1 𝐺2

𝐺4 𝐺3B

B

B

A

B

A

𝐺1 𝐺2

𝐺4 𝐺3

A,B

A,B

𝐺0
B

A

A,B

A

𝐺0A,B

A

A,B

Silent
Agents

Active
Agents

Figure 1: Markov chains of proposed threshold-based question guidebook

The corresponding Markov chains in the designed QGB, as depicted in the left of Figure 1,
endows every silent agent with the same transition matrix. This transition matrix is given by two
different determined questions conditional on the silent agent’s private signal15; and the questions
and corresponding information sets are as follows.

Receives private signal B Receives private signal A

Question asked Are you in {G1, G2}? Are you at G1?

Action under positive answer Go to G1 Go to G2

Action under negative answer Go to G4 Go to G3

Since every active agent only cares if her immediate predecessor is in G1 when she receives a
private signal B so she can stop the cascade (play B̄), questions are only needed in that case.

Receives private signal B Receives private signal A

Question asked Are you at G1? No questions asked

Action under positive answer Go to G0 and stop cascade
Go to G1Action under negative answer Go to G1

14In a B̄ cascade, the same guidebook applies but with the As and Bs swapped.
15As described earlier, a silent agent’s partition can never be G0.
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Before showing that the QGB is feasible and incentive compatible, we want to point out that
while there exist a large set of QGBs that can achieve asymptotic learning even with the 1-bit
constraint, the proposed design simplifies the analysis and proofs, and avoids solving complex
recursive system of equations with four variables.
Feasibility and incentive compatibility of the question guidebook With the proposed QGB
in hand, the first step is to verify the feasibility and incentive compatibility. Feasibility of this QGB
is straightforward because every agent, no matter whether she is active or silent, knows her current
state. Therefore, she can definitely answer the yes-no question about her current state to pass the
feasibility check.

Showing incentive compatibility is equivalent to showing that G1 is the only state that can have
likelihood ratio of B over A crossing 1 for any active agent. Here, we will establish a result that
applies to more generally than the designed QGB. We will prove that every threshold-based QGB
has positive probability to stop the cascade only when the immediate predecessor of a active agent
is at G1 (threshold event not holding for current majority, i.e., Ā).

Definition 6. Given a question guidebook such that every silent agent uses the same transition
matrix, a question guidebook is threshold-based if for every silent agent whose neighbor is in a
transient state (e.g., G1, G2 in this question guidebook) of the Markov chain, she goes to state Gi+1

upon receiving a private signal in an observed majority or goes to Gmax{1,i−1} upon receiving a
private signal in an observed minority. Furthermore, active agents continue the cascade bring all
feasible sequence of private signal to G1.

Lemma 1. In threshold-based question guidebooks, active agents can only stop the cascade at G1.

To show Lemma 1, we first need to guarantee there exists at least one silent agent between any
pair of active agents, i.e., active agents cannot arrive consecutively. The idea of the proof is that
once an active agent fails to stop a cascade, it either gets an observed-majority private signal or the
cascade will continue whatever private signal she gets. Then simple algebra rules out the possibility
of consecutive active agents: see Claim 1 in Appendix A.1. Now, given the current active agent
ak, if the next active agent indexed ak+1 can stop cascade at state Gi for some i > 1, then agent
ak+1 − i+ 1 also has the ability to stop the cascade at G1, which contradicts the fact that ak+1 is
the next active agent. The detailed proof is in Appendix A.1.

Since the QGB we constructed is a threshold-based QGB and active agents stop a cascade only
in G1, Lemma 1 guarantees incentive compatibility.

Necessary and sufficient conditions for asymptotic learning in threshold-based question
guidebooks In order to show that the proposed QGB can achieve asymptotic learning, we provide
a necessary and sufficient condition to achieve asymptotic learning for every threshold-based QGB.

Definition 7. Let h+(m) be the probability that the wrong cascade will be stopped when mk = m,
where mk is the number of silent agent between the (k − 1)th and kth active agents. Similarly,
h−(m) represents the probability that the right cascade will be stopped when mk = m.

Lemma 2. Given a threshold-based question guidebook Q that is operational in a cascade. The
following three conditions are necessary and sufficient for the question guidebook to achieve to
achieve the asymptotic learning:

1 limk→∞m
k =∞;

2 The growth rate of mk satisfies Π∞k=1(1− h−(mk)) > Π∞k=1(1− h+(mk)) = 0;

3 The transition matrix M∗ = MsMa is irreducible, where Ms is the transition matrix for silent
agents and Ma is the transition matrix for active agents who receive observed majority signals.

8



The first condition makes the frequency of active agents to go to 0 as time goes to infinity,
otherwise asymptotic learning cannot be achieved16. Furthermore, we want every wrong cascade
to be stopped with probability 1, but also need the right cascade to have a positive probability to
last forever. This constrains the maximum and minimum growth rate of mk, which is discussed in
the second condition. The last condition guarantees that in a cascade, with an arbitrary number
of silent agents followed by an active agent, all states can be visited. Without this condition, the
QGB cannot correct all kinds of the wrong cascades and no learning is achievable.

4.1 Asymptotic Learning is achieved (Sketch of proof of Theorem 1)
Since the last condition in Lemma 2 is trivially satisfied in the designed QGB, most of proof is on
verifying the first two conditions in Lemma 2. For this we have to analyze the growth rate of mk

thoroughly. This following paragraphs will first characterize the form of mk, then study upper and
lower bounds of its growth rate. With those bounds in hand, calculations can be done to show
the wrong cascade will be stopped almost surely and the right state will last forever with positive
probability (which can be lower-bounded by some constant).
Form of number of silent agents To study the growth rate of mk, we need to know exactly how
many of agents between each pair of consecutive active agents.

Prior to this, we need to specify the functions h+(m) and h−(m) first. With threshold K = 2,
two consecutive majority signals in a cascade will continue the cascade at the next active agent.
Simple combinatorics yields h+(m) and h−(m) as follows:

h+(m) =

m/2∑
i=0

(
m− i− 1

i

)
pm+1−i(1− p)i; h−(m) =

m/2∑
i=0

(
m− i− 1

i

)
pi(1− p)m+1−i. (1)

Furthermore, with Lemma 1, we know that the likelihood ratio of B versus A at state G1 is the
only parameter that the next active agent needs to compute. Suppose we know the likelihood
ratio of the first silent agent right after ak, the next active agent ak+1 is the first agent who could
have likelihood ratio at G1 crossing 1. Since h+(m)(h−(m)) is the probability that an agent and
her mth successor are both at G1 conditional on the right(wrong) cascade not yet stopped. The
ratio of h+(m) over h−(m) is the likelihood ratio of B versus A conditioned on the event that the
cascade continues after m silent agents. Hence, by definition of a silent agent, if the agent with

index ak−1 + m is silent, she must have likelihood ratio at G1, `
H

ak−1+1

G1

h+(m)
h−(m)

< 1. Given the fact

that h+(m)
h−(m)

is an strictly increasing function of m for all p > 0.5, the number of silent agents mk

between active agents ak to ak+1 can be mathematically defined as:

mk ≡ min{m|`
H

ak+1

G1

h+(m)

h−(m)
≥ 1}. (2)

Then, since every active agent failing to stop the cascade has only one information set cor-
responding to G1, there is a simple recursive form of likelihood ratio at state G1 between first
silent agents after kth and (k+ 1)th active agents by using the ratio of probability that the cascade

continuous. The recursive form of `
H

ak+1+1

G1
a strictly decreasing17 function of k, is given by:

`
H

ak+1+1

G1
= `

H
ak+1

G1

1− h+(mk)

1− h−(mk)
(3)

With functions h+(m), h−(m), and (3), mk is non-decreasing and can be computed iteratively.

16If we have a non-zero proportion of agents that take actions according to their private signals, the probability of
the right action is upper bounded away from 1.

17See Appendix A.7.1 for the proof.
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Upper bound of growth rate of mk If asymptotic learning can be achieved under this QGB,
every wrong cascade must be stopped, i.e., Π∞k=1(1−h+(mk)) = 0. Thus, if we can find a sequence
wk ≥ mk, ∀k, and Π∞k=1(1−h+(wk)) = 0, then h+(mk) ≥ h+(wk) guarantees Π∞k=1(1−h+(mk)) = 0.
Finding the upper bound of the growth rate of mk is equivalent to finding the lower bound of
sequence ns such that mk−1 = s − 1 and mk+i−1 = s for all i ≤ ns. Now, suppose mk = s,
mk−1 = s− 1, we can calculate ns (See detailed calculations in A.3) to get∣∣∣∣{mt = s|`Hat−1+1

G1

h+(s)

h−(s)
≥ 1}

∣∣∣∣ ≥ ns > ln
(h+(s)h−(s− 1)

h−(s)h+(s− 1)

)
≥ ln(c1(p))

ps + p2s
, (4)

where c1(p) is only a function of p.

Wrong cascade will be stopped almost surely Taking the inequality (4) into the condition 2
in Lemma 2, the probability that a wrong cascade will be stopped is18

P(A wrong cascade can be stopped) = 1−Π∞k=1(1− h+(mk)) ≥ 1−Π∞k=1(1− pmk
)

≥ 1−Π
min{j|mj+1=J}
k=1 (1− pmk

) exp
(
− p ln(c1(p))

∑∞
n=J

1
1+pn

)
= 1 (5)

Lower bound of growth rate of mk and the probability of stopping a right cascade
Similarly, to show that P(a right cascade will be stopped) < 1, we can show that a lower bound of
Π∞k=1(1− h−(mk)) is positive. Thus, we now need a lower bound of the growth rate of mk. Using
a similar technique as for (4), we derive an opposite inequality for n̄s in Appendix A.5, and then
the probability that a right cascade will be stopped is

P(A right cascade will be stopped) ≤ 1−B(p) exp
( ∞∑

n=J̄

1

c4(p)c1(p)n − 1

)
, (6)

where B(p) = c2(p)ec3(p)Π
min{j|mj+1=J̄}
k=1 (1−h−(k)). Since

∑∞
n=J̄

1
c4(p)c1(p)n−1 converges by the ratio

test, the RHS of (6) is less than 1, so that a right cascade can last forever with a positive probability.
Now, every wrong cascade will be stopped but there is a positive probability that a right cascade

will continue forever, so the second condition is satisfied. Furthermore, since the lower bound and
upper bound of growth rate n̄s suggest a finite interval of mk = s, mk goes to infinity as k goes
to infinity, so the first condition also holds. Thus, asymptotic learning can be achieved under this
QGB. Once we’re out of a cascade, agents use their private signals and that will initiate another
cascade with a bias towards a right cascade. Nevertheless, every wrong cascade will be stopped in
finite time and an unstoppable right cascade happens after finitely many stopped right cascades.
Thus, the learning happens almost surely instead of just in probability, as in Definition 1, so that
in finite time learning occurs.

5 Conclusion

We have shown that in the sequential social learning model of BHW [1], agents avoid wrong cascades
and achieve asymptotic learning by asking one well designed binary question to the preceeding
agent. To do this, we develop a question guidebook that the agents can use to ask questions such
that the agent can always answer the question, and agents always ask a question that best serves
their self interest. Determining the distribution of the time of learning or finding the best question
guidebook to minimize some statistic of the time of learning is for future work. Generalizing from
binary private signals to other discrete signals and then to the framework of [4], or to consider
multiple states of nature [5] is also for future work.

18See Appendix A.4 for detailed calculation
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A Appendix: Proofs and Calculations

A.1 Proof of Lemma 1

Proof. Prior to showing Lemma 1, we want to first claim a useful property in threshold-based
question guidebooks.

Claim 1. Given a threshold-based question guidebook which is feasible and incentive-compatible,
active agents cannot arrive consecutively.

Proof. First we note that active agents arriving means that the cascade is still ongoing and the
question guidebook operational. Then assume that active agent ak is in state Gj ∈ G∗, where G∗ is
defined as the set of states at which she can stop the cascade.

We know for sure that the likelihood ratio of agent ak + 1 at state G1, denoted by `a
k+1

G1
is

less than 1−p
p . The reason is that G1 at ak + 1 contains two types of events. The first types

is where ak is in Gk ∈ G∗ but receiving an observed majority. Given `a
k

Gi
< 1 for all Gi ∈ G∗,

(`a
k+1

G1
|ak at Gi ∈ G∗) < 1−p

p ; note that agent ak does not stop the cascade. The other type is ak

was at Gi 6∈ G∗. Here also we get (`a
k+1

G1
|ak at Gi 6∈ G∗) < 1−p

p because ak cannot stop the cascade
even after receiving observed minority in any of those states.

Therefore, we can conclude that `a
k+1

G1
< 1−p

p , which guarantees that agent ak + 1 is a silent
agent, and not an active agent.

Given that every active agent goes to G1 once knowing she cannot stop the cascade, Claim
1 tells that the next agent must be a silent agent. With the claim, we can prove this lemma
by contradiction. Starting from G1, we assume the next active agent is ak+1 who can stop the
cascade at Gi for some i > 1. Now, consider that likelihood ratio of state G1 at agent ak+1− i+ 1,

`a
k+1−i+1

G1
, `a

k+1−i+1
G1

≥ `ak+1

Gi
; this is because of the allowed transitions in the Markov chain of silent

agents. Agent ak+1 can stop the cascade at Gi and this requires `a
k+1

Gi
≥ 1−p

p . It implies that

`a
k+1−i+1

G1
≥ 1−p

p . Now, agent ak+1 − i + 1 must be an active agent, which contradicts that next

active agent is ak+1.

A.2 Proof of Lemma 2

First, we show that if one of these three condition fails, then asymptotic learning is not achievable.
The check for the first condition is straightforward, if it fails, then there exists an N such that

mk < N for all k. Now, h−(mk) is lower-bounded by h−(N) > 0. As we all know, limn→∞(1 −
h−(N))n = 0, a correct cascade will always being stopped in finite time and asymptotic learning is
not possible.

For the second condition, if Π∞k=1(1−h+(mk)) = 0 6= 0, then there is a positive probability that
a wrong cascade lasts forever. Obviously, asymptotic learning cannot be achieved. If Π∞k=1(1 −
h−(mk)) = Π∞k=1(1− h+(mk)) = 0, then we will keep stopping every cascade whether it is a right
cascade or not. Therefore, limn→∞ P(Xn = X̄n) < 1 because we will have a positive probability of
either being in a wrong cascade or not being in a cascade.

Finally, if the product of transition matrix M∗ = MsMa is not irreducible, then there are some
states that we either cannot access or from which we cannot go back to any other state. It implies
that we cannot stop cascades at those states. Hence, it is necessary that M∗ is irreducible to achieve
asymptotic learning.
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In the other direction, suppose we have the first and the second conditions satisfied, then we
know we will keep stopping some wrong cascades but not the correct cascades. With the third
condition, we know that if a cascade, whether it’s correct or wrong, isn’t stopped by the upcoming
active agent, then it has a positive probability of being stopped by at least one of the next |G|
active agents, because the directed graph corresponds to M∗ is strongly connected. Now, since
all wrong cascades can be stopped in finite time but some of right cascade will last forever, then
asymptotic learning is achieved.

A.3 Upper bound of growth rate of mk

Finding the upper bound of mk is analogous to finding a sequence of ns such that∣∣∣∣{mk = s|`
H

ak−1+1

G1

h+(s)

h−(s)
≥ 1

}∣∣∣∣ ≥ ns ∀ s ∈ N.

The following calculations derive the value of ns.
First, the number of mk = s is equivalent to difference of indices between the kth active agent to

the next active agent with index j such that `
H

aj+1

G1

h+(s)
h−(s)

< 1. Hence, we get the following equation:∣∣∣∣{mt = s|`Hat+1

G1

h+(s)

h−(s)
≥ 1, t ≥ k

}∣∣∣∣ = min{n|`
H

ak+n+1

G1

h+(s)

h−(s)
< 1}.

Now, using the recursive formula of likelihood ratio stated in (3), we get the following equation:∣∣∣∣{mt = s|`Hat+1

G1

h+(s)

h−(s)
≥ 1, t ≥ k

}∣∣∣∣ = min

{
n|`

H
ak+1

G1

(1− h+(s)

1− h−(s)

)nh+(s)

h−(s)
< 1

}
.

We know that `
H

ak−1+1

G1

h+(s)
h−(s)

> 1 because mk = s and mk−1 = s − 1, so taking logarithms we

obtain∣∣∣∣{mt = s|`Hat+1

G1

h+(s)

h−(s)
≥ 1, t ≥ k

}∣∣∣∣ = min

{
n|n ln

(1− h−(s)

1− h+(s)

)
> ln

(h+(s)

h−(s)

)
+ ln(`

H
ak+1

G1
)

}
≥ min

{
n|n ln

(1− h−(s)

1− h+(s)

)
> ln

(h+(s)

h−(s)

)
+ ln(`

H
ak+1

G1
)− ln(`

H
ak−1+1

G1
)− ln

(h+(s− 1)

h−(s− 1)

)}
Using the recursive form in (3) once again, we get∣∣∣∣{mt = s|`Hat+1

G1

h+(s)

h−(s)
≥ 1, t ≥ k

}∣∣∣∣
≥ min

{
n|n ln

(1− h−(s)

1− h+(s)

)
> ln

(h+(s)h−(s− 1)

h−(s)h+(s− 1)

)
+ ln

(1− h+(s− 1)

1− h−(s− 1)

)}
≥ min

{
n|(n+ 1) ln

(1− h−(s)

1− h+(s)

)
> ln

(h+(s)h−(s− 1)

h−(s)h+(s− 1)

)}
From this point onwards, we need to compute a lower bound of ln

(
h+(s)h−(s−1)
h−(s)h+(s−1)

)
, and an upper

bound of ln
(

1−h−(s)
1−h+(s)

)
. For ease of reading we put the derivations of the calculations of the lower

bound of ln
(
h+(s)h−(s−1)
h−(s)h+(s−1)

)
in Appendix A.7.4, and the upper bound of ln

(
1−h−(s)
1−h+(s)

)
using the Claim

3 in Appendix A.7.2 (by using the fact that ln
(

1−h−(s)
1−h+(s)

)
< ln

(
1

1−h+(s)

)
first).
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Combining the result in AppendixA.7.4, which shows ln
(
h+(s)h−(s−1)
h−(s)h+(s−1)

)
≥ c1(p), where c1(p) is

only a function of p, and the result in Appendix A.7.2, ln(
1− h−(s)

1− h+(s)
) ≤ ps + p2s, we can pick ns as

ns =
ln(c1(p))

ps + p2s
. (7)

A.4 Calculation of the probability that a wrong cascade will be stopped

First, we use the lower bound of h+(m) derived in Appendix A.7.3 to get the first inequality

P(A wrong cascade can be stopped) = 1−Π∞k=1(1− h+(mk)) ≥ 1−Π∞k=1(1− pmk
).

Now, we use the sequence ns that upper bounds the growth rate of mk to replace the product and
apply the lower-bound result in A.7.4 for large enough J.

P(A wrong cascade can be stopped) ≥ 1−A(p)Π∞
n=J(1− pn)

ln(c1(p))

pn−1(1+pn−1)

≥ 1−A(p) exp
(
p

∞∑
n=0

ln(c1(p))

pn(1 + pn−1)
(−pn)

)
= 1−A(p) exp

(
− p ln(c1(p))

∞∑
n=0

1

1 + pn

)
= 1,

where A(p) = Π
min{j|mj+1=J}
k=1 (1− pmk

).

A.5 Lower bound of growth rate of mk

Finding the lower bound of mk is analogous to finding a sequence of n̄s such that |{mk =

s|`
H

ak−1+1

G1

h+(s)
h−(s)

≥ 1}| ≥ n̄s for all s ∈ N. In contrast to what we did in computing ns, we now want

to upper bound the following equation:

∣∣∣∣{mt = s|`Hat+1

G1

h+(s)

h−(s)
≥ 1, t ≥ k

}∣∣∣∣ = min

{
n|`

H
ak+1

G1

(1− h+(s)

1− h−(s)

)nh+(s)

h−(s)
< 1

}
.

Given that mk = s and mk−1 = s − 1, `
H

ak+1

G1

h+(s−1)
h−(s−1)

< 1 because mk = s and mk−1 = s − 1,

we can lower bound the equation and then take logarithms on both sides of the inequality to get∣∣∣∣{mt = s|`Hat+1

G1

h+(s)

h−(s)
≥ 1, t ≥ k

}∣∣∣∣ = min

{
n|n ln

(1− h−(s)

1− h+(s)

)
> ln

(h+(s)

h−(s)

)
+ ln(`

H
ak+1

G1
)

}
≤ min

{
n|n ln

(1− h−(s)

1− h+(s)

)
> ln

(h+(s)

h−(s)

)
+ ln(`

H
ak+1

G1
)− ln(`

H
ak+1

G1
)− ln

(h+(s− 1)

h−(s− 1)

)}
= min

{
n|n ln

(1− h−(s)

1− h+(s)

)
> ln

(h+(s)h−(s− 1)

h−(s)h+(s− 1)

)}
Similarly, we can replace ln

(
h+(s)h−(s−1)
h−(s)h+(s−1)

)
by an upper bound c2(p) derived in Appendix A.7.4

for large enough s. However, unlike what we did for upper bounding the growth rate of mk, now
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we keep the form ln
(

1−h−(s)
1−h+(s)

)
and bring this into the calculation of the probability that a right

cascade will being stopped. In other words,

n̄s =
ln(c2(p))

ln
(1−h−(n)

1−h+(n)

) .
A.6 Calculation the probability that a right cascade will finally being stopped

Taking the lower bound derived in Appendix A.5, we get the following inequality:

P(A right cascade will be stopped) = 1−Π∞k=1(1− h−(mk))

≤ 1−A(p)Π∞n=J̄(1− h−(n))

ln(c2(p))

ln

(
1−h−(n)

1−h+(n)

)
= 1−A(p) exp

( ∞∑
n=J̄

ln(c2(p))

ln
(1−h−(n)

1−h+(n)

) ln(1− h−(n))
)
,

where A(p) = Π
min{j|mj+1=J̄}
k=1 (1− h−(k)), and J̄ is the same as in Appendix A.4.

Now, the rest of calculations are just using well-known upper and lower bounds on the logarithm.
With calculations detailed in A.7.5, we get that

P(A right cascade will be stopped) ≤ 1−B(p) exp
( ∞∑

n=J̄

1

c4(p)c1(p)n − 1

)
,

where B(p) = c2(p)ec3(p)Π
min{j|mj+1=J̄}
k=1 (1− h−(k)).

Now, using the fact that c1(p) > 1 in Appendix A.7.4, for a large enough n, | c4(p)c1(p)n−1
c4(p)c1(p)n+1−1

−
c1(p)| ≤ ε. Hence, by ratio test, we can claim that

∑∞
n=J̄

1
c4(p)c1(p)n−1 converges, and

P(A right cascade will be stopped) < 1.

A.7 Technical Claims and Calculations

A.7.1 Claim 2 and its proof

Claim 2. The likelihood ratio `
H

ak+1

G1
is a strictly decreasing function of k.

Proof. First, h+(m)
h−(m)

is a strictly increasing function of m (please see calculations in Appendix A.7.4).

Since h+(1) > h−(1) > 0 and given the form in (2), `
H

ak+1

G1
is an strictly decreasing function.

A.7.2 Claim 3 and its Proof

Claim 3. ln

(
1− h−(s)

1− h+(s)

)
can be upper-bounded by ps + p2s.

Proof. First, ln

(
1− h−(s)

1− h+(s)

)
≤ ln

(
1

1− h+(s)

)
.

Then, using the upper bound in Appendix A.7.3 and Taylor’s expansion, we know that

ln

(
1

1− h+(s)

)
≤ − ln(1− ps) ≤ ps + p2s.
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A.7.3 Calculation of Upper bound of h+(m)

First, in this question guidebook, h+(m) has a closed form given by

h+(m) =


√

p
4−3p2−(m+1)[(p+

√
p(4− 3p))m+1 − (p−

√
p(4− 3p))m+1], m is even√

p
4−3p

(p
2

)m+1
2
[(

(2− p) +
√
p(4− 3p)

)m+1
2 −

(
(2− p)−

√
p(4− 3p)

)m+1
2
]
, m is odd

With the closes form of h+(m), a simple bound of
h+(m+ 1)

h+(m)
< p holds for all m ∈ N.

For readers curious about the exact difference of ph+(m)− h+(m+ 1), the form is

pm+2
[

2F1(−m
2 −

1
2 ,−

m
2 ,−m− 1, 4(1− 1

p))− 2F1(−m
2 + 1

2 ,−
m
2 ,−m− 1, 4(1− 1

p))
]
, where 2F1(·) is a

hypergeometric function. We will not need this detail as getting the bound
h+(m+ 1)

h+(m)
< p is good

enough for our results.

A.7.4 Convergence and bounds of
h+(m+ 1)

h−(m+ 1)
/
h+(m)

h−(m)
.

For the simplicity, suppose m is even. Recall the closed form of h+(m) and h−(m) as follows:

h+(m) =

√
p

4− 3p
2−(m+1)[(p+

√
p(4− 3p))m+1 − (p−

√
p(4− 3p))m+1]

h−(m) =

√
1− p
1 + 3p

2−(m+1)[(1− p+
√

1 + 2p− 3p2)m+1 − (1− p−
√

1 + 2p− 3p2)m+1]

Consider
h+(m+ 2)

h−(m+ 2)
/
h+(m)

h−(m)
.

h+(m+ 2)

h−(m+ 2)

h−(m)

h+(m)
=

(p+
√
p(4− 3p))m+3 − (p−

√
p(4− 3p))m+3

(1− p+
√

1 + 2p− 3p2)m+3 − (1− p−
√

1 + 2p− 3p2)m+3

× (1− p+
√

1 + 2p− 3p2)m+1 − (1− p−
√

1 + 2p− 3p2)m+1

(p+
√
p(4− 3p))m+1 − (p−

√
p(4− 3p))m+1

=
(p+

√
p(4− 3p))2

(1− p+
√

1 + 2p− 3p2)2

1− (p−
√

p(4−3p))m+3

(p+
√

p(4−3p))m+3

1− (p−
√

p(4−3p))m+1

(p+
√

p(4−3p))m+1

1− (1−p−
√

1+2p−3p2)m+1

(1−p+
√

1+2p−3p2)m+1

1− (1−p−
√

1+2p−3p2)m+3

(1−p+
√

1+2p−3p2)m+3

≤
(p+

√
p(4− 3p))2

(1− p+
√

1 + 2p− 3p2)2

[
1 +

(p−√p(4− 3p)

p+
√
p(4− 3p)

)m+1
+
(p−√p(4− 3p)

p+
√
p(4− 3p)

)m+2

−
(1− p−

√
1 + 2p− 3p2

1− p+
√

1 + 2p− 3p2

)m+1
−
(1− p−

√
1 + 2p− 3p2

1− p+
√

1 + 2p− 3p2

)m+2
]

Since
h+(m+ 2)

h−(m+ 2)

h−(m)

h+(m)
converges to

(p+
√
p(4− 3p))2

(1− p+
√

1 + 2p− 3p2)2
exponentially fast, for large

enough m, we can bound

∣∣∣∣∣h+(m+ 2)

h−(m+ 2)

h−(m)

h+(m)
−

(p+
√
p(4− 3p))2

(1− p+
√

1 + 2p− 3p2)2

∣∣∣∣∣ < ε.
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Given the fact that
(p+

√
p(4− 3p))2

(1− p+
√

1 + 2p− 3p2)2
> 1 for all p > 0.5, there exists functions

c1(p), c2(p) > 1 such that c1(p) <
h+(m+ 2)

h−(m+ 2)

h−(m)

h+(m)
for all m greater than some natural num-

ber J and
h+(m+ 2)

h−(m+ 2)

h−(m)

h+(m)
< c2(p) for all m greater than some natural number J̄ .

A.7.5 Bounding the probability of stopping a right cascade

P(a right cascade will be stopped)

≤ 1−A(p) exp
(

ln(c2(p))

∞∑
n=J̄

−h−(n)

ln(1 + h+(n)−h−(n)
1−h+(n)

)

)
≤ 1−A(p) exp

(
ln(c2(p))

∞∑
n=J̄

−h−(n)
h+(n)−h−(n)

1−h+(n)
(1− h+(n)−h−(n)

1−h+(n)
)

)
≤ 1−A(p) exp

(
ln(c2(p))

∞∑
n=J̄

−1

(h
+(n)

h−(n)
− 1)(1− h+(n)−h−(n)

1−h+(n)
) 1

1−h+(n)

)
≤ 1−A(p) exp

(
ln(c2(p))

∞∑
n=1

−1

(h
+(n)

h−(n)
− 1)(1− pn−0

1−pn ) 1
1−pn

)
≤ 1−A(p) exp

(
ln(c2(p))

∞∑
n=1

−1

(h
+(n)

h−(n)
− 1) 1−2pn

(1−pn)2

)
≤ 1−A(p) exp

(
ln(c2(p))

∞∑
n=1

−1

(h
+(n)

h−(n)
1−2pn

(1−pn)2
− 1

)
≤ 1−B(p) exp

( ∞∑
n=J̄

1

c4(p)c1(p)n − 1
)
)
,

where B(p) = c2(p)ec3(p)Π
min{j|mj+1=J̄}
k=1 (1− h−(k))

B Appendix: Discussions

B.1 Question guidebooks are delicate

For the model described in Section 2 assume that every agent is only allowed to ask one binary
question to the agent just in front of her. In other words, the capacity of the channel is exactly one
bit. We will attempt to manually design the questions with the goal being asymptotic learning.
Before we proceed, we remind the reader that in our model when indifferent (i.e., the posterior
beliefs on the states of world are equally likely, or alternatively the likelihood ratio of state is A
versus the state is B is 1), an agent will always take the action suggested by her private signal.

It is clear that along a sample-path, the only interesting parts are the questions asked after a
cascade happens. Therefore, without loss of generality, we assume the first two agents get private
signal A and take action Ā to start a Ā cascade.

Give the above assumption, it is clear that agent 3 cannot stop the cascade as she exactly knows
the private signal of agent 1 and 2 from their actions. Hence, agent 3 will take action Ā whichever
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private signal she receives. Now, agent 4 has a chance to stop the cascade if both she and agent 3
get B. Therefore, once she receives signal B, she should definitely ask agent 3 the question “Did
you get signal B?” Now we have another issue on designing the question book. What questions
should agent 4 ask if she gets signal A. Since the above question is the most informative question
that agent 4 can ask, we assume she will ask the same question even if she gets signal A.

When the game goes to agent 5, there are two possible observations for her, either ĀĀĀB̄ or
ĀĀĀĀ. If ĀĀĀB̄ is observed, the she definitely know that the underlying private signal is AABB
and the cascade has already been stopped. Hence, she should take a decision according to her
private signal. The interesting part comes when she observes ĀĀĀĀ. Now, prior to asking any
questions, she knows there are at least three A in the first four agent’s private signal. Therefore, she
should take action Ā whatever signal she receives. However, her question, even though it cannot
benefit herself, may be critical to the following agents and could enable them to stop the cascade.
Suppose she gets B̄, and she can ask agent 4 the question “Did you or agent 3 get signal B̄?”.
First, we realize that agent 4 is able to answer this question. Once she get positive answer, she
know there are exactly 3Ās and 2 B̄s received by the first 5 agents. Therefore, once the agent 6 ask
if there are two B̄s in the first five agents, she can answer this question, and the positive answer
can help the agent 6 to stop the cascade once she gets B̄. Now, we have a clear example how a
silent agent can actually help the following active agents to stop the cascade by asking questions
in preparation of the (possible) questions asked by active agents.

Everything works well until agent 6. However, once agent 6 gets signal A, there exist multiple
questions that are informative. For example, agent 6 can ask question 1: “Did the first five agents
get 2 Bs?” or question 2: “Did the first five agents get one or more Bs?”. Both questions can
be answered by agent 5, but it is hard for us to know which one is the better question to help
achieving asymptotic learning. Furthermore, agent 6 cannot distinguish the exact number of B in
the first 5 agents once she receives B but gets a negative answer from agent 5. Therefore, when
the cascade continuous to agent 7, we have to keep every branch of possible questions alive, and
try to proceed on every branch until we finally understand that some branches cannot achieve
asymptotic learning. Therefore, we can realize that question guidebooks are very delicate to design
even we have already restrict our attention to a single Yes-No question. To conclude, even though
we can proceed and design question guidebooks in this way, it is hard to analyze and generalize
the result to non-binary states and channels with higher capacity. The main value of this example
is to indicate that it may not be the best approach to design the question guidebooks directly, and
also to justify why we want to work with the corresponding Markov chains instead.

B.2 Why learning is more difficult in a deterministic network topology

Unlike a deterministic network where the topology is the common knowledge of every agent, a
common assumption is to use a randomized network topology where it is assumed that distributions
of edges are common knowledge but the realized set of predecessors Bn = {m|(m,n) ∈ E} that
agent n can communicate is a private information of agent n (otherwise higher order beliefs will
be hard to analyze). Under this assumption, if an information cascade occurs and the information
that is allowed to get from predecessors with communication channels is restricted to their private
signals, it is analogous to the model in [8] with neighbor set Nn = Bn ∪ {i} ∪ {i + 1}, where
agent i, i + 1 are the agents to start the cascade. Then, Theorem 4 in [8] states the condition
that asymptotic learning can be achieved in randomized networks. In contrast, things are not
that simple with deterministic networks as there is an informational Braess’s paradox, i.e., two
information sources that both individually suggest agent n to ignore her private signal and take
action Ā may collectively lead agent n take action B̄ instead. An example will be provided below
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to illustrate this phenomenon, but the main message here is that problems in deterministic and
randomized network topology are substantially different.

B.2.1 Informational Braess’s paradox in deterministic networks

Here, we want to present a counter-intuitive example showing that informational monotonicity may
not exist in the deterministic network. In a nutshell, two (or more) sources of information both
suggest an agent ignoring her private signal and taking an action Ā may eventually makes agent
taking action B̄.

Consider the observable history is represented by network G contains two subnetwork G1(U,EU )
and G2(V,EV ) and two nodes W1,W2. Let eUi,j represents the edge between Ui and Uj , and similarly

for eVi,j .

Now, define the topology of the first subnetwork G1(U,EU ) such that EU = {eU1,3, eU2,3, eU3,j∀j ∈
{[J ] \ {1, 2, 3}}}, where J is a constant integer; and define the topology of the second subnetwork
G2(V,EV ) such that EV = {eV1,3, eV2,3, eV1,k, eV3,k∀k ∈ {[K]\{1}, {2}, {3}}}, where K is a fixed integer.

Then, the whole network G is defined as follows: G = (U ∪ V ∪ {W1,W2}, EU ∪ EV ∪ EW2),
where EW2 = {(i,W2)|i ∈ U ∪ V ∪W1 \ {U2, V1, V2}}. In short, W2 can observe all agents action
except agent U2, V1, and V2. We assume that agents make actions sequentially, and agent Xi takes
action before agent Xj for all i < j, X ∈ {U, V,W} and agent Xi takes action before agent W2 for
all X ∈ {U, V }. The directed graph is depicted in Figure 2.

𝑈1 𝑈2 𝑈3 𝑈4 𝑈5 𝑈6 𝑈𝐽

𝑉1 𝑉2 𝑉3 𝑉4 𝑉5 𝑉6 𝑉𝐾

…

…

𝑊1 𝑊2

Figure 2: Baress’s paradox in deterministic network

In this topology, consider a realized observation of W2 such that actions taken by agents in Uj ,
XUj = Ā for all j ≥ 3 and j = 1, and actions taken by agents in Vk, XVk

= B̄ for all k ≥ 3. By
calculating the likelihood ratio at W2, we know that W2 should ignore her private signal and take
action Ā the observation of XW1 = Ā.

At this point, we know that if agent W2 observes the history realized in the above case, there
is a information cascade on Ā; and we say this is the first source of information that agent W1 can
get from.

Now, if on top of these observations, agent W2 now can observe the action taken by agent V1

(the purple dash line in the figure) and XV1 = Ā, which solely suggests agent W2 to take action
Ā. Surprisingly, if we calculate the likelihood ratio of W2 using the observation of both source
of information, agent W2, instead of being in an information cascade and taking action Ā, will
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ignore her private signal and taking action B̄ when K ≥ 5. In this case, although both sources
of information suggest an information cascade, by considering the feasible sequence of the private
signal using the both source of information, the agent can choose to initiate an information cascade
opposite to the suggested one.

Instead of presenting the detailed calculations of the likelihood ratio, we want to point out the
high-level idea why such an informational Braess’s paradox can happen in deterministic networks.

In deterministic networks, agents know the whole network topology, and can build high-order
belief conditional on the past agent’s topology to get some information about some predecessors’
action they cannot observe directly. In the example shown above, before observing the action taken
by V1, agent W2 doesn’t know if the action XVk

= B̄ she observes is taken by agent Vk’s private
signal or Vk is in an information cascade of B̄. Therefore, she need to take both scenarios into
consideration to update her posterior belief if XV1 (the purple line in the figure) is not observable.
However, once she know that XV1 = Ā, she knows that all XVk

, k ≥ 3 are taken by their private
signal. When K is large enough, agent W2 will drop her private signal and initiate an information
cascade B̄.

B.3 Extended Question Guidebooks

Here, we want to point out an extension of the framework of our question guidebook. As mentioned
in Section 2, we are only allowed to design question guidebooks suggesting agents asking questions
simultaneously. However, assume m ∈ Bn, questions being asked by agent n to agent m can be
allowed to be dependent not only on the private signal and history observed by agent n, but also
on the answers of questions asked to other agents in Bn prior to asking agent m. In short, the order
of agents in Bn queried matters in the general framework. The framework of question guidebook,
in general, should be able to help agents update their higher-order belief in the process of asking
questions, and not just a one-shot update after all responses of questions are received. In the
extended framework, a particular collection of sequence of set of questions the information designer
provides to agents will be collectively called a extended question guidebook. The systematic analysis
of extended question guidebooks which includes the freedom of query order on predecessors in Bn,
is generally hard because of the combinatorial complexity of considering all the possible order of
questions, and because the recursive analysis of the higher order beliefs on each specific order of
questions has to be accounted for. To give a glimpse of how an extended question guidebooks
can help achieving asymptotic learning efficiently by asking questions to agents with right order, a
simple example is provided.

B.3.1 Example that the order of questions matters

Before characterizing question guidebooks, we provide a simple example demonstrating question
guidebooks in the general extended framework, where a question guidebook is a collection of a
sequence of an ordered set of questions.

We start with the most unrestricted network, all prior agents are contactable, so every agent is
free to ask questions to any agents with lower index than her (if any), and there are no capacity
constraints on these communications. Obviously, every agent can get perfect information by asking
enough questions to prior agents so that asymptotic learning can be achieved. In the most naive
case, every agent just asks all past agents their private signal. This will require Θ(n) bits of
information per agent.

Since agents are homogeneous, the learning can be achieved with less communication through
the “backward level tracking” scheme proposed below. First of all, it an agent is not in a cascade,
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she take actions according to her private signal. For agents in an cascade, suppose they are in A
cascade, there are three different cases detailed below: If she gets A, then she plays Ā without
asking any questions. If she gets B, then she asks her immediate predecessor’s private signal. If
her predecessor’s private signal is A, then she can safely play A. The reason is that she knows that
there must be an agent in the history has the same number of #A−#B and that person plays A.
Hereafter, we say #A −#B be the level of agents. If she gets B and her immediate predecessor
also got B, she can safely play B only if she knows the current level is over 2. She can ask learn
the level by asking agents n − 1, n − 2, . . . about their private signal. Assuming that agent plays
correctly, he would then know the level of that agent, and from this could compute his own level.

The remaining question is how long an agent will need to look back in order to find either the
beginning, an agent that plays a different action, or an index agent. In the long run, if the correct
state of the world is B all agents will eventually play B. Thus B agents will simply play B (because
the prior agent did). An A agent will need to look back until he finds an index agent. However,
this is essentially a (downward) biased random walk; and so the expected number of steps until
locating an index agent is constant. However, it is only constant in the average case. If the graph
of the level goes down for log(n) steps (as is probable at some point), then agent n will have to ask
at least log n prior agents to find an index agent. This scheme will not work for agents who only
ask a fixed number of queries. Our surprising result is that, actually, agents can manage with only
asking just the immediate predecessor a fixed number of queries, namely one.

B.4 A subtle weaker assumption on common knowledge of question guidebook

At the end of the Section 2, we assume that the whole question guidebook is the common knowledge.
However, it is no loss to use a slightly weaker assumption that only the feasibility and the
compatibility of the proposed question guidebook is common knowledge. To see the difference
between this two assumptions, we have to consider the set of question guidebooks containing index-
dependent questions.

Now, consider we have two different question guidebooks, Q1, Q2 both achieves asymptotic
learning. These two questions guidebooks, concerning the usefulness of questions, become opera-
tional only when a cascade is initiated. Now, consider a joint question guidebook Q∗ which uses
questions in Q1 when a cascade is initiated by the agent with odd index, and use questions in
Q2 when cascade is initiated by even-indexed agent. (This question guidebook can still achieve
asymptotic learning, but it’s not the main point.) Applying the original assumption, we need to
disclose the whole question guidebook to all agents, but it is straightforward that a half of the
question guidebook, after an agent observes the history and knows that the cascade was initiated
by an odd-indexed agent or an even-indexed one, is useless for her on updating her posterior beliefs.
By restricting to the assumption which commits to the feasibility and incentive compatibility of the
question guidebook, all agents’ best response are to ask the questions suggested by the question
guidebook, and this is enough to make our scheme stand.

B.5 Complementary discussion on mapping question guidebook to Markov
chains

To formulate the mapping, we need to know how many of states are required in these Markov
chains first.

Since each channel e has finite capacity, denoted by c(e) and |B(n)| < ∞, the answers of
questions asked by agent n conditioned on the observed history and her private signal can partition
the information space to qn(Hn, sn) disjoint information sets, where qn(Hn, sn) ≤ Πe∈B(n)2

c(e).
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Besides, the minimum number of states sufficient to represent In(Q,Hn) in agent n also depends
on the number of information sets in the agent n− 1, |In−1(Q,Hn−1)|. Thus, the upper bound of
the minimum number of states sufficient to represent In(Q,Hn) can be written as a recursive form:

|In(Q,Hn)| = min{|In−1(Q,Hn−1)|, qn(Hn−1, A)}+ min{|In−1(Q,Hn−1)|, qn(Hn−1, B)} (8)

With the knowledge of the number of required states in Markov chains, next we associate a
question guidebook with a sequence of sets of Markov chains sharing the same state space. Denote
(G, (Mn)) to be a sequence of sets of Markov chains, where G is the set of states and Mn is
the set of Markov chains at time n. Since we are allowed to ask different questions for different
observed histories, we can have different Markov chains for different feasible histories according to
the current question guidebook, hence |Mt| = |{Hn|P (Hn|Q) > 0}|. With (8), we know that that
|G| = supn,Hn∈H,sn |In(Q,Hn)| suffices for our question guidebooks. With such a G, questions asked
by agent n conditioned on an observed history Hn and can be written as a unique Markov chain
transition matrix. However, for the simplicity of identifying the case that active players actually
stop the cascade, an extra state, G0 is added to capture events when this cascade is stopped. For
every silent agent, G0 is an isolated state which has no (directed) edges to/from other states. For
active agents, once a cascade is stopped, the state transitions to stage G0 irrespective of the previous
state. With the new G∗ = G ∪G0, once we specify the series of sets of Markov transition matrices
that each agent uses for information set partition, the question guidebook is uniquely determined.

C Appendix: Related work

Social learning, or so called Bayesian observation learning, studies whether and how consensus
(unanimous actions) can be reached among sequential Bayes-rational decision makers under incom-
plete information. Key result shown in [1, 2, 3] says that with homogeneous and Bayes-rational
agents receiving binary private signals, an Information cascade , all but a few of the first agents
will cascade to the less profitable action, happens almost surely. Once an information cascade
occurs, no future private signals are revealed. Smith and Sørensen [4] significantly generalized19

the model to allow for richer signals characterized by the likelihood ratio of the two states of the
world deduced from the private signals, and heterogeneous agent types20. Using both martingale
techniques and Markovian analysis, they proved that with unbounded likelihood ratios in the pri-
vate signals, any cascade can be stopped and learning toward the correct action can be achieved;
the speed of learning in this setting is characterized in [6, 7].

These initial works lead to considerable follow-up work towards understanding information cas-
cades better, and towards achieving (asymptotic) learning. The vast majority of work here studies
how modifying the information structure of the problem impacts cascades or allows for learning. As
these are closest to our work, we will discuss these in detail to highlight our contributions and the
differences. Aside from those works in the above field, there is a vast literature [14, 15, 25, 26, 27]
that consider non-Bayesian agents including bounded rational players, irrational players, and algo-
rithmic agents, and alternate history update rules as a means of achieving learning. A majority
of this set of literature studies the (optimal) decision rules in decentralized (binary) hypothesis
testing problem on a variety of network models [28, 29, 30]. Since the Bayes-rationality constraint
differentiates our work from the work on decentralized hypothesis testing problems, we will only

19The work in [5, 4] also developed the generalization to arbitrary but finite states of the world and a finite set of
actions.

20Here a new phenomenon called “confounded learning” is demonstrated where in the long run agents of different
types will herd on the same action and from the actions it will be impossible to detect the types.
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discuss several seminal works and highlight one work [16], in particular, that achievedsasymptotic
learning with a specific set of four-state Markov chains. The approach in [16], from the perspective
of information design, is similar in spirit to partitioning information state to information sets, but
for non-Bayesian agents. Last, there is also literature that allows for heterogeneous types of agents
or changes the actions and the payoff structure, and studies the impact of these on social learning.
In the literature with heterogeneous agent types[31, 32, 27], disagreement between agents typically
leads to an information cascade but the presence of poorly informed agents surprisingly reduces the
probability of a wrong cascade. Papers [9, 10, 11, 12] that modify the actions, typically consider
continuum action spaces that result in learning. We will not discuss the last class of literature in
detail but include the references for completeness.

As every agent is endowed with a (conditionally) independent and informative private signal
about the state of the world, learning would result if these signals are communicated and collected
frequently enough and in an accurate fashion. The emergence of information cascades (and herd-
ing) shows that the information assimilation part is faulty. Changing the underlying information
structure either by revealing only part of the information in the database, by modifying the in-
formation in the common database or by adding new channels of information have then been the
approaches that have been taken. In [33], only a (random) subset of the past agents’ actions are
revealed to the current agent. This feature allows some agents to take actions solely based21 on
their private signal, and the paper characterizes the properties of these subsets (called networks)
such that learning results. A key result is that even with private signals having a bounded likelihood
ratio, there exist networks such that learning occurs. The authors in [13] show that a special class
of simple networks also leads to learning, where agents only see the actions of at most d past agents,
and where any agent’s action is only observed by agents at most L indices ahead. Recognizing that
displaying no past action history would also result in Bayes-rational agents revealing their private
signals, [34] determined the minimum sequence of revelation agents that are needed for learning:
each agent n reveals independently with probability pn where we need pn ∝ 1/n. In [35, 36] , the
ordering information of the subset of agents whose actions are revealed, is omitted but nevertheless
learning results. Examples of imperfect observation of history that do not lead to complete learning
often feature assumptions such as deterministic sub-sampling of past agents’ actions (sometimes
only by a finite number of agents), unknown observation order and aggregating observations, such
as in [37, 38, 39, 40, 41, 42, 43, 44, 45].

In [46, 47, 23], imperfections are added when the information is stored in the database. Whereas
this does not result in learning, discontinuous and non-monotonic behavior in the amount of imper-
fection added is shown; this adds to the literature on information Braess paradoxes observed with
equilibrium behavior. Along the same lines, by allowing for stochastic arrivals, in [48], uncertainty
in whether an agent arrived and didn’t purchase or no agent arrived, results in discontinuous and
non-monotonic behavior of the wrong cascade probability in the uncertainty, even though learn-
ing doesn’t result. Finally, the impact of additional information via reviews of the item obtained
when purchases are made, is studied in [20, 24, 7], with the main conclusions that learning requires
unbounded likelihood ratios of the private signals (and not the reviews) and information Braess
paradoxes result in extremely non-intuitive behaviors.

By relaxing the assumption that agents are Bayes-rational, learning, also called optimal deci-
sion rule, has been studied in distributed hypothesis testing problems with long history. A seminal
work[14] studied distributed binary hypothesis testing problem and achieve learning (limit prob-
ability of error zero in their language) with agents using a four-valued statistics-based algorithm.
A following work by Hellman and Cover [15] showed that asymptotic learning is not achievable

21By Bayes-rationality, this is equivalent to the revelation of their private signal.
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under bounded likelihood ratio on signals. General results, without a specified class of network
topology, of distributed hypothesis testing were summarized/presented in [49]. Learning in tree
networks with bounded depth/degree with algorithmic agents were respectively studied in [28, 29].
Restricting attentions to a line-structure network, named tandem network, although there is no
learning when the signal distributions are unknown a priori [40], learning can be achieved at the
sub-exponential rate for unbounded likelihood ratio in [30]. In order to study what additional
information is required to achieve learning under bounded likelihood ratio, authors in [16] allowed
agents to see K ≥ 2 immediate predecessors actions, instead of just one. It is shown in [16] that
asymptotic learning can be achieved using a specific set of four-state Markov chains, with K = 2.
From the perspective of information design, this approach of designing Markov chains for learning
is similar in spirit to a partition of information sets, but for non-Bayesian agents.

Although designing Markov chains for learning, a prototype of information set partition, is
provided in [16], conditions to achieve learning in models with Bayesian agents are usually more
harsh than with non-Bayesian agents. A well-known example is that even though neither Bayesian
or Non-Bayesian model cannot achieve asymptotic learning in bounded-likelihood ratio signal with
binary actions [14], learning under bounded-likelihood ratio signal can be achieved in ternary ac-
tions [50] among Non-Bayesian agents, but not among Bayesian agents [51]. The Bayesian-agent
assumption restricts some particular (realized by nature) agents’ action space and hence blocks the
information aggregation. To study how to design information structure shown to Bayes-rational
agents, there is an emerging field called “Information design” following a seminal paper “Bayesian
Persuasion” by Kamenica and Gentzkow in [17]. With the commitment power on the information
structure (without changing the prior beliefs of agents), designed randomized signal can partition
the information space and change agents’ posterior beliefs to change agents’ preferred actions with
some probability. However, the nature of our problem, the finite communication capacity, restricts
the strength (richness) of the additional signal available, hence that changing every agents action
with additional signals is positive probability in order to stop cascades, is not possible. To over-
come this and achieve learning, only a particular set of agents, called active agents in Definition
5, has the positive probability to stop the cascade. The purpose of the rest of agents, called silent
agents in Definition 5, is to relay the information to make active agents to be “persuadable” (have
a positive probability to stop the cascade after updating their posterior likelihood ratio). From this
perspective, the approach presented in this paper can be viewed as “relayed Bayesian persuasion”.
Essentially, a long series of silent agents convince the next active agent that she is in a wrong
cascade by making the likelihood ratio become very large, effectively unbounded.
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