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ABSTRACT
A standard result from auction theory is that bidding truthfully

in a second price auction is a weakly dominant strategy. The re-

sult, however, does not apply in the presence of Cost Per Action

(CPA) constraints. Such constraints exist, for instance, in digital

advertising, as some buyer may try to maximize the total number

of clicks while keeping the empirical Cost Per Click (CPC) below

a threshold. More generally the CPA constraint implies that the

buyer has a maximal average cost per unit of value in mind.

We discuss how such constraints change some traditional results

from auction theory.

Following the usual textbook narrative on auction theory, we

focus speci�cally on the symmetric setting, We formalize the notion

of CPA constrained auctions and derive a Nash equilibrium for sec-

ond price auctions. We then extend this result to combinations of

�rst and second price auctions. Further, we expose a revenue equiv-

alence property and show that the seller’s revenue-maximizing

reserve price is zero.

In practice, CPA-constrained buyers may target an empirical

CPA on a given time horizon, as the auction is repeated many

times. Thus his bidding behavior depends on past realization. We

show that the resulting buyer dynamic optimization problem can

be formalized with stochastic control tools and solved numerically

with available solvers.

1 INTRODUCTION
What should you bid in a second price ad auction for a display

with a known click-through rate (CTR), for a given cost-per-click

(CPC)? The most probable (and possibly incorrect) answer is "CPC

times CTR". However, the right answer is "What do you mean by

cost-per-click?". Indeed, if the CPC is the maximal amount the

buyer is ready to pay for each click, the �rst answer is correct. But

the story is di�erent when CPC means the maximal average cost

per click.

In this article, we challenge the current modeling approach for

ad auctions. We argue that when some advertisers’ business con-

straints apply, the expected outcome of the auction may depart

from the traditional literature.

Advertising is a major source of revenue for Internet publishers,

and as such, is �nancing a large part of the Internet. About 200

billion USD spent in 2017 on digital advertising (Kafka and Molla

2017). Banners for display advertising are usually bought through a

high frequency one unit auction mechanism called RTB (Real-Time

Bidding) by or on behalf of advertisers.

When a user reaches a publisher page, it triggers a call to an RTB

platform. The RTB platform then calls potential buyers, who have

a few milliseconds to answer with a bid request. This results in

an allocation of the display to a bidder, in exchange for a payment.

The allocation and the payment are de�ned by the rules of the

auction, which depends on the RTB platforms. The winner of the

auction can show a banner to the internet user. Yet, for many end

buyers, what really matters is not the display itself, but what will

result from it: clicks, conversions, etc... This is why empirical CPA

measures such as average cost per click (CPC) or average cost per

order (CPO) are of paramount importance.

The literature on display advertising auctions has been growing

over the last decade, pushed by the emergence of Internet giants

whose business models rely on digital advertising. One track of

research takes the seller’s point of view and focuses on how to build

"good" auctions, and relies on mechanism design theory (Balseiro

et al. 2015; Golrezaei et al. 2017), while the dual track brings the

buyer perspective under scrutiny, and focuses on the design of

bidding strategies (Agarwal et al. 2014; Cai et al. 2017; Diemert et al.

2017; Fernandez-Tapia et al. 2016; Zhang et al. 2014). The reader can

refer to (Roughgarden 2016) and (Krishna 2009) for an introduction

to auction theory.

Usually, in performance markets, the advertiser has a target

Cost Per Action (CPA) and/or a budget in mind. We will focus the

analysis on the CPA constraint. We will assume that the budget

constraint is absent or not binding. This topic of budget constraints

has already been addressed in the literature (Agarwal et al. 2014;

Balseiro et al. 2015; Fernandez-Tapia et al. 2016). The CPA is mea-

sured in term of the average quantity of money spent per action,

the action is a click, a visit, a conversion... For instance, if (a) we

are facing a competition uniformly distributed between 0 and 1, (b)

the CTR of every display is 0.5, (c) the auction is second price and

(d) we are ready to pay 1 USD on average for a click, then if we bid

0.5, we will win half of the time. For every display won, we get on

average half a click, and we pay 2

∫
0.5

0
tdt = 1/4, thus our expected

CPC is 1/(4 ∗ 0.5) = 0.5 < 1. We should increase the bid to raise

the empirical CPC.

One reason for using CPA constraints instead of budgets con-

straints in performance markets is that if the campaign performs

well, there is no reason to shut it down at the middle of the month

because of a strict budget limit. Those constraints, implemented

by algorithms, can be modi�ed by comparing the performances of

di�erent channels.

Auctions with ROI constraints are a hot topic (Auerbach et al.

2008; Golrezaei et al. 2018; Wilkens et al. 2016). In particular (Gol-

rezaei et al. 2018) provide some empirical evidence that some buyers

are ROI constrained and propose an optimal auction design. Our

work departs from them because we use a di�erent notion of ROI:

in the de�nition of CPA, we do not subtract the cost to the revenue

in the numerator. The reason to do so is that end buyers reason in

« cost per click » or « cost per order ». The numerator is not ex-

pressed in a unit of money and does not include the buyer payment

to the seller. Also, our focus is more buyer than seller oriented.

In this work, we focus on the buyers perspective, but we also

show on simple market instances that the CPA constraints may

impact the seller design, or give rise to undesirable competitive

behaviors.

This work brings several contributions to the table. First, we

introduce the buyer’s CPA constrained optimization problem and

exhibit a solution, then we �nd the symmetric equilibrium in this
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setting and compare its properties with standard results from the

literature. In particular, no reserve price should be used. Last, since

in practice, the CPA is computed over a time window of repeated

auctions, we move the discussion to the dynamic settings for which

we explain why one can expect adaptive bid multipliers to provide

solutions close to the optimal for the buyer.

2 MODELING ASSUMPTIONS AND
NOTATIONS

We start by introducing the CPA-constrained bidding problem.

A seller is selling one item (a display opportunity in our context)

through an auction. The item brings a value vi to bidder i ∈ 1..n.

These values are independently distributed among bidders. For

example, in the context of the ad auction, v can be thought of as

the expected number of clicks (or sales) the bidder would get after

winning the auction. Thus, this value is not expressed in money but

in unit of action. We will see later how these values, expressed in

actions relates to bids, expressed in dollars. Let Fi be the cumulative

distribution and fi the density distribution of vi . For simplicity, we

assume the support of these density distributions to be compact

intervals.

When we take the viewpoint of bidder i , we denote by b−i the

greatest bid of the other bidders (the price to beat). We denote by дi

and Gi
its density and cumulative distributions. Unless otherwise

stated, we also assume the auction to follow a second price rule,

with n > 1 bidders competing for the item.

Bidders with CPA constraints compare:

• the expected value they get in the auction

• the expected payment they incur.

We will refer to the CPA with the letter T because it is our

"targeted cost per something". We will denote by bi the bid of a

given bidder i of interest.

The bidder wants to maximize his expected value, subject to an

ex ante constraint in expectancy representing the targeted CPA.

The constraint is ex ante because, in practice, the same bidding

strategy is going to be applied repeatedly (or even simultaneously)

on several similar auctions. If for a random variable X , we denote

by [X ] ∈ {0, 1} the binary random variable that takes the value 1

when X ≥ 0, and 0 otherwise, then the expected value earned by

the buyer bidding bi is Ev,b− [b− < bi (v)]v . Here Ev,b− is there

expectation operator on the distribution of v and b−. Similarly the

bidder expected cost is Ev,b− [b− < bi (v)]b−.

We can now express the bidder optimization problem. The bidder

is looking for a bid function bi : [0, 1] → R+ solution of

max

b i
Ev,b−i [b−i < bi (v)]v, (1)

subject to Ev,b−i [b−i < bi (v)]b−i ≤ T
iEv,b−i [b−i < bi (v)]v (CPA).

Observe that if we remove the constraint, the buyer would buy all

the opportunities no matter the cost. We pinpoint that problem

(1) is not equivalent to a budget constraint problem: we would

have had Ev,b−i [b−i < bi (v)]b−i ≤ budдet instead of the (CPA)

constraint. Nor is it equivalent to the maximization of the yield

Ev,b− (T iv − b−i )[b−i < bi (v)], as illustrated in the introduction.

We model the interactions among buyers with a game. Observe

that this game has constraints on the strategies pro�le. For a given

set of competing bidding strategies, a best reply of the bidder is

a solution of (1). A (constrained) Nash equilibrium is a strategies

pro�le with components that are best replies against the others .

In the following, the superscript i is often omitted to help readability.

3 BIDDING BEHAVIOR AND SYMMETRIC
EQUILIBRIUM

The main result of this section is the derivation of a symmetric

Nash equilibrium for an CPA constrained second price auction. We

then generalize this result to linear combinations of �rst price and

second price auctions.

3.1 Second Price
Going back to the motivational example of the introduction, if a

buyer bidsTv , then he would pay at most T per unit of action. Since

he can increase his bid until he paysT per unit of action on average,
it is intuitive that he should bid higher than Tv to maximize the

criterion. The next theorem formalizes this idea.

Theorem 3.1 (Best Reply). For any bounded distribution of the
price to beat b−, there exists λ∗ ∈ ¯R+ such that a solution of (1)

writes:
bi (v, λ∗) = (1/λ∗ + T

i )v . (2)

Lemma 3.2 (CPA monotony). If the bidder bids proportionally to
the value i.e. if there exists α such that b(v) = αv , then the CPA is
non-decreasing in α .

Proof. Fix u ∈ [0, 1], α > 0, then the expected cost knowing

that the value is v and the auction is won is

∫ αv
0

tд(t)dt , where

д is the probability density of the price to beat. This quantity is

increasing in α . Meanwhile the value is v . We get the result by

integration on v . �

If v1,v2, . . .vn are n independent draws from F , we denote by

v
(n)
i the average of the ith greater draw (the ith order statistic).

Theorem 3.3 (Eqilibrium Bid). The unique symmetric con-
strained Nash equilibrium strategy is

bi
∗(v) = T

γ
v, (3)

where

γ (F ,n) = n
(
v
(n−1)
1

v
(n)
1

− n − 1

n

)
. (4)

Discussion. Theorem 3.1 is the answer to the introductory ques-

tion. Despite its simplicity, it shows something that is probably

overlooked: it may happen in a second price auction that the bid-

der’s optimal bid depends on the competition. Another useful

insight is that the bid is linear w.r.t. the value, which implies that

simple bid multipliers could be used optimally. Observe that the

result holds also for non-symmetric settings.

The proof relies on the strong incentive compatibility of the

second price auction in standard setting reinterpreted on the La-

grangian of the optimization problem. The parameter λ∗ should be

interpreted as the Lagrangian multiplier associated with the CPA

constraint.

Informally speaking, the harder the constraint, the bigger λ, the

smaller the bid. When λ is set to +∞, one bids only for displays
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that do not consume the constraint, while when λ goes to zero, the

bid diverges.

Lemma 3.2 is useful understand what is happening. Observe that

since the bid is linear w.r.t. the value and the objective increasing

in the bid multiplier, the optimal bid multiplier is the maximal

admissible one.

Theorem 3.3 is one of our main result. Observe that the com-
petition factor γ is only a function of the number of opponents

and F . Since it is smaller than one (see Appendix) the bid is pro-

portional to Tv with a factor greater than one. Compared with

the standard setting, the seller’s expected revenue is multiplied by

T/γ . The asymptotic value of γ , as well as other natural questions

concerning the equilibrium will be studied in Section 4. Note that

Theorem 3.3 is a necessary and su�cient condition for a symmetric

Nash equilibrium, therefore it is unique, but we cannot claim that

we have identi�ed the only Nash Equilibrium (see Section 4).

3.2 Generalization
We now generalize the argument to auctions which are convex

combinations of �rst price and second price. We motivate this

extension by the existence in the industry of auctions which mix

together �rst and second pricing rules, such as soft-�oor.

If we denote by S(b,b−) the payment rule of the auction when

the buyer bids b and the best competing bid is b−, then we can make

the following observations: (1) for any s ≥ 0, S(sb, sb−) = sS(b,b−),
(2) S(b,b) = b, (3) S(b,b−) is the sum of a linear function of b and a

linear function of b−.

Consider a standard auction with payment rule S and symmet-

ric buyers with i.i.d. values distributed according to F (no CPA

constraints). Let
ˆb be a symmetric equilibrium strategy in such

setting.

Theorem 3.4. The bid bi ∗(v) = T

γ
ˆb(v) is a symmetric equilibrium

strategy, of the CPA constrained auction with payment rule S .

Example. : Consider a �rst price auction with 2 buyer having

uniformly distributed values in [0, 1]. It is known (Krishna 2009)

that an equilibrium bid for a standard auction is v → 0.5v . By (16),

γ = 0.5. Thus an equilibrium bid for the CPA constrained auction

is v → Tv . Indeed: in �rst price, we ensure the saturation of the

CPA constraint by bidding Tv .

4 PROPERTIES OF THE EQUILIBRIUM
Observe that the expected payment of a buyer is equal to his ex-

pected value times T. Since the total welfare is �xed, the expected

payment of every buyer is the same no matter the auction. We

thus recover a standard result (Vickrey 1962) from auction theory,

adapted to CPA constrained auctions.

Theorem 4.1 (Revenue eqivalence). All the auctions described
in Section 3.2 bring the same expected revenue to the seller.

Proof. Using the proof of Theorem 3.3, we see that constraint

in (1) is binding at the symmetric equilibrium. Therefore the

payment of a buyer to the seller is equal to TEv[v > v−] =
TEmaxi ∈{1..n }(vi )/n. �

On the other hand, the following observation is quite unusual.

Figure 1: Potential outcomes (buyers’ pro�ts and payments)
for di�erent values of the bid multiplier in a symmetric set-
ting. Each curve corresponds to a di�erent value of the re-
serve price. The equilibrium points are the intersections
of those curves with the line pro�t = T *payment. We took
T = 0.4, uniform distribution of values, and two bidders for
the numerical simulation.

Theorem 4.2 (Optimal Reserve Price). With CPA constraints,
the optimal reserve price in a symmetric setting is zero.

Explanation: a reserve price would decrease the social welfare,

and thus decrease the expected payment because of the CPA con-

straint.

Proof. Same idea as before: In the presence of a reserve price,

the constraint in (1) tells us that the buyer expected payment

is smaller than TEv[v > v−i ][v > r ], which is smaller than

TEv[v > v−i ] for r>0. Using the proof of Theorem 3.3 we see

that the constraint should be binding at the equilibrium, and thus

this last quantity corresponds to the expected payment when r = 0.

Thus the reserve price should be set to zero. �

We display in Figure 1 the results of a simulation that illustrates

Theorem 4.2. Observe that the proofs of the two last results rely

on the symmetry of the setting (same CPA target T , same value

distribution F ). We argue that this should not be seen as a limita-

tion of our results, because (a) Revenue Equivalence in the classical

setting also requires symmetry, (b) Theorem 4.2 provides a strik-

ing counterexample to the common belief that the reserve price

increases the revenue of the seller. We believe Theorem 4.2 to be

extendable to nonsymmetric setting, as long as one can guarantee

that the CPA constraint is binding.

This completely departs from the idea that reserve prices should

be used to increase the seller’s revenue. Observe that in practice

in the case of display advertising, the buyer may take some time

to react to a change of empirical CPA. Consequently, measuring

the seller’s long term expected revenue uplift is a technical and

business challenge. Moreover, the reserve price, by decreasing the

welfare, may on the long run trigger an increase of the target CPA,

since buyers have to do an arbitrage between volume and CPA.

Last but not least, we do not claim that reserve prices should be

set to zero for CPA constrained bidders in all situations. A trivial
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counterexample to such claim is embodied by a setting with only

one buyer and no competition.

Theorem 4.3 (Convergence). For any number of biddersn,γ (F ,n) ≤
1. Moreover if the value v is bounded, then

lim

n→∞
γ (F ,n) = 1 (5)

Proof. Let us denote by Y (k ) the maximum of k random vari-

ables drawn with the distribution F . One just need to observe

that

γ (F ,n) = 1 − E(v − Y
n−1 |v > Yn−1)
v
(n)
1

. (6)

�

This can be interpreted in the following way: when there is a

great number of bidders, the competition is such that the payment

tends to become �rst price.

Remark 1. There may be a nonsymmetric equilibrium.

The basic idea is that one bidder can bid higher than necessary

to force another bidder to leave the auction because his (CPA)

constraint cannot be satis�ed.

Proof. We concentrate on exhibiting a counter-example. Take

n = 2,T = 1, F is the uniform distribution over [2, 3], and denote by

(αi )i=1,2 the bid multipliers of the two buyers. Set α2 = 6. Then if

α1 ≤ 4, buyer 1 does not win any auction, but the (CPA) constraint

is satis�ed.

On the other hand, if α1 > 4, then the cost vs value ratio is

bigger than 4, and the (CPA) constraint is violated. We can check

that if α1 = 0 the (CPA) constraint is satis�ed for 2. Therefore

(α1,α2) = (0, 6) is an asymmetric Nash equilibrium. �

In addition to this, observe that the buyers may be tempted to bid

other strategies than the linear best reply. For example consider this

example: Take n = 2, an exponential distribution with parameter

1, T = 1. One buyer may increase its pro�t by bidding with an

a�ne function. Compare (b1(v1),b2(v2)) = (2v1 + 1, 2v2) with

(b1(v1),b2(v2)) = (3v1, 3v2).
On a simulation with 10

8
auctions, we get in the �rst case an

empirical CPA of 0.92, and a revenue of 0.84 for bidder 1 (resp. 1.0

and 0.61 for bidder 2), while in the second case, we get an empirical

CPA of 1, and a revenue of 0.75 for bidder 1 (resp. 1.0 and 0.75

for bidder 2). Those simple, informal examples indicate that the

bidders may be tempted to bid aggressively to weaken the other

bidders CPA.

5 DYNAMIC BIDDER PROBLEM
In practice, the buyer behaviors may di�er from the static case:

(1) the buyer can adapt his bidding strategy to the past events, (2)

the linear constraint (CPA) does not re�ect the buyer risk aversion,

(3) the bene�t the buyer gets from a won auction is stochastic (for

example, if he is only interested in clicks or conversions), (4) from a

business perspective, there is a trade-o� between CPA and volumes

in the buyer mind. This trade-o� can be expressed in di�erent

ways.

We propose in this section a continuous time optimal control

framework to express and study the buyer’s problem in a dynamic

fashion. The approach combines the advantages of a powerful and

mathematically clean expressiveness with theoretical insights and

numerical tools.

We refer the reader to (Pham 2009) for a reference on stochastic

control, and to (Falcone and Ferretti 2013) for a presentation of the

numerical methods involved. The User Guide (Bonnans et al. 2015)

provides a hands-on presentation of the topic.

We only model one individual buyer. Yet note that the optimal

control formulation is the �rst building block for the study of the

full market dynamics (with mean �eld games(Carmona and Delarue

2013; Guéant et al. 2011) or di�erential games(Isaacs 1999)). Our

main discovery in the stochastic case is that (a) the optimal bid

is not linear in the value anymore, but (b) we can still reasonably

propose a linear bid (at the cost of an approximation to be discussed

thereafter).

5.1 Deterministic Dynamic Formulation
We use the deterministic case to introduce some notations, and

recover with optimal control tools some of the results we already

derived with the static model. Indeed, when we neglect the stochas-

tic aspect of the reward, the problem is very similar to the static

one.

We consider a continuous time model. The buyer receives a

continuous �ow of requests. The motivation to propose a contin-

uous time model is that it makes the theoretical analysis easier

(Heymann et al. 2018; Pham 2009).

We denote by R the instantaneous revenue and by C the instan-

taneous cost:

R(b) = Ev[b− < b(v)], and (7)

C(b) = Eb−[b− < b(v)], (8)

If we denote by τ the time horizon, the bidder is now maximizing

with respect to b ∫ τ

0

R(bt )dt , (9)

subject to ÛXt = TR(bt ) − C(bt ), Xτ ≥ 0 and X0 = x0.

The state Xt represents the (CPA) constraint is should be pos-

itive at t = τ for the (CPA) constraint to be satis�ed. We use the

Pontryagin Maximum Principle to argue that a necessary condition

for an optimal control is that there exists a multiplier p(t) so that

b(t) maximizes H = p(TR − C) + R. Moreover Ûp = − ∂H
∂x = 0. We

thus recover the main result of the static case: the bid is linear in v .

Moreover in the absence of stochastic components, the multiplier

is constant. Observe that in practice, one could use the solution of

problem (9) to implement a Model Predictive Control (MPC), using

x0 as the current state and thus get an online bidding engine.

5.2 Stochastic Formulation
The number of displays is much higher than the number of clicks/sales,

therefore we neglect the randomness of the competition/price over

the randomness that comes from the actions. Because of the number

of displays involved, we argue that by the law of large number, the

uncertainty on the action outcome can be apprehended a white

noise. We thus add an additional, stochastic term in the revenue:

4



TσidWt , whereWt is a Brownian motion. We get that an optimal

bid b should maximize (see (Pham 2009) for a reference)

Eb−,v [b > b−]((Tv − b−)p +v + T
2σ 2M), (10)

for some p and M .

Since the realization of the action follows a binomial law, σ ∝
v(1 −v). Assuming v << 1, we can approximate it as v . Therefore

every in�nitesimal terms of the Hamiltonian becomes ((Tv−b−)p+
v +vMT

2)[b > b−] reproducing the previous reasoning we get

b∗ = v(T + MT
2 + 1

p
). (11)

Conclusion: Once again, the bid factor approach is justi�ed! Ob-

serve that this conclusion comes from an approximation, (therefore

the bid is not strictly speaking optimal for the initial problem), but

by doing so, we have reduced the control set from R+ → R+ to R+.

This reduction gives access to a well understood approach to solve

this kind of problem: the continuous time equivalent of Dynamic

Programming.

Observe that our problem de�nition is incomplete: we need

to take into account the constraint on the �nal state. We restate

this constraint with a penalty K(X ). Using the dynamic program-

ming principle, the buyer problem is equivalent to the following

Hamilton-Jacobi-Bellman equation:

Vt + sup

α

(
(TR(α) − C(α))Vx +

T
2

2

R(α)Vxx + R(α)
)
= 0 (12)

and Vτ = K , (13)

with

R(α) = R(v → αv), and (14)

C(α) = C(v → αv) (15)

5.3 Numerical Resolution
Our aim here is to illustrate that HJB approaches provide powerful

numerical and theoretical tools to model the buyer’s preferences.

A quantitative comparison of the performance of the stochastic

method is out of the scope of this article.

We solve an instance of the problem with the numerical optimal

stochastic control solver BocopHJB (Bonnans et al. 2015). BocopHJB

computes the Bellman function by solving the non-linear partial dif-

ferential equation (HJB). Observe that the state is one dimensional,

which makes this kind of solver very e�cient.

We take G(b−) = (b−)a on [0, 1] and v uniformly distributed on

[0, 1]. We get that R(α) = αa
a+2

if α < 1 and R(α) = αa
(a+2)(αa+2) +

1

2
(1 − 1

α 2
) otherwise, similarly, C(α) = aαa+1

(a+1)(a+2) for α ≤ 1 and

C(α) = a
(a+1)(a+2)α ((a + 2)α − a − 1) for α ≥ 1 (see Figure 2). We

take T = 0.8 and a linear penalty for negative Xτ . The result of a

simulated trajectories is displayed in Figure 3(a).

We see that on this speci�c instance of the stochastic path, the

control is decreased at the end of the time horizon to adapt to the

sudden spike of CPA. This is the kind of behavior we can expect

from a stochastic controller. By contrast, a constant multiplier may

result in the kind of trajectories displayed on Figure 3 (b).

(a) a=1

(b) a=5

Figure 2: R and C and empirical T for two values of a

6 CONCLUSION
We have formalized the existence of CPA constraints in the buyers

bidding problem. These constraints are of paramount importance in

performance markets, yet they tend to be neglected in the current

literature. We have seen how standard results translate into this

context, sometimes with surprising insights. We also envisioned

the dynamic, stochastic setting by combining a �rst-order approxi-

mation with the Hamilton-Jacobi-Bellman approach. This allowed

us in particular to derive a numerical method.

This work raises questions that deserve more extended study.

In particular, can we generalize the �rst three theorems to other

constraints, auction rules and settings? Can the existence of the

aggressive behaviors pointed out at the end of Section 5 pose a

problem to the market? One may also want to put under scrutiny

the harder, but more realistic case of correlated values. The dynamic

case also deserves a speci�c study.
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(a) stochastic controller

(b) deterministic controller

Figure 3: Simulation result
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A EXAMPLES
A.1 Power Law Case: derivation of the

competition factor
We take F (v) = va over [0, 1] with a > 0. We get that v(n)1 = an

an+1
.

Therefore we can write

v (n−1)
1

v (n)
1

= n−1

n
an+1

a(n−1)+1
, which leads to

γ (a,n) = (n − 1)
(

an + 1

a(n − 1) + 1

− 1

)
. (16)

We observe that γ is increasing in n and a. It converges to 1 as n
(or a) goes to in�nity. A plot of γ is displayed in Figure 4(a).

Remark: If we consider the 2 bidders case, and denote by α > 0

and β > 0 their respective bid multipliers, then the payment and

expected value of the �rst bidder are respectively equal to

π = β(α
β
)a+2

1

(a + 2)(2a + 3) , and V =
(αβ )

a+1

(a + 1)(2a + 3) . (17)

We see that the CPA of the �rst bidder does not depend on the

second bidder strategy. Therefore, we have in this case something

similar to a strategy dominance.

A.2 Numerical estimation of the competition
factor

The trick is to remark that γ is equal to the ratio of cost and value

when T = 1. We derive the following algorithm to estimate γ for

di�erent F and n:

(1) Choose n, F and a number of samples N
(2) Cost = 0; Value = 0;

(3) Generate v ∼ F and v− ∼ Fn

(4) If v > v− then: Cost+ = v− and Value+ = v
(5) Repeat from 3. (N-1) times

(6) γ ≈Cost/Value

The results are displayed in Figure 4. For the log-normal distri-

bution, the results are similar to those of the power distribution:

monotony and convergence to 1. It seems that the bigger the vari-

ance, the bigger γ . Without providing a proof, we see that we can

get an insightful intuition from Equation 6 of the next section.

The exponential distribution provides more exotic results: γ
seems to be only a function of n (i.e. independent of the scale

parameter). This can be easily proved analytically using the formula

E(max(v1,v2)) = 1

λ1

+ 1

λ1

− 1

λ1+λ2

and a recursion on v
(n)
1

. It is

however still increasing in n, and seems to converge to 1 as n goes

to in�nity.

B PROOF OF THEOREM 3.1
Set b(α ,v) = αv for α > 0. If b(α ,v) is admissible for any α , then

we can set λ = 0 and we are done (edge case). Else, there exists α+

such that γ (α+) > 0, where γ (α) := Ev [b−i < b(α ,v)](b−i − T
iv)

Moreover:

(1) since α →
∫

1

b−i /α (b
−i −T

iv)f i (v)dv is continuous for any

b−i > 0, so is γ ,

(2) for α smaller than T i , γ (α) ≤ 0.

So there exists α∗ satisfying γ (α∗) = 0.

(a) Power Distribution
//

(b) Exponential Distribution

(c) LogNormal Distribution

Figure 4: The scaling factor as a function of the distribution
parameter, for di�erent numbers of bidders

If we set λ∗ so that
1

λ∗ +T
i = α∗, then by strategic dominance

of the truthful strategy in a second price auction, b(α∗,v) solves

the unconstrained optimization problem of maximizing

Eb−,v [b− < b](v − λ∗(b− −T iv)). (18)

We can also assert that b(α∗, .) is also an optimal solution for

the constrained optimization problem (1). Why? First observe that

b(α∗, .) is admissible since γ (α∗) = 0, second, let
ˆb be an optimal

7



solution to (1), then, if we write k(b) = Eb−,v [b− < b]v , we have

that

k(b(α∗)) − λ∗γ (α∗) ≥ k( ˆb) − λ∗Ev [b−i < ˆb](b−i − T
iv) (19)

thus since γ (α∗) = 0 and Ev [b−i < ˆb](b−i − T
iv) ≤ 0

k(b(α∗)) ≥ k( ˆb). (20)

C PROOF OF THEOREM 3.3
To derive the �rst order condition, we follow the same path as in

the proof of Theorem 3.4. We thus only discuss the uniqueness. We

start with a small technical consideration: observe that the bids can

be modi�ed on a zero measure set without impacting the pro�t. So

when we say unique, we ,in fact, mean essentially unique.

We denote by b a symmetric equilibrium bidding strategy. It

induces a distribution G of the price to beat. It is clear that we

cannot be in the edge case envisioned in the previous proof. So

take α∗ as introduced in the previous proof. Observe that to be a

best reply b has to maximize (18). Assume there exists v0 such that

αv , b(v) on a neighborhood V of v0. Since д(b(v)) > 0 for v ∈ V ,

αv is strictly dominating b(v) in the optimization of (18), which is

a contradiction.

D PROOF OF THEOREM 3.4
First observe that, the Lagrangian of the bidder optimization prob-

lems writes:

λEv,b− ((1/λ + T)v − S(b(v),b−)) [b > b−],

thus we can look for a point-wise maximizer. Denote by ( ˆb, ˆb−) the

equilibrium bid of the same auction without any CPA constraints.

Observe that if the price to beat is distributed like (1/λ + T) ˆb−(v−)
(for a given λ > 0), then:

b∗(v) = argmaxbEv− (1/λ + T)v − S(b,b−(v−))
= (1/λ + T)argmaxbEv− (1/λ + T)v − S((1/λ + T)b, (1/λ + T) ˆb−(v−))

= (1/λ + T)argmaxbEv−v − S(b, ˆb−(v−))
= (1/λ + T) ˆb(v).

Therefore, for a given λ, if the competition uses the proposed linear

bid, one should also bid linearly to maximize the Lagrangian. We

denote by G the price to beat distribution and by κ the degree of

"second priceness": S(b,b−) = ((1 − κ)b + κb−)[b > b−]. Observe

that the �rst term of the integrand in the Lagrangian de�nition is

equal to EvbλG(bλ). So, let us deal with the second term. Since

Ev,v−S(bλ(v),b−(v−))[v > v−] = Ev
∫ bλ (v)

0

S(bλ(v), t)д(t)dt

= EvS(bλ(v),bλ(v))G(b) −
∫ bλ (v)

0

κG(t)dt

= EvbλG(bλ) −
∫ bλ (v)

0

κG(t)dt ,

we get that

L = λκEv

∫ bλ (v)

0

G(t)dt .

The �rst order condition on λ writes

0 = Ev,b− ((1/λ + T)v − S(b(v),b−)) [b > b−] − κ/λEvG(bλ(v))vdv .

Then using successively the homogeneity of S , a simpli�cation by

κ, and the de facto de�nition of γ as λT/1+λT, we get

γ =
Ev−[v > v−]
Ev[v > v−] ,

which we simplify using the following formula on the order statis-

tics (see (Krishna 2009)): EY
(n)
2
= EnY

(n−1)
1

− (n − 1)Y (n)
1

.
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