
Pinpointing Performance Inefficiencies in Java
Pengfei Su

College of William & Mary, USA
psu@email.wm.edu

Qingsen Wang
College of William & Mary, USA

qwang06@email.wm.edu

Milind Chabbi
Scalable Machines Research, USA
milind@scalablemachines.org

Xu Liu
College of William & Mary, USA

xl10@cs.wm.edu

ABSTRACT

Many performance inefficiencies such as inappropriate choice of al-
gorithms or data structures, developers’ inattention to performance,
and missed compiler optimizations show up as wasteful memory
operations.Wasteful memory operations are those that produce/-
consume data to/from memory that may have been avoided. We
present, JXPerf, a lightweight performance analysis tool for pin-
pointing wasteful memory operations in Java programs. Traditional
byte-code instrumentation for such analysis (1) introduces prohibi-
tive overheads and (2) misses inefficiencies in machine code gen-
eration. JXPerf overcomes both of these problems. JXPerf uses
hardware performance monitoring units to sample memory loca-
tions accessed by a program and uses hardware debug registers to
monitor subsequent accesses to the same memory. The result is a
lightweight measurement at machine-code level with attribution
of inefficiencies to their provenance — machine and source code
within full calling contexts. JXPerf introduces only 7% runtime
overhead and 7% memory overhead making it useful in production.
Guided by JXPerf, we optimize several Java applications by im-
proving code generation and choosing superior data structures and
algorithms, which yield significant speedups.

CCS CONCEPTS

•General and reference→Metrics; Performance; • Software

and its engineering→ Software maintenance tools.

KEYWORDS

Java profiler, performance optimization, PMU, debug registers

ACM Reference Format:

Pengfei Su, Qingsen Wang, Milind Chabbi, and Xu Liu. 2019. Pinpointing
Performance Inefficiencies in Java. In Proceedings of the 27th ACM Joint Eu-
ropean Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE ’19), August 26–30, 2019, Tallinn, Estonia.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3338906.3338923

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5572-8/19/08. . . $15.00
https://doi.org/10.1145/3338906.3338923

1 INTRODUCTION

Managed languages, such as Java, have become increasingly popu-
lar in various domains, including web services, graphic interfaces,
and mobile computing. Although managed languages significantly
improve development velocity, they often suffer from worse per-
formance compared with native languages. Being a step removed
from the underlying hardware is one of the performance handicaps
of programming in managed languages. Despite their best efforts,
programmers, compilers, runtimes, and layers of libraries, can eas-
ily introduce various subtleties to find performance inefficiencies
in managed program executions. Such inefficiencies can easily go
unnoticed (if not carefully and periodically monitored) or remain
hard to diagnose (due to layers of abstraction and detachment from
the underlying code generation, libraries, and runtimes).

Performance profiles abound in the Java world to aid develop-
ers to understand their program behavior. Profiling for execution
hotspots is the most popular one [8, 10, 15, 19, 24, 26]. Hotspot
analysis tools identify code regions that are frequently executed
disregarding whether execution is efficient or inefficient (useful or
wasteful) and hence significant burden is on the developer to make
a judgement call on whether there is scope to optimize a hotspot.
Derived metrics such as Cycles-Per-Instruction (CPI) or cache miss
ratio offer slightly better intuition into hotspots but are still not
a panacea. Consider a loop repeatedly computing the exponential
of the same number, which is obviously a wasteful work; the CPI
metric simply acclaims such code with a low CPI value, which is
considered a metric of goodness.

There is a need for tools that specifically pinpoint wasteful work
and guide developers to focus on code regions where the optimiza-
tions are demanded. Our observation, which is justified by myriad
case studies in this paper, is that many inefficiencies show up as
wasteful operations when inspected at the machine code level, and
those which involve the memory subsystem are particularly egre-
gious. Although this is not a new observation [5, 42, 46, 47] in
native languages, its application to Java code is new and the prob-
lem is particularly severe in managed languages. The following
inefficiencies often show up as wasteful memory operations.

Algorithmic inefficiencies: frequently performing a linear search
shows up as frequently loading the same value from the same
memory location.
Data structural inefficiencies: using a dense array to store sparse
data where the array is repeatedly reinitialized to store different
data items shows up as frequent store-followed-by-store opera-
tions to the same memory location without an intervening load
operation.

ar
X

iv
:1

90
6.

12
06

6v
1

 [
cs

.P
F]

 2
8

Ju
n

20
19

https://doi.org/10.1145/3338906.3338923
https://doi.org/10.1145/3338906.3338923

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Pengfei Su, Qingsen Wang, Milind Chabbi, and Xu Liu

142 for (int bit = 0,dual = 1; bit < logn; bit++,dual *= 2) {
143 ...
144 for (int a = 1; a < dual; a++) {
145 ...
146 for (int b = 0; b < n; b += 2*dual) {
147 int i = 2*b ;
148 int j = 2*(b + dual);
149 double z1_real = data[j];
150 double z1_imag = data[j+1];
151 double wd_real = w_real*z1_real - w_imag*z1_imag;
152 double wd_imag = w_real*z1_imag + w_imag*z1_real;
153 ▶ data[j] = data[i] - wd_real;
154 data[j+1] = data[i+1] - wd_imag;
155 ▶ data[i] += wd_real;
156 data[i+1] += wd_imag;
157 }}}

Listing 1: Redundant memory loads in SPECjvm 2008 scimark.fft.

data[i] is loaded from memory twice in a single iteration whereas

it is unmodified between these two loads.

; data[j] = data[i] - wd_real
vmovsd 0x10(%r9,%r8,8),%xmm2
vsubsd %xmm0,%xmm2,%xmm2
…
; data[i] += wd_real ;
vaddsd 0x10(%r9,%r8,8),%xmm0,%xmm0
vmovsd %xmm0,0x10(%r9,%r8,8)

Figure 1: The assembly code (at&t style) of lines 153 and 155 in List-

ing 1.

Suboptimal code generations: missed inlining can show up as
storing the same values to the same stack locations; missed scalar
replacement shows up as loading the same value from the same,
unmodified, memory location.
Developers’ inattention to performance: recomputing the same
method in successive loop iterations can show up as silent stores
(consecutive writes of the same value to the same memory). For
example, the Java implementation of NPB-3.0 benchmark IS [3]
performs the expensive power method inside a loop and in each
iteration, the power method pushes the same parameters on the
same stack location. Interestingly, this inefficiency is absent in the
C version of the code due to a careful implementation where the
developer hoisted the power function out of the loop.
This list suffices to provide an intuition about the class of in-

efficiencies detectable by observing certain patterns of memory
operations at runtime. Some recent Java profilers [12, 30, 32, 39, 48]
identify inefficiencies of this form. However, these tools are based
on exhaustive Java byte code instrumentation, which suffer from
two drawbacks: (1) high (up to 200×) runtime overhead, which
prevents them from being used for production software; (2) missing
insights into lower-level layers e.g., inefficiencies in machine code.

1.1 A Motivating Example

Listing 1 shows a hot loop in a JIT-compiled (JITted) method
(compiled with Oracle HotSpot JIT compiler) in SPECjvm2008 sci-
mark.fft [40], a standard implementation of Fast Fourier Transforms.
The JITted assembly code of the source code at lines 153 and 155 is
shown in Figure 1. Notice the two loads from the memory location
data[i] (0x10(%r9,%r8,8)) — once into xmm2 at line 153 and then
into xmm0 at line 155. data[i] is unmodified between these two
loads. Moreover, i and j differ by at least 2 and never alias to the
same memory location (see lines 147 and 148). Unfortunately, the

code generation fails to exploit this aspect and trashes xmm2 at line
153, which results in reloading data[i] at line 155.

With the knowledge of never-alias, we performed scalar
replacement—placed data[i] in a temporary that eliminated the re-
dundant load, which yielded a 1.13× speedup for the entire program.
Without access to the source code of the commercial Java runtime,
we cannot definitively say whether the alias analysis missed the
opportunity or the register allocator caused the suboptimal code
generation, most likely the former. However, it suffices to highlight
the fact that observing the patterns of wasteful memory operations
at the machine code level at runtime, divulges inefficiencies left out
at various phases of transformation and allows us to peek into what
ultimately executes. A more detailed analysis of this benchmark
with the optimization guided by JXPerf follows in Section 7.1.

1.2 Contribution Summary

We propose JXPerf to complement existing Java profilers; JXPerf
samples hardware performance counters and employs debug regis-
ters available in commodity CPUs to identify program inefficiencies
that exhibit as wasteful memory operations at runtime. Two key
differentiating aspects of JXPerf when compared to a large class
of hotspot profilers are its ability to (1) filter out and show code
regions that are definitely involved in some kind of inefficiency
at runtime (hotspot profilers cannot differentiate whether or not
a code region is involved in any inefficiency), and (2) pinpoint
the two parties involved in wasteful work—e.g., the first instance
of a memory access and a subsequent, unnecessary access of the
same memory—which offer actionable insights (hotspot profilers
are limited to showing only a single party). Via JXPerf, we make
the following contributions:
• We show the design and implementation of a lightweight Java
inefficiency profiler working on off-the-shelf Java virtual machine
(JVM) with no byte code instrumentation to memory accesses.

• We demonstrate that JXPerf identifies inefficiency at machine
code, which can be introduced by poor code generation, inappro-
priate data structures, or suboptimal algorithms.

• We perform a thorough evaluation on JXPerf and show that
JXPerf, with 7% runtime overhead and 7% memory overhead, is
able to pinpoint inefficiencies in well-known Java benchmarks
and real-world applications, which yield significant speedups
after eliminating such inefficiencies.

1.3 Paper Organization

This paper is organized as follows. Section 2 describes the related
work and distinguishes JXPerf. Section 3 offers the background
knowledge necessary to understand JXPerf. Section 4 highlights
the methodology we use to identify wasteful memory operations
in Java programs. Section 5 depicts the design and implementation
of JXPerf. Section 6 and 7 evaluate JXPerf and show several case
studies, respectively. Section 8 discusses the threats to validity.
Section 9 presents our conclusions and future work.

2 RELATEDWORK

There are a number of commercial and research Java profilers,
most of which fall into the two categories: hotspot profilers and
inefficiency profilers.

Pinpointing Performance Inefficiencies in Java ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Hotspot Profilers. Profilers such as Perf [26], Async-
profiler [36], Jprofiler [15], YourKit [19], VisualVM [10], Oracle
Developer Studio Performance Analyzer [8], and IBM Health
Center [22] pinpoint hotspots in Java programs. Most hotspot
profilers incur low overhead because they use interrupt-based
sampling techniques supported by Performance Monitoring Units
(PMUs) or OS timers. Hotspot profilers are able to identify code
sections that account for a large number of CPU cycles, cache
misses, branch mispredictions, heap memory usage, or floating
point operations. While hotspot profilers are indispensable, they
do not tell whether a resource is being used in a fruitful manner.
For instance, they cannot report repeated memory stores of the
identical value or result-equivalent computations, which squander
both memory bandwidth and processor functional units.

Inefficiency Profilers. Toddler [32] detects repeated memory
loads in nested loops. LDoctor [39] combines static analysis and dy-
namic sampling techniques to reduce Toddler’s overhead. However,
LDoctor detects inefficiencies in only a small number of suspi-
cious loops instead of in the whole program. Glider [12] generates
tests that expose redundant operations in Java collection traver-
sals. MemoizeIt [11] detects redundant computations by identifying
methods that repeatedly perform identical computations and output
identical results. Xu et al. employ various static and dynamic anal-
ysis techniques (e.g., points-to analysis, dynamic slicing) to detect
memory bloat by identifying useless data copying [49], inefficiently-
used containers [51], low-utility data structures [50], reusable data
structures [48] and cacheable data structures [30].

Unlike hotspot profilers, these tools can pinpoint redundant
operations that lead to resource wastage. JXPerf is also an ineffi-
ciency profiler. Unlike prior works, which use exhaustive byte code
instrumentation, JXPerf exploits features available in hardware
(performance counters and debug registers) that eliminate instru-
mentation and dramatically reduces tool overheads. JXPerf detects
multiple kinds of wasteful memory access patterns. Furthermore,
JXPerf can be easily extended with additional memory access pat-
terns for detecting other kinds of runtime inefficiencies. Section 6
details the comparison between JXPerf and the profilers based on
exhaustive byte code instrumentation.

Remix [14], similar to JXPerf, also utilized PMU; while JXPerf
identifies intra-thread inefficiencies, such as redundant/useless op-
erations, Remix dentifies false sharing across threads.

3 BACKGROUND

Hardware Performance Monitoring Units (PMU). Modern
CPUs expose programmable registers that count various hardware
events such as memory loads, stores, CPU cycles, and many others.
The registers can be configured in sampling mode: when a thresh-
old number of hardware events elapse, PMUs trigger an overflow
interrupt. A profiler is able to capture the interrupt as a signal,
known as a sample, and attribute the metrics collected along with
the sample to the execution context. PMUs are per CPU core and
virtualized by the operating system (OS) for each thread.

Intel offers Precise Event-Based Sampling (PEBS) [6] in Sandy-
Bridge and following generations. PEBS provides the effective ad-
dress (EA) at the time of sample when the sample is for a memory
access instruction such as a load or a store. This facility is often

referred to as address sampling, which is a critical building block
of JXPerf. Also, PEBS can capture the precise instruction pointer
(IP) for the instruction resulting in the counter overflow. AMD
Instruction-Based Sampling (IBS) [13] and PowerPCMarked Events
(MRK) [41] offer similar capabilities.

Hardware Debug Registers. Hardware debug registers [23, 27]
trap the CPU execution for debugging when the program counter
(PC) reaches an address (breakpoint) or an instruction accesses a
designated address (watchpoint). One can program debug regis-
ters to trap on various conditions: accessing addresses, accessing
widths (1, 2, 4, 8 bytes), and accessing types (W_TRAP and RW_TRAP).
The number of hardware debug registers is limited; modern x86
processors have only four debug registers.

Linux perf_event. Linux offers a standard interface to pro-
gram PMUs and debug registers via the perf_event_open system
call [25] and the associated ioctl calls. A watchpoint exception
is a synchronous CPU trap caused when an instruction accesses a
monitored address, while a PMU sample is a CPU interrupt caused
when an event counter overflows. Both PMU samples and watch-
point exceptions are handled via Linux signals. The user code can
(1) mmap a circular buffer to which the kernel keeps appending
the PMU data on each sample and (2) extract the signal context on
each debug register trap.

Java Virtual Machine Tool Interface (JVMTI). JVMTI [9] is
a native programming interface of the JVM. A JVMTI client can
develop a debugger/profiler (aka JVMTI agent) in any C/C++ based
native language to inspect the state and control the execution of
JVM-based programs. JVMTI provides a number of event callbacks
to capture JVM initialization and death, thread creation and de-
struction, method loading and unloading, garbage collection start
and end, to name a few. User-defined functions are registered in
these callbacks and invoked when the associated events happen.
In addition, JVMTI maintains a variety of information for queries,
such as the map from the machine code of each JITted method to
byte code and source code, and the call path for any given point
during the execution. JVMTI is available in off-the-shelf Oracle
HotSpot JVM.

4 METHODOLOGY

In the context of this paper, we define the following three kinds of
wasteful memory accesses.

Definition 1 (Dead store). S1 and S2 are two successive memory
stores to locationM (S1 occurs before S2). S1 is a dead store iff there
are no intervening memory loads fromM between S1 and S2. In such
a case, we call ⟨S1, S2⟩ a dead store pair.

Definition 2 (Slient store). Amemory store S2, storing a valueV2 to
locationM , is a silent store iff the previous memory store S1 performed
onM stored a value V1, and V1 = V2. In such a case, we call ⟨S1, S2⟩
a silent store pair.

Definition 3 (Silent load). A memory load L2, loading a value V2
from location M is a silent load iff the previous memory load L1
performed on M loaded a value V1, and V1 = V2. In such a case, we
call ⟨L1,L2⟩ a silent load pair.

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Pengfei Su, Qingsen Wang, Milind Chabbi, and Xu Liu

… M … M …

Debug
register

Store S1 (PMU sample)

A watchpoint is armed A watchpoint exception

Memory access
sequence

Store S2

①

② ③

Figure 2: JXPerf’s scheme for silent store detection. 1○ The PMU

samples a memory store S1 that touches location M . 2○ In the PMU

sample handler, a debug register is armed to monitor subsequent

access to M . 3○ The debug register traps on the next store S2 to M .

4○ If S1 and S2 write the same values to M , JXPerf labels S2 as a

silent store and ⟨S1, S2 ⟩ as a silent store pair.

Silent stores and silent loads are value-aware inefficiencies
whereas dead stores are value-agnostic ones. We perform precise
equality check on integer values, and approximate equality check
on floating-point (FP) values within a user-specified threshold of
difference (1% by default), given the fact that all FP numbers under
the IEEE 754 format are approximately represented in the machine.
For memory operations involved in the inefficiencies, we typically
use their calling contexts instead of their effective addresses to
represent them, which can facilitate optimization efforts.

Figure 2 highlights the idea of JXPerf in detecting inefficiencies
at runtime, exemplified with silent stores. PMU drives JXPerf by
sampling precise memory stores. For a sampled store operation,
JXPerf records the effective address captured by the PMU, reads the
value in this address, and sets up a trap-on-store watchpoint on this
address via the debug register. The subsequent store to the same
effective address in the execution will trap. JXPerf captures the
trap and checks the value at the effective address of the trap. If the
value remains unchanged between the two consecutive accesses,
JXPerf reports a pair of silent stores. The watchpoint is disabled,
and the execution continues as usual to detect more such instances.

5 DESIGN AND IMPLEMENTATION

Figure 3 overviews JXPerf in the entire system stack. JXPerf re-
quires no modification to hardware (x86), OS (Linux), JVM (Oracle
HotSpot), and monitored Java applications. In this section, we first
describe the implementation details of JXPerf in identifying waste-
ful memory operations, then show how JXPerf addresses the chal-
lenges, and finally depict how JXPerf provides extra information
to guide code optimization. JXPerf generates per-thread profiles
and merges them to provide an aggregate view as the output.

5.1 Lightweight Inefficiency Detection

Silent Store Detection.
(1) JXPerf subscribes to the precise PMU store event at the

JVM initialization callbacks and sets up PMUs and debug
registers for each thread via perf_event API in the JVMTI
thread creation callback.

(2) When a PMU counter overflows during the execution, it
triggers an interrupt. JXPerf captures the interrupt, con-
structs the calling context C1 of the interrupt, and extracts
the effective addressM and the value V1 stored atM .

(3) JXPerf sets a W_TRAP (trap-on-store) watchpoint onM and
resumes the program execution.

Java Application

Off-the-shelf Oracle HotSpot JVM

Off-the-shelf Linux

perf_event API

Commodity CPU

PMU

Operating
System

Virtual
Machine

Hardware

Application

Debug Register

JXPerf

JVMTI

Figure 3: Overview of JXPerf in the system stack.

(4) A subsequent store toM triggers a trap. JXPerf handles the
trap signal, constructs the calling contextC2 of the trap, and
inspects the value V2 stored atM .

(5) JXPerf compares V1 and V2. If V1 = V2, a silent store is
detected, and JXPerf labels the context pair ⟨C1,C2⟩ as an
instance of silent store pair.

(6) JXPerf disarms the debug register and resumes execution.

Dead Store Detection. JXPerf subscribes to the precise PMU
store event for dead store detection.When a PMU counter overflows,
JXPerf constructs the calling context C1 of the interrupt, extracts
the effective addressM , sets a RW_TRAP (load and store) watchpoint
onM , and resumes program execution.When the subsequent access
traps, JXPerf examines the access type (store or load). If it is a store,
JXPerf constructs the calling context C2 of the trap and records
the pair ⟨C1,C2⟩ as an instance of dead store pair. Otherwise, it is
not a dead store.

Silent Load Detection. The detection is similar to the silent
store detection, except that JXPerf subscribes to the precise PMU
load event and sets a RW_TRAP watchpoint 1 to trap the subsequent
access to the same memory address. If the watchpoint triggers on a
load that reads the same value as the previous load from the same
location, JXPerf reports an instance of silent load pair.

The following metrics compute the fraction of wasteful memory
operations in an execution:

FDeadStoreproд =

∑
i
∑
j Dead bytes stored in⟨Ci , Cj ⟩∑

i
∑
j Bytes stored in⟨Ci , Cj ⟩

FSilentStoreproд =

∑
i
∑
j Silent bytes stored in⟨Ci , Cj ⟩∑
i
∑
j Bytes stored in⟨Ci , Cj ⟩

FSilentLoadproд =

∑
i
∑
j Silent bytes loaded from⟨Ci , Cj ⟩∑
i
∑
j Bytes loaded from⟨Ci , Cj ⟩

(1)

Fraction of wasteful memory operations in a calling context pair
is given as follows:

FDeadStore⟨Cwatch ,Ctrap ⟩
=
Dead bytes stored in⟨Cwatch, Ctrap ⟩∑

i
∑
j Bytes stored in⟨Ci , Cj ⟩

FSilentStore⟨Cwatch ,Ctrap ⟩
=
Silent bytes stored in⟨Cwatch, Ctrap ⟩∑

i
∑
j Bytes stored in⟨Ci , Cj ⟩

FSilentLoad⟨Cwatch ,Ctrap ⟩
=
Silent bytes loaded from⟨Cwatch, Ctrap ⟩∑

i
∑
j Bytes loaded from⟨Ci , Cj ⟩

(2)

1x86 debug registers do not offer trap-only-on-load facility.

Pinpointing Performance Inefficiencies in Java ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

5.2 Limited Number of Debug Registers

Hardware offers a small number of debug registers, which becomes
a limitation if the PMU delivers a new sample before a previously
set watchpoint traps. To better understand the problem, consider
the silent load example in Listing 2. Assume the loop indices i and
j, and the scalars sum1 and sum2 are in registers. Further assume
the PMU is configured to deliver a sample every 1K memory loads
and the number of debug register is only one. The first sample oc-
curs in loop i when accessing array[1K], which results in setting a
watchpoint to monitor the address of array[1K]. The second sam-
ple occurs when accessing array[2K]. Since the watchpoint armed
at array[1K] is still active, we should either forgo monitoring it in
favor of array[2K] or ignore the new sample. The former choice
allows us to potentially detect a pair of silent loads separated by
many intervening loads, and the latter choice allows us to detect
a pair of silent loads separated by only a few intervening loads.
The option is not obvious without looking into the future. A naive
“replace the oldest policy” is futile as it will not detect a single silent
load in the above example. Even a slightly smart exponential decay
strategy will not work because the survival probability of an old
watchpoint will be minuscule over many samples.

JXPerf employs reservoir sampling [44, 45, 47], which uniformly
chooses between old and new samples with no temporal bias. The
first sampled addressM1, occupies the debug register with 1.0 prob-
ability. The second sampled address M2, occupies the previously
armed watchpoint with 1/2 probability and retainsM1 with 1/2 proba-
bility. The third sampled addressM3, either occupies the previously
armed watchpoint with 1/3 probability or retains it (M1 orM2) with
2/3 probability. The ith sampled address Mi since the last time a
debug register was available, replaces the previously armed watch-
point with 1/i probability. The probability Pk of monitoring any
sampled addressMk , 1 ≤ k ≤ i , is the same (1/i), ensuring uniform
sampling over time. When a watchpoint exception occurs, JXPerf
disarms that watchpoint and resets its reservoir (replacement) prob-
ability to 1.0. Obviously, with this scheme JXPerf does not miss
any sample if every watchpoint traps before being replaced.

The scheme trivially extends to more number of debug registers,
say N ≥ 1. JXPerf maintains an independent reservoir probability
Pα for each debug register α , (1 ≤ α ≤ N). On a PMU sample, if
there is an available debug register, JXPerf arms it and decrements
the reservoir probability of other already-armed debug registers;
otherwise JXPerf visits each debug register α and attempts to
replace it with the probability Pα . The process may succeed or
fail in arming a debug register for a new sample, but it gives a
new sample N chances to remain in a system with N watchpoints.
Whether success or failure, Pα of each in-use debug register is
updated after a sample. The order of visiting the debug registers
is randomized for each sample to ensure fairness. Notice that this
scheme maintains only a count of previous samples (not an access
log), which consumes O(1) memory.

5.3 Interference of the Garbage Collector

Garbage collection (GC) can move live objects from one memory
location to another memory location. Without paying heed to GC
events, JXPerf can introduce two kinds of errors: (1) it may erro-
neously attribute an instance of inefficiency (e.g., dead store) to a

1 for (int i = 1; i <= 10K; i++) sum1 += array[i];
2 for (int j = 1; j <= 10K; j++) sum2 += array[j]; // silent loads

Listing 2: Long-distance silent loads. All four watchpoints are

armed in the first four samples taken in loop i when the sampling

period is 1Kmemory loads. Naively replacing the oldest watchpoint

will not trigger a single watchpoint owing to many samples taken

in loop i before reaching loop j. JXPerf employs the reservoir sam-

pling to ensure each sample equal probability to survive.

location that is in reality occupied by two different objects between
two consecutive accesses by the same thread; (2) it may miss at-
tributing an inefficiency metric to an object because it was moved
from one memory location to another between two consecutive
accesses by the same thread.

If JXPerf were able to query the garbage collector for moved
objects or addresses, it could have avoided such errors, however,
no such facility exists to the best of our knowledge in commer-
cial JVMs. JXPerf’s solution is to monitor accesses only between
GC epochs. JXPerf captures the start and end points of GC by
registering the JVMTI callbacks GarbageCollectionStart and
GarbageCollectionFinish to demarcate epochs. Watchpoints
armed in an older epoch are not carried over to a new epoch: the
first PMU sample or watchpoint trap that happens in a thread in
a new epoch disarms all active watchpoints in that thread and
begins afresh with a reservoir sampling probability of 1.0 for all
debug registers for that thread. Note that the GC thread is never
monitored. Typically, two consecutive accesses separated by a GC
is infrequent; for example, the ratio of # of GCs

of PMU samples is 4.4e-5 in
Dacapo-9.12-MR1-bach eclipse [4].

5.4 Attributing Measurement to Binary

JXPerf uses Intel XED library [7] for on-the-fly disassembly of
JITed methods. JXPerf retains the disassembly for post-mortem
inspection if desired. It also uses XED to determine whether a
watchpoint trap was caused by a load or a store instruction.

A subtle implementation issue is in extracting the instruction
that causes the watchpoint trap. JXPerf uses the perf_event API
to register a HW_BREAKPOINT perf event (watchpoint event) for a
monitored address. Although the watchpoint causes a trap imme-
diately after the instruction execution, the instruction pointer (IP)
seen in the signal handler context (contextIP) is one ahead of the
actual IP (trapIP) that triggers the trap. In the x86 variable-length
instruction set, it is nontrivial to derive the trapIP, even though it
is just one instruction before the contextIP. The HW_BREAKPOINT
event in perf_event is not a PMU event; hence, the Intel PEBS
support, which otherwise provides the precise register state, is un-
available for a watchpoint. JXPerf disassembles every instruction
from the method beginning till it reaches the IP just before the
contextIP. The expensive disassembly is amortized by caching re-
sults for subsequent traps that often happen at the same IP. The
caching is particularly important in methods with a large body;
for example, when detecting silent loads in Dacapo-9.12-MR1-bach
eclipse, without caching JXPerf introduces 4× runtime overhead.

5.5 Attributing Measurement to Source Code

Attributing runtime statistics to a flat profile (just an instruc-
tion) does not provide the full details needed for developer

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Pengfei Su, Qingsen Wang, Milind Chabbi, and Xu Liu

action. For example, attributing inefficiencies to a common
JDK method, e.g., string.equals(), offers little insight since
string.equals() can be invoked from several places in a large
code base; some invocations may not even be obvious to the user
code. A detailed attribution demands associating profiles with
the full calling context: packageA.classB.methodC:line#.->
...->java.lang.String.equals():line#. Thus, JXPerf re-
quires obtaining the calling context where a PMU sample occurs
and the calling context where a watchpoint traps.

Obtaining Calling Contexts without Safepoint Bias. Or-
acle JDK offers users two APIs to obtain calling contexts:
officially documented GetStackTrace() and undocumented
AsyncGetCallTrace(). Profilers that use GetStackTrace() suf-
fer from the safepoint bias since JVM requires the program to reach
a safepoint before collecting any calling context [21, 29]. To avoid
the bias, JXPerf employs AsyncGetCallTrace() to facilitate non-
safepoint collection of calling contexts [33]. AsyncGetCallTrace()
accepts u_context obtained from the PMU interrupts or debug reg-
ister traps as the input, and returns the method ID and byte code
index (BCI) for each stack frame in the calling context. Method ID
uniquely identifies distinct methods and distinct JITted instances
of the same method (a single method may be JITted multiple times).
With the method ID, JXPerf is able to obtain the associated class
name and method name by querying JVM via JVMTI. To obtain the
line number, JXPerf maintains a “BCI->line number” mapping
table for each method instance by querying JVM via JVMTI API
GetLineNumberTable(). As a result, for any given BCI, JXPerf
returns its line number by looking up the mapping table.

5.6 Post-mortem Analysis

JXPerf produces per-thread profiles to minimize thread synchro-
nization overhead during program execution. We coalesce these
per-thread profiles into a single profile in a post-mortem fashion.
The coalescing procedure follows the rule: two silent load (silent
store or dead store) pairs from different threads are coalesced iff
they have the same loads (stores) in the same calling contexts. All
metrics are also aggregated across threads. Typically, it takes less
than one minute to merge all profiles according to our experiments.

6 EVALUATION

We evaluate JXPerf on an 18-core Intel Xeon E5-2699 v3
CPU of 2.30GHz frequency running Linux 4.8.0. The machine
has 128GB main memory. JXPerf is built with Oracle JDK11
and complied with gcc-5.4.1 -O3. The Oracle HotSpot JVM
is run in the server mode. JXPerf samples the PMU event
MEM_UOPS_RETIRED:ALL_STORES to detect dead stores and silent
stores, and MEM_UOPS_RETIRED:ALL_LOADS to detect silent loads.

We evaluate JXPerf on three well-known benchmark suites—
DaCapo 2006 [4], Dacapo-9.12-MR1-bach [4] and ScalaBench [38].
Additionally, we use two real-world performance bug datasets [1,
28]. All programs are built with Oracle JDK11 except DaCapo 2006
bloat, Dacapo-9.12-MR1-bach batik and eclipse, and ScalaBench ac-
tors with Oracle JDK8 due to the incompatibility. We apply the large
input for DaCapo 2006, Dacapo-9.12-MR1-bach and ScalaBench,
and the default inputs released with the remaining programs if
not specified. Parallel programs, excluding threads used for the JIT

Fr
ac

tio
n

(%
)

0

20

40

60

80

100

an
tlr

bl
oa

t
ch

ar
t

hs
ql

db
av

ro
ra

ba
tik

ec
lip

se fo
p h2

jy
th

on
lu

in
de

x
lu

se
ar

ch
lu

se
ar

ch
-fi

x
pm

d
su

nfl
ow

xa
la

n
ac

to
rs

ap
pa

ra
t

fa
ct

or
ie

ki
am

a
sc

al
ac

sc
al

ad
oc

sc
al

ap
sc

al
ar

ifo
rm

sc
al

at
es

t
sc

al
ax

b
sp

ec
s

tm
t

G
eo

M
ea

n
M

ed
ia

n

Dead Store Silent Store Silent Load

Dacapo 2006 Dacapo-9.12 ScalaBench

Figure 4: Fraction of wasteful memory operations on DaCapo 2006,

Dacapo-9.12-MR1-bach and ScalaBench benchmark suites at the

sampling periods of 500K, 1M, 5M and 10M. The error bars are for

different sampling periods.

Fr
ac

tio
n

(%
)

0

20

40

60

80

100

an
tlr

bl
oa

t
ch

ar
t

hs
ql

db
av

ro
ra

ba
tik

ec
lip

se fo
p h2

jy
th

on
lu

in
de

x
lu

se
ar

ch
lu

se
ar

ch
-fi

x
pm

d
su

nfl
ow

xa
la

n
ac

to
rs

ap
pa

ra
t

fa
ct

or
ie

ki
am

a
sc

al
ac

sc
al

ad
oc

sc
al

ap
sc

al
ar

ifo
rm

sc
al

at
es

t
sc

al
ax

b
sp

ec
s

tm
t

G
eo

M
ea

n
M

ed
ia

n

Dead Store Silent Store Silent Load

Dacapo 2006 Dacapo-9.12 ScalaBench

Figure 5: Fraction of wasteful memory operations on DaCapo 2006,

Dacapo-9.12-MR1-bach and ScalaBench benchmark suites by using

different numbers of debug registers at the 5M sampling period. The

error bars are for different number of debug registers.

compilation and GC, are run with four threads if users are allowed
to specify the number of threads.

To deal with the impact of the non-deterministic execution (e.g.,
non-deterministic GC) of Java programs on experimental results,
we refer to Georges et al.’s work [17] to use a confidence interval for
the mean to report results. The confidence interval for the mean is
computed based on the following formula where n is the number of
samples, x is the mean, σ is the standard deviation and z is a statistic
determined by the confidence interval. In our experiments, we run
each benchmark 30 times (i.e., n = 30) and use a 95% confidence
interval (i.e., z = 1.96).

x ± z× σ
√
n (3)

In the rest of this section, we first show the fraction of wasteful
memory operations—dead stores, silent stores and silents loads
on DaCapo 2006, Dacapo-9.12-MR1-bach, and ScalaBench bench-
mark suites at different sampling periods and different number
of debug registers. We then evaluate the overhead of JXPerf on
these benchmarks. We exclude three benchmarks—Dacapo-9.12-
MR1-bach tradesoap, tradebeans, and tomcat—from monitoring
because of the huge variance in execution time of the native run
(tradesoap and tradebeans) or runtime errors of the native run
(tomcat). Finally, we evaluate the effectiveness of JXPerf on the
known performance bug datasets reported by existing tools.

Fraction of Wasteful Memory Operations. Figure 4 shows
the fraction of dead stores, silent stores, and silent loads on DaCapo
2006, Dacapo-9.12-MR1-bach, and ScalaBench benchmark suites at

Pinpointing Performance Inefficiencies in Java ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia
Ru

nt
im

e
Sl

ow
do

w
n

0

0.5

1

1.5

2
an

tlr
bl

oa
t

ch
ar

t
hs

ql
db

av
ro

ra
ba

tik
ec

lip
se fo
p h2

jy
th

on
lu

in
de

x
lu

se
ar

ch
lu

se
ar

ch
-fi

x
pm

d
su

nfl
ow

xa
la

n
ac

to
rs

ap
pa

ra
t

fa
ct

or
ie

ki
am

a
sc

al
ac

sc
al

ad
oc

sc
al

ap
sc

al
ar

ifo
rm

sc
al

at
es

t
sc

al
ax

b
sp

ec
s

tm
t

G
eo

M
ea

n
M

ed
ia

n

1
1.1
1.2

Dead Store Detection Silent Store Detection Silent Load Detection

Dacapo 2006 Dacapo-9.12 ScalaBench

(a) Runtime slowdown.

M
em

or
y

Bl
oa

t

0

0.5

1

1.5

2

an
tlr

bl
oa

t
ch

ar
t

hs
ql

db
av

ro
ra

ba
tik

ec
lip

se fo
p h2

jy
th

on
lu

in
de

x
lu

se
ar

ch
lu

se
ar

ch
-fi

x
pm

d
su

nfl
ow

xa
la

n
ac

to
rs

ap
pa

ra
t

fa
ct

or
ie

ki
am

a
sc

al
ac

sc
al

ad
oc

sc
al

ap
sc

al
ar

ifo
rm

sc
al

at
es

t
sc

al
ax

b
sp

ec
s

tm
t

G
eo

M
ea

n
M

ed
ia

n

1.1
1
1.2

Dead Store Detection Silent Store Detection Silent Load Detection

Dacapo 2006 Dacapo-9.12 ScalaBench

(b) Memory bloat.

Figure 6: Runtime slowdown (×) and memory bloat (×) of JXPerf at the 5M sampling period on DaCapo 2006, Dacapo-9.12-MR1-bach and

ScalaBench benchmark suites.

Table 1: Geometric mean and median of runtime slowdown (×)
and memory bloat (×) of JXPerf at different sampling periods on

DaCapo 2006, Dacapo-9.12-MR1-bach and ScalaBench benchmark

suites (DS: dead store, SS: silent store, SL: silent load).

500K 1M 5M 10M
Slowdown 1.18/1.18 1.11/1.1 1.07/1.05 1.04/1.03

Memory bloat 1.06/1.08 1.06/1.08 1.05/1.06 1.04/1.05
Slowdown 1.16/1.14 1.1/1.1 1.06/1.04 1.05/1.04

Memory bloat 1.06/1.07 1.06/1.06 1.04/1.05 1.05/1.05
Slowdown 1.35/1.34 1.24/1.21 1.1/1.07 1.07/1.05

Memory bloat 1.19/1.17 1.11/1.1 1.05/1.07 1.06/1.06

Sampling Period

DS Detection

SS Detection

SL Detection

GeoMean/Median

Table 2: Effectiveness of JXPerf. Toddler and Glider report 33 and

46 performance bugs from eight real-world applications, among

which JXPerf succeeds in reproducing 31 and 44 bugs, respectively.

Application # of bugs reported by Toddler/Glider # of bugs reproduced by JXPerf
Apache Ant 5/6 4/5

Apache Collections 21/16 20/16
Apache Groovy 1/6 1/6
Apache Lucene 0/1 0/1
Google Guava 4/9 4/9

JFreeChart 1/3 1/2
JDK 1/0 1/0

PDFBox 0/5 0/5
Sum 33/46 31/44

the sampling periods of 500K, 1M, 5M, and 10M. The following two
takeaways are obvious:
• The inefficiencies, such as dead stores, silent stores, and silent
loads, pervasively exist in Java programs.

• The sampling period does not significantly impact the fraction
of inefficiencies in Java programs.
We further vary the number of debug registers from one to four

to observe the variation in results at the same sampling period—
5M, as shown in Figure 5. We find the number of debug registers
has minuscule impacts on the results except for a couple of short-
running (e.g., < 2s) benchmarks such as luindex and kiama, which
validates the strength of the reservoir sampling. We checked the
top five inefficiency pairs and their percentage contributions and
found negligible variance across different sampling periods and
different number of debug registers.

Overhead. Runtime slowdown (memory bloat) is measured as
the ratio of the runtime (peak memory usage) of a benchmark with

JXPerf enabled to the runtime (peak memory usage) of its native
execution. Table 1 shows the geometric mean and median of run-
time slowdown and memory bloat at different sampling periods.
When the sampling period increases (i.e., sampling rate decreases),
the overhead drops as expected. We emperically find the 5M sam-
pling period yields a good tradeoff between overhead and accuracy,
which typically incurs 7% runtime slowdown and 7% memory bloat.

Figure 6 quantifies the overhead of JXPerf on each benchmark at
the 5M sampling period. Silent load detection typically has a higher
overhead than the other two because loads are more common than
stores in a program execution. Moreover, JXPerf sets the RW_TRAP
(trap-only-on-load watchpoints are unavailable in x86 processors),
which triggers an exception on both stores (ignored) and loads.
From the program perspective, silent load detection for eclipse
incurs higher runtime overhead than others because it executes
more load operations and has more methods of large size that
require JXPerf to take more efforts to correct the off-by-one error
at each watchpoint trap. Furthermore, due to the non-deterministic
behavior of GC, the peak memory usage for a couple of benchmarks
with JXPerf enabled is less than the native run (e.g., eclipse,
xalan) or varies significantly among different runs (e.g., factorie).

Effectiveness. We investigate the performance bugs reported
by several state-of-the-art tools such as Toddler [32], Clarity [35],
Glider [12], and LDoctor [39]. Among them, the developers of Tod-
dler and Glider share their bug datasets and test cases that expose
the bugs online [1, 28]. Therefore, we validate the effectiveness
of JXPerf by checking whether the bugs reported by Toddler and
Glider can also be identified by JXPerf. Toddler and Glider are both
built atop Soot [43] to identify a restricted class of performance
issues: redundant operations involved in Java collection traversals,
of which the symptom is silent loads. It is worth noting that the
runtime overheads of Toddler and Glider are ∼16× and ∼150×,
respectively.

Table 2 shows the comparison results. Toddler reports 33 bugs
(we exclude the bugs whose source codes or test cases are no longer
available), among which JXPerf misses only two bugs: Apache
Ant#53637 and Apache Collections#409. Glider reports 46 bugs,
among which JXPerf misses only two bugs: Apache Ant#53637
and JFreeChart (unknown bug ID). Take Apache Collections#588,
one of the reported bugs, as an example to illustrate how JXPerf
identifies it. Listing 3 shows the inefficient implementation of
method retainAll() in Apache Collections#588. JXPerf reports
49% of silent loads are associated with method contains() at line

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Pengfei Su, Qingsen Wang, Milind Chabbi, and Xu Liu

1 public boolean retainAll(final Collection <?> coll) {
2 if (coll != null) {
3 boolean modified = false;
4 final Iterator <E> e = iterator ();
5 while (e.hasNext ()) {
6 ▶ if (!coll.contains(e.next())) {
7 e.remove ();
8 modified = true;
9 }
10 }
11 return modified;
12 } else return decorated ().retainAll(null);
13 }

Listing 3: Inefficient implementation of method retainAll() in

Apache Collections#588. JXPerf reports that 49% of silent loads are

associated with method contains() at line 6 when the parameter

coll is of type list.

6 when the parameter Collection coll is of type list. For each
element in Iterator e, contains() performs a linear search over
coll to check whether coll contains this element. Consequently,
elements in coll are repeatedly traversed whereas their values
remain unchanged, which shows up as silent loads. Converting
coll to a hash set is a superior choice of data structure that enables
O(1) search algorithm and dramatically reduces both the number
of loads and also the fraction of silent loads.

All the missed performance bugs fall into the same category:
inefficiency observed in adjacent memory locations rather than the
same memory location. We take Apache Ant#53637 as an example
to illustrate why JXPerf misses it. The method “A.addAll(int
index, Collection B)” in Ant#53637 requires inserting elements
of Collection A one by one into the location “index” of Collection
B. In each insertion, elements at and behind the location “index”
of B have to be shifted. Consequently, elements in B suffer from
the repeated shifts. The symptom of such inefficiency is that the
same value is repeatedly loaded from adjacent memory locations.
JXPerf only identifies silent loads that repeatedly read the same
value from the same memory location. JXPerf can be extended
with a heuristic to record values at adjacent locations at the sample
point and compare them in a watchpoint. It is worth noting that
inefficiencies identified by Toddler, Clarity, Glider, and LDoctor are
mostly related to load operations, whereas JXPerf also identifies
significant store-related inefficiencies.

7 CASE STUDIES

In addition to confirming the performance bugs reported by exist-
ing tools, we apply JXPerf on more benchmark suites—DaCapo
2006 [4], SPECjvm2008 [40], NPB-3.0 [3] and Grande-2.0 [34],
and real-world applications—SableCC-3.7 [16], FindBugs-3.0.1 [37],
JFreeChart-1.0.19 [18] to identify varieties of inefficiencies.

Table 3 summarizes the newly found performance bugs via
JXPerf as well as previously found ones but with different insights
provided by JXPerf. All programs are built with Oracle JDK11 ex-
cept Dacapo 2006 bloat and FindBugs-3.0.1, which are with Oracle
JDK8. We measure the performance of all programs in execution
time except SPECjvm2008 scimark.fft, which is in throughput. We
run each program 30 times and use a 95% confidence interval for
the mean speedup to report the performance improvement. In the
rest of this section, we study each program shown in Table 3.

--
spec.harness.BenchmarkThread.run(BenchmarkThread.java:59)
spec.harness.BenchmarkThread.executeIteration(BenchmarkThread.java:82)
spec.harness.BenchmarkThread.runLoop(BenchmarkThread.java:170)
spec.benchmarks.scimark.fft.Main.harnessMain(Main.java:36)
spec.benchmarks.scimark.fft.Main.runBenchmark(Main.java:27)
spec.benchmarks.scimark.fft.FFT.main(FFT.java:89)
spec.benchmarks.scimark.fft.FFT.run(FFT.java:246)
spec.benchmarks.scimark.fft.FFT.measureFFT(FFT.java:231)
spec.benchmarks.scimark.fft.FFT.test(FFT.java:70)
spec.benchmarks.scimark.fft.FFT.inverse(FFT.java:52)
vmovsd 0x10(%r9,%r8,8),%xmm2:...transform_internal(FFT.java:153)

*********************************REDUNDANT WITH*********************************
spec.harness.BenchmarkThread.run(BenchmarkThread.java:59)
spec.harness.BenchmarkThread.executeIteration(BenchmarkThread.java:82)
spec.harness.BenchmarkThread.runLoop(BenchmarkThread.java:170)
spec.benchmarks.scimark.fft.Main.harnessMain(Main.java:36)
spec.benchmarks.scimark.fft.Main.runBenchmark(Main.java:27)
spec.benchmarks.scimark.fft.FFT.main(FFT.java:89)
spec.benchmarks.scimark.fft.FFT.run(FFT.java:246)
spec.benchmarks.scimark.fft.FFT.measureFFT(FFT.java:231)
spec.benchmarks.scimark.fft.FFT.test(FFT.java:70)
spec.benchmarks.scimark.fft.FFT.inverse(FFT.java:52)
vaddsd 0x10(%r9,%r8,8),%xmm0,%xmm0:...transform_internal(FFT.java:155)

--

Figure 7: A silent load pair with full calling contexts reported by

JXPerf in SPECjvm2008 scimark.fft.

7.1 SPECjvm2008 Scimark.fft: Silent Loads

With the large input and four threads, JXPerf reports 33% of mem-
ory loads are silent. The top two silent load pairs are attributed to
lines 153 and 155, and lines 154 and 156 in Listing 1, which account
for 27% of the total silent loads. They both suffer from the same
performance issue: poor code generation detailed in Section 1.1.
We take lines 153 and 155 as an example to illustrate our optimiza-
tion, of which the culprit calling contexts are shown in Figure 7.
We employ scalar replacement to eliminate such intra-iteration
silent loads. In each iteration, we store the value of data[i] in a
temporary before performing line 153, which enables data[i] to
be loaded only once in each loop iteration. We also eliminate the
silent loads between lines 154 and 156 using the same approach.
They together eliminate 15% of the total memory loads and yield a
(1.13±0.02)× speedup for the entire program.

7.2 Grande-2.0 Euler: Dead Stores

Euler [34] employs a structured mesh to solve the time-dependent
Euler equations. JXPerf identifies 46% stores are dead. One of the
top dead store pairs is associated with the variable temp2.a at lines
5 and 12 in Listing 4, which appears in a loop nest (not shown).
By inspecting the JITted assembly code shown in Figure 8, we
find the value of temp2.a computed at line 5 is held in a register,
which is reused at line 7. However, the memory store to temp2.a at
line 5 is not eliminated. As a result, the memory store to temp2.a
at line 12 overwrites the previous memory store to temp2.a at
line 5. Although CPUs buffer stores, workloads with many store
operations, such as Euler [34], can cause CPU stalls due to store
buffers filling up [54].

To eliminate the dead stores, we use a temporary to replace
temp2.a at lines 5, 7, and 12 to avoid using temp2.a. JXPerf also
identifies other dead store pairs with the same issue and guides
the same optimization. Our optimization eliminates 59% of total
memory stores and yields a (1.1±0.02)× speedup. Our optimiza-
tion is safe because temp2 is a local object defined in the method
calculateDamping (line 2) to store the intermediate results; the
object it refers to is never referenced by any other variable.

Pinpointing Performance Inefficiencies in Java ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Program Inefficiency Optimization
Code Type Root cause Patch Speedup (×)

M
ac
ro

be
nc
hm

ar
k ✓SPECjvm2008 scimark.fft FFT.java:loop(153-156) SL Poor binary code generation Scalar replacement 1.13±0.02

✓NPB-3.0 IS Random.java: randlc SS Redundant method invocations Reusing the previous result 1.89±0.04
✓Grande-2.0 Euler Tunnel.java:calculateR

Tunnel.java:calculateDamping DS Poor binary code generation Scalar replacement 1.1±0.02

Re
al
-w

or
ld

ap
pl
ic
at
io
n ✓SableCC-3.7

Grammar.java(15,16,64,65)
LR0Collection.java(16,57,82,112)

LR1Collection.java(16,17,27,28,33,34)
LR0ItemSet.java(15,20,26)

LR1ItemSet.java(15,20,26,124)

SL Poor data structure Replacing TreeMap with LinkedHashMap 3.08±0.32

✓FindBugs-3.0.1 Frame.java:copyFrom DS Inefficiently-used ArrayList Improving ArrayList usage 1.02±0.01
✓Dacapo 2006 bloat RegisterAllocator.java:loop(283) DS Useless value assignment in JDK Removing the overpopulated containers 1.35±0.05
JFreeChart-1.0.19 SegmentedTimeline.java:loop(1026) SL Poor linear search Linear search with a break check 1.64±0.04

✓: newfound performance bugs via JXPerf.
SS: silent store, DS: dead store, SL: silent load.

Table 3: Overview of performance improvement guided by JXPerf.

1 private void calculateDamping(double localpg [][], Statevector
localug [][]) {

2 Statevector temp2 = new Statevector ();
3 if (j > 1 && j < jmax -1) {
4 temp = localug[i][j+2]. svect(localug[i][j-1]);
5 ▶ temp2.a = 3.0*(localug[i][j].a-localug[i][j+1].a);
6 ...
7 scrap4.a = tempdouble *(temp.a+temp2.a);
8 }
9 ...
10 if (j > 1 && j < jmax -1) {
11 temp = localug[i][j+1]. svect(localug[i][j-2]);
12 ▶ temp2.a = 3.0*(localug[i][j-1].a-localug[i][j].a);
13 ...
14 }
15 ...
16 }

Listing 4: Dead stores inGrande-2.0 Euler. Successivememory stores

to temp2.a without an intervening memory load.

; temp2.a = 3.0*(localug[i][j].a-localug[i][j+1].a)
vsubsd %xmm1,%xmm0,%xmm0
vmulsd -0x1a76(%rip),%xmm0,%xmm0
vmovsd %xmm0,0x10(%r8)
…
; scrap4.a = tempdouble*(temp.a+temp2.a)
vaddsd %xmm0,%xmm5,%xmm5
vmulsd %xmm4,%xmm5,%xmm5
vmovsd %xmm5,0x10(%r9)
…
; temp2.a = 3.0*(localug[i][j-1].a-localug[i][j].a)
vsubsd %xmm1,%xmm0,%xmm0
vmulsd -0x2077(%rip),%xmm0,%xmm0
vmovsd %xmm0,0x10(%r8)

Figure 8: The assembly code (at&t style) of lines 5, 7 and 12 in List-

ing 4.

7.3 SableCC-3.7: Silent Loads

SableCC [16] is a lexer and parser framework for compilers and
interpreters. JXPerf profiles the latest stable version of SableCC
by using the JDK7 grammar file as the input. JXPerf identifies
that silent loads account for 94% of the total memory loads and
more than 80% of silent loads are associated with method put()
of the JDK TreeMap class. One of such top inefficiency pairs with
calling contexts is shown in Figure 9. The silent loads occur at line
568 in TreeMap.java, whose source code is shown in Listing 5.
TreeMap is a Red-Black tree-based map where a put operation
requires O(logn) comparisons to insert an element. put() is fre-
quently invoked to update the TreeMap during program execution.
Consequently, previously loaded elements in the TreeMap are often

org.sablecc.sablecc.SableCC.main(SableCC.java:136)
org.sablecc.sablecc.SableCC.processGrammar(SableCC.java:170)

...
mov 0x20(%rbp),%r10d: java.util.TreeMap.put(TreeMap.java:568)

***************************REDUNDANT WITH***************************
org.sablecc.sablecc.SableCC.main(SableCC.java:136)
org.sablecc.sablecc.SableCC.processGrammar(SableCC.java:170)

...
mov 0x20(%rbp),%r10d: java.util.TreeMap.put(TreeMap.java:568)

--

Figure 9: A silent load pair reported by JXPerf in SableCC-3.7.

561 public V put(K key , V value) {
562 Entry <K,V> t = root;
563 ...
564 do {
565 parent = t;
566 cmp = k.compareTo(t.key);
567 if (cmp < 0)
568 ▶ t = t.left;
569 else if (cmp > 0)
570 t = t.right;
571 ...
572 } while (t != null);
573 ...
574 }

Listing 5: Method put() of the JDK TreeMap class. A put operation

requires O(logn) comparisons to insert an element.

re-loaded to compare with new elements being inserted in different
instances of put(), which shows up as silent loads.

By consulting the SableCC developers, we choose an alternative
data structure. We replace TreeMap with LinkedHashMap because
(1) the linked list preserves ordering from one execution to an-
other and (2) the hash table offers O(1) time complexity and obvi-
ously reduces the number of loads as well as the fraction of silent
loads. We employ this transformation in five classes: LR0ItemSet,
LR1ItemSet, LR0Collection, LR1Collection, and Grammar. This
optimization reduces the memory loads by 43% and delivers a
(3.08±0.32)× speedup to the entire program.

7.4 NPB-3.0 IS: Silent Stores

IS [3] sorts integers using the bucket sort. With the class B input
and four threads, JXPerf pinpoints that 70% of memory stores are
silent, of which more than 50% are associated with method pow()
at lines 3-6 in Listing 6. We notice method randlc() is invoked in
a hot loop (not shown) and the arguments passed to pow() are loop
invariant. Across loop iterations, pow() pushes the same parameters
on the same stack location, which shows up as silent stores.

To eliminate such redundant operations, we hoist the four calls
to pow() outside of randlc() and memoize their return values in

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Pengfei Su, Qingsen Wang, Milind Chabbi, and Xu Liu

1 public double randlc(double a) {
2 double y[],r23 ,r46 ,t23 ,t46 , ...;
3 ▶ r23 = Math.pow (0.5 ,23);
4 ▶ r46 = Math.pow(r23 , 2);
5 ▶ t23 = Math.pow (2.0 ,23);
6 ▶ t46 = Math.pow(t23 , 2);
7 ...
8 }

Listing 6: Silent stores in NPB-3.0 IS. Method pow() repeatedly

pushes the same parameters on the same stack across loop itera-

tions.

1 union = new HashSet ();
2 for (int i = 1; i < copies.size(); i++) {
3 ...
4 ▶ union.addAll(ig.succs(copy [0]));
5 ▶ union.addAll(ig.succs(copy [1]));
6 weight /= union.size();
7 ...
8 }

Listing 7: Dead stores in Dacapo 2006 bloat. Useless value assign-

ment in the JDK HashMap class leads to dead stores.

private class variables. JXPerf further identifies other code snippets
having the same issue and guides the same optimization. These opti-
mizations eliminate 96% of memory stores and yield a (1.89±0.04)×
speedup for the entire program.

7.5 Dacapo 2006 Bloat: Dead Stores

Bloat [4] is a toolkit for analyzing and optimizing Java byte code.
With the large input, JXPerf reports 78% dead stores. More than 30%
of dead stores are attributed to the call site of method addAll() at
lines 4 and 5 in Listing 7, where the program computes the union of
HashSet ig.succs(copy[0]) and HashSet ig.succs(copy[1]),
and stores the result in HashSet “union”. Guided by the culprit
calling contexts, we notice the root cause of such dead stores is
related to the field current of the JDK HashMap class, as shown
in Listing 8. Method addAll() invokes the method nextNode() of
the HashMap class in a loop (not shown). In each iteration, the field
current is overwritten with the newly inserted value, but never
gets used during the execution, which shows up as dead stores.

With further code investigation, we find that HashSet
“union” is created for only computing the size of the union of
ig.succs(copy[0]) and ig.succs(copy[1]), and elements in
“union” are never used. Therefore, we can eliminate the dead
stores by avoiding creating “union”. We declare a counter vari-
able to record the size of the union of ig.succs(copy[0]) and
ig.succs(copy[1]). The counter is initialized to the size of the
larger one in ig.succs(copy[0]) and ig.succs(copy[1]). Then
we visit each element of the smaller one and check whether that
element is already in the larger one. If not, the counter increments
by 1. This optimization reduces 32% of memory stores and yields a
(1.35±0.05)× speedup for the entire program.

Yang et al. [52] also identify the same optimization opportunity
via the high-level container usage analysis, which is different from
JXPerf’s binary-level inefficiency analysis.

7.6 FindBugs-3.0.1: Dead Stores

FindBugs [37] is a static analysis tool for detecting security and
performance bugs. We profile it using the JDK rt.jar as the input.

1 final Node <K,V> nextNode () {
2 Node <K,V>[] t;
3 Node <K,V> e = next;
4 ...
5 ▶if ((next=(current=e).next)==null &&(t=table)!=null) {
6 do {} while (index <t.length &&(next=t[index ++])==null);
7 }
8 return e;
9 }

Listing 8: Method nextNode() of the JDK HashMap class.

1 private final ArrayList <ValueType > slotList;
2 ...
3 public void copyFrom(Frame <ValueType > other) {
4 int size = slotList.size();
5 if (size == other.slotList.size()) {
6 for (int i = 0; i < size; i++)
7 slotList.set(i, other.slotList.get(i));
8 } else {
9 ▶ slotList.clear();
10 for (ValueType v : other.slotList)
11 ▶ slotList.add(v);
12 }
13 ...
14 }

Listing 9: Dead stores in FindBugs-3.0.1. Inefficiently-used

ArrayList leads to dead stores.

1 public void copyFrom(Frame <ValueType > other) {
2 int a = slotList.size();
3 int b = other.slotList.size();
4 int min = a > b ? b : a;
5 for (int i = 0; i < min; i++)
6 ▶ slotList.set(i, other.slotList.get(i));
7 ▶ if (a > min) slotList.subList(b,a).clear();
8 else
9 for (int i = a; i < b; i++)
10 ▶ slotList.add(other.slotList.get(i));
11 }

Listing 10: Optimizing the code in Listing 9 to eliminate dead stores.

JXPerf reports 47% dead stores in this program. One of the top
dead store pairs is attributed to the instance variable ArrayList
slotList at lines 9 and 11 in Listing 9. With an investigation into
the implementation of the JDK ArrayList class, we find that the
method clear() assigns the null value to all elements in slotList
and sets its size to zero instead of reclaiming the occupied space.
When an element is inserted into slotList later by invoking the
method add(), the null value at the given location of slotList,
without any usage, is overwritten, which shows up as dead stores.

We redesign the code to eliminate the dead stores, as shown in
Listing 10. We first compare the size of ArrayList slotList, say
a, with the size of ArrayList other.slotList, say b, to obtain
the size of the smaller, saymin. We then replace the firstmin ele-
ments in slotListwith the firstmin elements in other.slotList
(line 6) by invoking method set(). Finally, if a >min, we invoke
clear() to clear only the remaining elements in slotList (line
7); otherwise, we invoke add() to append the remaining elements
in other.slotList to slotList (line 10). With this optimization,
the total number of memory stores is reduced by 6% and the entire
program gains a (1.02±0.01)× speedup.

7.7 JFreeChart-1.0.19: Silent Loads

JFreeChart [18] is a chart library. JXPerf reports 90% of
memory loads are silent on profiling the built-in test case

Pinpointing Performance Inefficiencies in Java ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

1 private List exceptionSegments = new ArrayList ();
2 ...
3 public long getExceptionSegmentCount(long fromMillisecond , long

toMillisecond) {
4 int n = 0;
5 for (Iterator iter = this.exceptionSegments.iterator (); iter.

hasNext ();) {
6 Segment segment = (Segment)iter.next();
7 ▶ Segment intersection = segment.intersect(fromMillisecond ,

toMillisecond);
8 if (intersection != null) {
9 n += intersection.getSegmentCount ();
10 }}
11 return (n);
12 }

Listing 11: Silent loads in JFreeChart-1.0.19. Immutable ArrayList
elements are repeatedly loaded from memory across invocation in-

stances of method getExceptionSegmentCount().

SegmentedTimelineTest and 30% of silent loads are attributed
to method getExceptionSegmentCount(), as shown in List-
ing 11. getExceptionSegmentCount() performs a linear search
(line 7) over ArrayList exceptionSegments to count the num-
ber of segments that intersect a given segment [fromMillisecond,
toMillisecond]. This linear search is called multiple times in a
loop to become the performance bottleneck. The symptom of such
inefficiency is silent loads, which is caused by the repeated loads of
immutable ArrayList elements in different invocation instances
of getExceptionSegmentCount().

We notice that segments in exceptionSegments are stored
in ascending order, that is, the end point of the segment
exceptionSegments.get(i) < the start point of the segment
exceptionSegments.get(j) iff i < j. Therefore, there is no need
to traverse the remaining segments in exceptionSegments if
the start point of the current segment is already greater than
toMillisecond. With this optimization, we reduce the memory
loads by 23% and the entire program achieves a (1.64±0.04)×
speedup.

Nistor et al. [32] also identify the same performance issue with
Toddler. However, their optimization [31] guided by Toddler bene-
fits the program only in two extreme situations: toMillisecond
< the start point of the first segment in exceptionSegments
or fromMillisecond > the end point of the last segment in
exceptionSegments.

8 THREATS TO VALIDITY

JXPerf works on multi-threaded programs since PMUs and debug
registers are virtualized by the OS for each program thread. JXPerf
detects only intra-thread wasteful memory accesses and ignores
inter-thread ones because a watchpoint traps iff the same thread
accesses the memory address the watchpoint is monitoring. Inter-
thread access pattern detection is feasible but unwarranted for the
class of inefficiencies pertinent to our current work.

Due to the intrinsic feature of sampling, JXPerf captures statisti-
cally significant memory accesses, but may miss some insignificant
ones. Usually, optimizing such insignificant memory accesses yields
trivial speedups.

Furthermore, not all reported wasteful memory operations need
be eliminated. For example, compiler-savvy developers introduce
a small number of silent loads or stores to make programs more

regular for the purpose of vectorization, and security-savvy devel-
opers introduce a small number of dead stores to clear confidential
data [53]. Developers’ investigation or post-mortem analysis is
necessary to make optimization choices. Only high-frequency in-
efficiencies are interesting; eliminating a long tail of insignificant
inefficiencies that do not add up to a significant fraction is imprac-
tical and probably ineffective.

9 CONCLUSIONS AND FUTUREWORK

Wasteful memory operations are often the symptoms of inappro-
priate data structure choice, suboptimal algorithm, and inefficient
machine code generation. This paper presents JXPerf, a Java pro-
filer that pinpoints performance inefficiencies arising from wasteful
memory operations. JXPerf samples CPU performance counters
for addresses accessed by the program and uses hardware debug
registers to monitor those addresses in an intelligent way. This
hardware-assisted profiling avoids exhaustive byte code instru-
mentation and delivers a lightweight, effective tool, which does not
compromise its ability to detect performance bugs. In fact, JXPerf’s
ability to operate at the machine code level allows it to detect low-
level code generation problems that are not apparent via byte code
instrumentation. JXPerf runs on off-the-shelf JVM, OS, and CPU,
works on unmodified Java applications, and introduces only 7% run-
time overhead and 7% memory overhead. Guided by JXPerf, we are
able to optimize several benchmarks and real-world applications,
yielding significant speedups.

As one of our future plans, we will extend JXPerf to other pop-
ular managed languages, such as Python and JavaScript, which
recently employ JITters—PyPy [2] for Python and V8 [20] for
JavaScript.

ACKNOWLEDGMENTS

We thank reviewers for their valuable comments. This work is
supported by Google Faculty Research Award.

REFERENCES

[1] Adrian Nistor, Linhai Song, DarkoMarinov, and Shan Lu. 2013. Toddler: Detecting
Performance Problems via Similar Memory-Access Patterns. http://www.cs.fsu.
edu/~nistor/toddler.

[2] Armin Rigo, Maciej Fijalkowski, Carl Friedrich Bolz, Antonio Cuni, Benjamin Pe-
terson, Alex Gaynor, Holger Krekel, and Samuele Pedroni. 2018. A fast, compliant
alternative implementation of the Python language. https://pypy.org.

[3] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum,
R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon,
V. Venkatakrishnan, and S. K. Weeratunga. 1991. The NAS Parallel Bench-
marks&Mdash;Summary and Preliminary Results. In Proceedings of the 1991
ACM/IEEE Conference on Supercomputing (Supercomputing ’91). ACM, New York,
NY, USA, 158–165.

[4] StephenM. Blackburn, Robin Garner, Chris Hoffmann, AsjadM. Khang, Kathryn S.
McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton,
Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B.
Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von
Dincklage, and Ben Wiedermann. 2006. The DaCapo Benchmarks: Java Bench-
marking Development and Analysis. In Proceedings of the 21st Annual ACM
SIGPLAN Conference on Object-oriented Programming Systems, Languages, and
Applications (OOPSLA ’06). ACM, New York, NY, USA, 169–190.

[5] Milind Chabbi and John Mellor-Crummey. 2012. DeadSpy: A Tool to Pinpoint
Program Inefficiencies. In Proceedings of the Tenth International Symposium on
Code Generation and Optimization (CGO ’12). ACM, New York, NY, USA, 124–134.

[6] Intel Corp. 2010. Intel Microarchitecture Codename Nehalem Performance Mon-
itoring Unit Programming Guide. https://software.intel.com/sites/default/files/
m/5/2/c/f/1/30320-Nehalem-PMU-Programming-Guide-Core.pdf.

[7] Intel Corp. 2015. Intel X86 Encoder Decoder Software Library. https://software.
intel.com/en-us/articles/xed-x86-encoder-decoder-software-library.

http://www.cs.fsu.edu/~nistor/toddler
http://www.cs.fsu.edu/~nistor/toddler
https://pypy.org
https://software.intel.com/sites/default/files/m/5/2/c/f/1/30320-Nehalem-PMU-Programming-Guide-Core.pdf
https://software.intel.com/sites/default/files/m/5/2/c/f/1/30320-Nehalem-PMU-Programming-Guide-Core.pdf
https://software.intel.com/en-us/articles/xed-x86-encoder-decoder-software-library
https://software.intel.com/en-us/articles/xed-x86-encoder-decoder-software-library

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Pengfei Su, Qingsen Wang, Milind Chabbi, and Xu Liu

[8] Oracle Corp. 2017. Oracle Developer Studio Performance Ana-
lyzer. https://www.oracle.com/technetwork/server-storage/solarisstudio/
documentation/o11-151-perf-analyzer-brief-1405338.pdf.

[9] Oracle Corp. 2018. JVMTM Tool Interface. https://docs.oracle.com/en/java/
javase/11/docs/specs/jvmti.html.

[10] Oracle Corporation. 2018. All-in-One Java Troubleshooting Tool. https:
//visualvm.github.io.

[11] Luca Della Toffola, Michael Pradel, and Thomas R. Gross. 2015. Performance
Problems You Can Fix: A Dynamic Analysis of Memoization Opportunities. In
Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA 2015). ACM, New
York, NY, USA, 607–622.

[12] Monika Dhok and Murali Krishna Ramanathan. 2016. Directed Test Generation
to Detect Loop Inefficiencies. In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE 2016). ACM,
New York, NY, USA, 895–907.

[13] Paul J. Drongowski. 2007. Instruction-Based Sampling: A New Performance
Analysis Technique for AMD Family 10h Processors. https://pdfs.semanticscholar.
org/5219/4b43b8385ce39b2b08ecd409c753e0efafe5.pdf.

[14] Ariel Eizenberg, Shiliang Hu, Gilles Pokam, and Joseph Devietti. 2016. Remix:
Online Detection and Repair of Cache Contention for the JVM. In Proceedings
of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’16). ACM, New York, NY, USA, 251–265.

[15] ej-technologies GmbH. 2018. THE AWARD-WINNING ALL-IN-ONE JAVA PRO-
FILER. https://www.ej-technologies.com/products/jprofiler/overview.html.

[16] Etienne Gagnon. 2018. The Sable Research Group’s Compiler Compiler. http:
//sablecc.org. May 2018.

[17] Andy Georges, Dries Buytaert, and Lieven Eeckhout. 2007. Statistically Rigorous
Java Performance Evaluation. In Proceedings of the 22Nd Annual ACM SIGPLAN
Conference on Object-oriented Programming Systems and Applications (OOPSLA
’07). ACM, New York, NY, USA, 57–76.

[18] David Gilbert. 2017. Welcome To JFree.org. http://www.jfree.org. November
2017.

[19] YourKit GmbH. 2018. The Industry Leader in .NET & Java Profiling. https:
//www.yourkit.com.

[20] Google Corp. 2018. Google V8 JavaScript Engine. https://v8.dev.
[21] Peter Hofer andHanspeterMössenböck. 2014. Fast Java Profilingwith Scheduling-

aware Stack Fragment Sampling and Asynchronous Analysis. In Proceedings of
the 2014 International Conference on Principles and Practices of Programming on
the Java Platform: Virtual Machines, Languages, and Tools (PPPJ ’14). ACM, New
York, NY, USA, 145–156.

[22] IBM Corp. 2018. Monitoring and Post Mortem. https://developer.ibm.com/
javasdk/tools.

[23] Mark Scott Johnson. 1982. Some Requirements for Architectural Support of
Software Debugging. In Proceedings of the First International Symposium on Ar-
chitectural Support for Programming Languages and Operating Systems (ASPLOS
I). ACM, New York, NY, USA, 140–148.

[24] John Levon et al. 2017. OProfile. http://oprofile.sourceforge.net.
[25] Linux. 2012. perf_event_open - Linux man page. https://linux.die.net/man/2/

perf_event_open.
[26] Linux. 2015. Linux Perf Tool. https://perf.wiki.kernel.org/index.php/Main_Page.
[27] R. E. McLear, D. M. Scheibelhut, and E. Tammaru. 1982. Guidelines for Creating

a Debuggable Processor. In Proceedings of the First International Symposium on
Architectural Support for Programming Languages and Operating Systems (ASPLOS
I). ACM, New York, NY, USA, 100–106.

[28] Monika Dhok and Murali Krishna Ramanathan. 2016. Artifact: Directed Test
Generation to Detect Loop Inefficiencies. https://drona.csa.iisc.ac.in/~sss/tools/
glider.

[29] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F. Sweeney. 2010.
Evaluating the Accuracy of Java Profilers. In Proceedings of the 31st ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI ’10). ACM,
New York, NY, USA, 187–197.

[30] Khanh Nguyen and Guoqing Xu. 2013. Cachetor: Detecting Cacheable Data
to Remove Bloat. In Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering (ESEC/FSE 2013). ACM, New York, NY, USA, 268–278.

[31] Adrian Nistor. 2012. fast return for SegmentedTime-
line.getExceptionSegmentCount(). https://sourceforge.net/p/jfreechart/
patches/300. November 2012.

[32] Adrian Nistor, Linhai Song, DarkoMarinov, and Shan Lu. 2013. Toddler: Detecting
Performance Problems via Similar Memory-access Patterns. In Proceedings of
the 2013 International Conference on Software Engineering (ICSE ’13). IEEE Press,
Piscataway, NJ, USA, 562–571.

[33] Nitsan Wakart. 2016. The Pros and Cons of AsyncGetCallTrace Profilers. http:
//psy-lob-saw.blogspot.com/2016/06/the-pros-and-cons-of-agct.html.

[34] The University of Edinburgh. 2018. JAVA Grande Benchmark Suite.
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-
and-benchmarking/java-grande-benchmark-suite. October 2018.

[35] Oswaldo Olivo, Isil Dillig, and Calvin Lin. 2015. Static Detection of Asymptotic
Performance Bugs in Collection Traversals. In Proceedings of the 36th ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI
’15). ACM, New York, NY, USA, 369–378.

[36] Andrei Pangin. 2018. Async-profiler. https://github.com/jvm-profiling-tools/
async-profiler.

[37] Bill Pugh and David Hovemeyer. 2015. Find Bugs in Java Programs. http:
//findbugs.sourceforge.net. March 2015.

[38] Andreas Sewe, Mira Mezini, Aibek Sarimbekov, and Walter Binder. 2011. Da
Capo Con Scala: Design and Analysis of a Scala Benchmark Suite for the Java
Virtual Machine. In Proceedings of the 2011 ACM International Conference on
Object Oriented Programming Systems Languages and Applications (OOPSLA ’11).
ACM, New York, NY, USA, 657–676.

[39] Linhai Song and Shan Lu. 2017. Performance Diagnosis for Inefficient Loops. In
Proceedings of the 39th International Conference on Software Engineering (ICSE
’17). IEEE Press, Piscataway, NJ, USA, 370–380.

[40] SPEC Corporation. 2015. SPEC JVM2008 Benchmark Suite. https://www.spec.
org/jvm2008. November 2015.

[41] M. Srinivas, B. Sinharoy, R. J. Eickemeyer, R. Raghavan, S. Kunkel, T. Chen, W.
Maron, D. Flemming, A. Blanchard, P. Seshadri, J. W. Kellington, A. Mericas,
A. E. Petruski, V. R. Indukuru, and S. Reyes. 2011. IBM POWER7 performance
modeling, verification, and evaluation. IBM JRD 55, 3 (May-June 2011), 4:1–4:19.

[42] Pengfei Su, Shasha Wen, Hailong Yang, Milind Chabbi, and Xu Liu. 2019. Redun-
dant Loads: A Software Inefficiency Indicator. In Proceedings of the 41st Interna-
tional Conference on Software Engineering (ICSE ’19). IEEE Press, Piscataway, NJ,
USA, 982–993.

[43] The Sable Research Group. 2018. A framework for analyzing and transforming
Java and Android applications. https://sable.github.io/soot.

[44] Jeffrey S. Vitter. 1985. Random Sampling with a Reservoir. ACM Trans. Math.
Softw. 11, 1 (March 1985), 37–57.

[45] Qingsen Wang, Xu Liu, and Milind Chabbi. 2019. Featherlight Reuse-Distance
Measurement. In Proceedings of The 25th IEEE International Symposium on High-
Performance Computer Architecture. 440–453.

[46] Shasha Wen, Milind Chabbi, and Xu Liu. 2017. REDSPY: Exploring Value Locality
in Software. In Proceedings of the Twenty-Second International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS
’17). ACM, New York, NY, USA, 47–61.

[47] Shasha Wen, Xu Liu, John Byrne, and Milind Chabbi. 2018. Watching for Soft-
ware Inefficiencies with Witch. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’18). ACM, New York, NY, USA, 332–347.

[48] Guoqing Xu. 2013. Resurrector: A Tunable Object Lifetime Profiling Technique
for Optimizing Real-world Programs. In Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems Languages and
Applications (OOPSLA ’13). ACM, New York, NY, USA, 111–130.

[49] Guoqing Xu, Matthew Arnold, Nick Mitchell, Atanas Rountev, and Gary Sevitsky.
2009. Go with the Flow: Profiling Copies to Find Runtime Bloat. In Proceedings
of the 30th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’09). ACM, New York, NY, USA, 419–430.

[50] Guoqing Xu, Nick Mitchell, Matthew Arnold, Atanas Rountev, Edith Schonberg,
and Gary Sevitsky. 2010. Finding Low-utility Data Structures. In Proceedings
of the 31st ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’10). ACM, New York, NY, USA, 174–186.

[51] Guoqing Xu and Atanas Rountev. 2010. Detecting Inefficiently-used Containers to
Avoid Bloat. In Proceedings of the 31st ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’10). ACM, New York, NY, USA,
160–173.

[52] Shengqian Yang, Dacong Yan, Guoqing Xu, and Atanas Rountev. 2012. Dynamic
Analysis of Inefficiently-used Containers. In Proceedings of the Ninth International
Workshop on Dynamic Analysis (WODA 2012). ACM, New York, NY, USA, 30–35.

[53] Zhaomo Yang, Brian Johannesmeyer, Anders Trier Olesen, Sorin Lerner, and
Kirill Levchenko. 2017. Dead Store Elimination (Still) Considered Harmful. In
26th USENIX Security Symposium. USENIX Association, Berkeley, CA, USA, 1025–
1040.

[54] A. Yasin. 2014. A Top-Down method for performance analysis and counters
architecture. In 2014 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). 35–44.

https://www.oracle.com/technetwork/server-storage/solarisstudio/documentation/o11-151-perf-analyzer-brief-1405338.pdf
https://www.oracle.com/technetwork/server-storage/solarisstudio/documentation/o11-151-perf-analyzer-brief-1405338.pdf
https://docs.oracle.com/en/java/javase/11/docs/specs/jvmti.html
https://docs.oracle.com/en/java/javase/11/docs/specs/jvmti.html
https://visualvm.github.io
https://visualvm.github.io
https://pdfs.semanticscholar.org/5219/4b43b8385ce39b2b08ecd409c753e0efafe5.pdf
https://pdfs.semanticscholar.org/5219/4b43b8385ce39b2b08ecd409c753e0efafe5.pdf
https://www.ej-technologies.com/products/jprofiler/overview.html
http://sablecc.org
http://sablecc.org
http://www.jfree.org
https://www.yourkit.com
https://www.yourkit.com
https://v8.dev
https://developer.ibm.com/javasdk/tools
https://developer.ibm.com/javasdk/tools
http://oprofile.sourceforge.net
https://linux.die.net/man/2/perf_event_open
https://linux.die.net/man/2/perf_event_open
https://perf.wiki.kernel.org/index.php/Main_Page
https://drona.csa.iisc.ac.in/~sss/tools/glider
https://drona.csa.iisc.ac.in/~sss/tools/glider
https://sourceforge.net/p/jfreechart/patches/300
https://sourceforge.net/p/jfreechart/patches/300
http://psy-lob-saw.blogspot.com/2016/06/the-pros-and-cons-of-agct.html
http://psy-lob-saw.blogspot.com/2016/06/the-pros-and-cons-of-agct.html
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/java-grande-benchmark-suite
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/java-grande-benchmark-suite
https://github.com/jvm-profiling-tools/async-profiler
https://github.com/jvm-profiling-tools/async-profiler
http://findbugs.sourceforge.net
http://findbugs.sourceforge.net
https://www.spec.org/jvm2008
https://www.spec.org/jvm2008
https://sable.github.io/soot

	Abstract
	1 Introduction
	1.1 A Motivating Example
	1.2 Contribution Summary
	1.3 Paper Organization

	2 Related Work
	3 Background
	4 Methodology
	5 Design and Implementation
	5.1 Lightweight Inefficiency Detection
	5.2 Limited Number of Debug Registers
	5.3 Interference of the Garbage Collector
	5.4 Attributing Measurement to Binary
	5.5 Attributing Measurement to Source Code
	5.6 Post-mortem Analysis

	6 Evaluation
	7 Case Studies
	7.1 SPECjvm2008 Scimark.fft: Silent Loads
	7.2 Grande-2.0 Euler: Dead Stores
	7.3 SableCC-3.7: Silent Loads
	7.4 NPB-3.0 IS: Silent Stores
	7.5 Dacapo 2006 Bloat: Dead Stores
	7.6 FindBugs-3.0.1: Dead Stores
	7.7 JFreeChart-1.0.19: Silent Loads

	8 Threats to Validity
	9 Conclusions and Future Work
	References

