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ABSTRACT

Engineering modern large-scale software requires software devel-

opers to not solely focus on writing code, but also to continuously

examine monitoring data to reason about the dynamic behavior

of their systems. These additional monitoring responsibilities for

developers have only emerged recently, in the light of DevOps cul-

ture. Interestingly, software development activities happen mainly

in the IDE, while reasoning about production monitoring happens

in separate monitoring tools. We propose an approach that inte-

grates monitoring signals into the development environment and

worklow. We conjecture that an IDE with such capability improves

the performance of developers as time spent continuously context

switching from development to monitoring would be eliminated.

This paper takes a irst step towards understanding the beneits of

a possible Monitoring-Aware IDE. We implemented a prototype

of a Monitoring-Aware IDE, connected to the monitoring systems

of Adyen, a large-scale payment company that performs intense

monitoring in their software systems. Given our results, we irmly

believe that Monitoring-Aware IDEs can play an essential role in

improving how developers perform monitoring.
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1 INTRODUCTION

Monitoring provides information about the runtime behavior of

software in the form of logs and has been used to understand

large-scale systems in production. The analysis of logs is a wide-

spread practice that has been studied in many diferent contexts.

By leveraging log data, researchers were able to help develop-

ment teams with process mining [15, 29, 53], anomaly detection

[9, 24, 28, 60, 61], passive learning [57], fault localization [58, 65],

invariant inference [10], performance diagnosis [33, 40, 49, 50, 64],

online trace checking [5], and behavioural analysis [4, 43, 62].

However, understanding runtime behavior of deployed software

is an activity that has been classically associated with operations

engineers. In recent years, practices and culture of development

and operations have evolved to unify their responsibilities (often

referred to as DevOps). Teams no longer solely focus on either

development or operations; rather, these responsibilities are more

and more intertwined and uniied [6, 21, 46]. Monitoring is one

fundamental activity in this congregation that enables a real uni-

ication of both sides. Developers see the analysis of monitoring

information as part of their primary responsibilities, and perform

it seamlessly with their development tasks.

Interestingly, monitoring mainly happens in monitoring tools

(e.g., Kibana), whereas software development mainly happens in an

Integrated Development Environment (IDE). The current situation

leads to increased context-switching [18] and split attention efects

that increase cognitive load [13]. If developers have to leave the

IDE to do some other development-related task, then, one might

say that the integrated development environment has failed.

Monitoring-Aware IDEs. We propose to integrate operational

aspects into the worklow and context of software development

tasks by developing the concept of Monitoring-Aware IDEs. If IDEs

were to provide seamless support for monitoring activities, we

hypothesize that developers would better perform development

tasks, such as understanding the reason of a bug, or how a new

deployed version behaves in production.

To validate the proposal, we implemented a prototype for a

Monitoring-Aware IDE and integrated it into the worklow of 12

developers from 7 diferent teams, and evaluated it in a one-month

ield experiment at Adyen, a large-scale payment company which

produces around 40 billion lines of log data per month. Adyen

follows DevOps practices and performs intense monitoring in their

software systems.

https://doi.org/10.1145/3338906.3338926
https://doi.org/10.1145/3338906.3338926
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Our results indicate that Monitoring-Aware IDEs can provide

essential beneits in modern large-scale software development. De-

velopers made repeated use of the monitoring features to perform

various development activities they would have not performed

without our approach. Moreover, the provided information sup-

ports their development tasks in diferent ways, such as to better

understand how their software works, how stable and performant

their implementation is, and even to identify and ix bugs. Finally,

their overall perception is that, while a Monitoring-Aware IDE does

not replace their existing monitoring systems entirely, it helps them

in reducing cognitive load and saving time by avoiding constant

context switches between monitoring tools and their IDE.

The main contributions of this paper are:

• A proposal outlining how Monitoring-Aware IDEs can sup-

port developers in better performingmonitoring andDevOps

by incorporating monitoring data into the worklow of work-

ing with source code (Section 3)

• A 4-week ield experiment that brings evidence on the useful-

ness of Monitoring-Aware IDEs to monitoring and DevOps

teams (Sections 5 and 6).

2 BACKGROUND

In this section, we describe existing related work on the ield. More

speciically, we dive into the DevOps movement, log analysis and

monitoring techniques as well as enhancements researchers have

been proposing to IDEs. Next, we present Adyen, our industry

partner (and our case study), and how they have been applying

monitoring and DevOps within their development teams. We also

explain why Adyen serves as a perfect case for this study.

2.1 Related Work

The DevOps movement. Diferent people deine DevOps in dif-

ferent yet similar ways. Hüttermann [32] deines DevOps as łprac-

tices that streamline the software delivery process, emphasizing

the learning by streaming feedback from production to develop-

ment and improving the cycle timež. DeGrandis [20] airm that

łThe [DevOps] revolution in the making is a shift from a focus on

separate departments working independently to an organization-

wide collaboration ś a systems thinking approach.ž. Walls [55] says

that DevOps is a łcultural movement combined with a number of

software related practices that enable rapid development.ž Bass et

al. [6] deine DevOps as ła set of practices intended to reduce the

time between committing a change to a system and the change

being placed into normal production, while ensuring high qual-

ity.ž. To Loukides [38], DevOps is about integrating the infrastruc-

ture and the development teams: łRather than being isolated, they

[infrastructure team] need to cooperate and collaborate with the

developers who create the applications.ž.

Indeed, the movement is becoming more and more popular

among practitioners. A 2016 survey with 1,060 IT professionals [45]

indicates that its adoption increased from 66% to 74%, especially

in the entreprise world (in comparison with 2015). However, its

adoption is still not as smooth as expected. Smeds et al. [47], after a

literature review and interviews with experts, airm that an impor-

tant diiculty for its adoption in industry is related to its unclear

deinition and the company’s expected goals with the adoption.

Ghantous and Gil, also based on a literature review, airm that

the main challenges consist of constructing a tool pipeline that

supports the process, and overcoming the mental barrier between

development and operations teams. Yet, we also observe success-

ful DevOps adoption in industry, such as the ones in Adyen, our

industry partner, but also as reported by other researchers [39].

Monitoring tools in industry. There are a vast amount of mon-

itoring tools that have originated in industry. Most tools display

metrics (often extracted from information in logs) in dashboards

that are customizable in diferent dimensions (e.g., visualization,

groupings, alerts) and are searchable. Probably the most promi-

nent open-source toolchain in the context of monitoring is the ELK

stack1 (ElasticSearch, Logstash, Kibana) where logs from distributed

services are collected by Logstash, stored on ElasticSearch, and vi-

sualized in Kibana. Another well-known open-source dashboard

is Grafana2, that is mostly used to display time series for infras-

tructure and application metrics with an extensible plugin system.

Commercial counterparts to these services include, for instance,

Splunk3, Loggly4, DataDog5, and many more. The critique to the

common dashboard solutions in current practice is that the amount

of diferent, seemingly unrelated, graphs is overwhelming and it is

hard to come to actionable insights [16].

Logging analysis and visualization. Log data is vastly rich, and

thus, several analysis techniques have been proposed. Aiming at

failure detection, Reidemeister et al. [44], based on previous logs,

train a decision tree to detect recurrent failures. Similarly, Fronza et

al. [23] uses SVM, Lin et al. [36] use clustering algorithms, and Bose

and van der Aalst [12] exploit associative rule mining to discover

failure patterns in event logs. While the above techniques are good

in detecting previously known failures, others focus on detecting

anomalies (i.e., failures not seen before). Clustering algorithms are

commonly used for such [34, 36].

Logs are also used to build models of the software system. Tools

such as Synoptic [10] and DFASAT [30, 57] devise inite state ma-

chines that represent a software, based on its logs. And given that

logs are often ordered in a timely manner, related work also has

explored temporal invariant inference [10, 41].

Finally, given that logs are often not easy to be understood as

they are, visualizations that aim to support reasoning of runtime

behavior have also been proposed. Examples of such work are

visual depictions to better understand performance issues [3, 11], to

understand how the diferent components of a distributed system

behave and/or relate to each [1, 42, 63], and to visualize the diferent

nodes of a cluster by means of a city landscape metaphor [22].

Augmenting existing IDEs. Work that is conceptually closest to

our approach are development environments that augment source

codewith runtime information. Lieber et al. [35] augment JavaScript

code in the debug view in the browser with runtime information

on call count of functions asynchronous call trees to display how

functions interact. Other work focuses on augmenting method

deinitions in the IDE with in-situ visualizations of performance

1https://www.elastic.co/webinars/introduction-elk-stack
2http://grafana.org/
3https://www.splunk.com/
4https://www.loggly.com/
5https://www.datadoghq.com
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proiling information [7, 16, 17]. Hofswell et al. [31] introduce

diferent kinds of visualizations related to runtime information in

the source code to improve program understanding. Lopez and

van der Hoek [37] augmented IDEs to warn developers, on a line-

by-lines basis, about the volatility of the code they are working

on.

Our approach is the irst to integrate information and traceability

links from production logs into the source code view. This enables

a more general-purpose approach to reasoning about production

behavior that is guided by signals put in place by developers them-

selves (log statements).

2.2 Monitoring and DevOps

All observations in this research are based on the teams that follow

the DevOps model at Adyen, a large-scale payment company that

provides services for more than 4,500 companies all around the

world. Adyen had a transaction volume of $120 billion dollars in

2017.

The distributed software systems that run their entire business

produced around 40 billion log lines solely in July 2018. Due to

their scale and sensitive business market, monitoring is a vital

activity at Adyen. Adyen follows DevOps practices as part of their

culture, and the barriers between development and production

have been getting smaller and smaller over the years. Developers

of all teams are responsible for the monitoring of their systems

and are supported by a dedicated monitoring application, whose

focus is to build any customization a team might need to conduct

better monitoring. Thus, at Adyen, monitoring is a vital task for all

developers.

Due to their eforts on monitoring over the last years, we irmly

believe that Adyen ofers an exemplary place for software engi-

neering researchers to study (and evolve) monitoring and DevOps

practices. And for this research, more speciically, to study the

beneits of Monitoring-Aware IDEs.

Adyen’smonitoring andDevOps practices. In Figure 1, we sum-

marize Adyen’s monitoring and DevOps practices. The model con-

tains ten practices (P1..P10) grouped in six broad themes. Through-

out the following text, we use circles to connect the model in the

Figure to the explaining text, e.g., P1 refers to practice number 1.

At Adyen, developers are not only responsible for testing their

features before release, but to follow up and monitor how their

systems behave when released to production P1 . Does it work as

expected? Does it meet the performance requirements? Given that

predicting how a large-scale software system will behave in pro-

duction, monitoring takes a major role during release deployments.

Even with short development cycles, large portions of new source

code are released continuously to production. During release, devel-

opers intensively focus their monitoring eforts on how their newly

implemented features behave in production P2 . Log data from the

previous versions are often used as a baseline. Exceptions that never

happened before, particularly on new source code, or exceptions

that start to happen more often than in previous versions, often

trigger alarms to developers who then focus on understanding why

that is happening.

Interestingly, developers not only care about exceptions in their

software systems, but also about how their systems impact the

Monitoring

and

DevOps

Monitor

(P1) Their own

software systems

(P2) Release

deployment

(P3) Environment

Understand/

Identify

(P4) Business process

(P5) System

performance

Maintain (P7) Logging code

Build/use

(P9) Automated alarms

(P8) Data science

applications

(P10) Logging

aggregation and

visualization tools

(P6) Software bugs

Carry

responsibility

Support

Figure 1: Monitoring and DevOps practices at Adyen.

overall business, e.g., is my system bringing the anticipated return

on investment (ROI) tomy company? Developers oftenwork closely

with data science teams, which also leverage the richness of the log

data to extract insightful business knowledge. It is not uncommon

for developers to have tasks in their backlog that aim at better

supporting data science teams P8 , e.g., by adding more information

to existing log statements. In fact, given that developers try as

much as possible to log any useful information, the amount of

log statement lines in the source code is signiicant. Adyen, more

speciically, have around 30k log statements throughout its source

code base. In other words, with log statements playing an essential

role in software systems, maintaining logging code (e.g., improving

or removing log statements) is a recurrent activity P7 .

Developers make use of several tools to support their constant

monitoring activities. These tools are vital to helping them deal

with the large-scale nature of their systems. Besides the fact that

these systems produce large amounts of log data, they are also often

distributed, which require teams to make use of existing log storage,

aggregation and visualization tools P10 , such as the ELK stack (see

Section 2.1), or even build their own tools and automated alarms P9 .

Moreover, developers also monitor their entire environments P3 ,

such as the health of their Linux servers, databases, and servers.

Due to the complexity of their software systems, monitoring

data is also fundamental for developers to identify functional P6 ,
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stability and performance P5 issues. Again, monitoring data pro-

vides developers with not only unexpected and new exceptions, but

also with information that helps them debug and track the problem.

When it comes to performance issues, developers often measure the

time it takes between log messages as an indication of a possible

problem. Moreover, developers also use monitoring data as a way

to trace and comprehend complex business processes P4 . In prac-

tice, no developer is able to understand every single detail of the

entire business completely. A developer might learn that payment

transactions always go irst to the Risk Management system, and

then later to the Reporting system, by reading log data.

3 MONITORING-AWARE IDES

In modern teams following a DevOps model, developers go back

and forth between monitoring data and the source code to

reason about their software systems. Even with the current

state-of-the-art monitoring and IDE/development tools, developers

still struggle with connecting the two worlds. The current situa-

tion leads to increased context-switching [18] and split attention

efects [13] that increase cognitive load.

We theorize that, for developers to be better equipped to deal

with monitoring and DevOps practices, IDEs and monitoring sys-

tems should be connected (giving rise towhatwewill call,Monitoring-

Aware IDEs). A Monitoring-Aware IDE provides developers with

an integrated view of both the implementation of their software

systems and monitoring information.

Developers need not to go out of their IDEs to know whether

an exception that they just decided to throw happened ten times

in the last week, or that the time between two log statements has

been increasing continually. Based on what we observe at Adyen,

we conjecture that such an IDE would:

(1) Assist developers in monitoring their new features and re-

lease deployments and, as a consequence, provide them with

enough information to identify bugs and performance issues,

(2) Assist developers in using log data to understand the busi-

ness process of software systems, and

(3) Assist developers in maintaining logging code, such as ex-

tending or removing log statements from the source code.

To achieve this goal, we propose that a Monitoring-Aware IDE

must have the following characteristics:

(1) Timely Integrated Feedback: Monitoring data, e.g., how

often a log statement or an exception happens in production,

should be timely available at the Monitoring-Aware IDE, so

that developers can make data-driven decisions based on

the most recent data (and without the need of opening the

monitoring system for that),

(2) Traceability: There should be a direct connection/link be-

tween the monitoring information and the source code, in

case one tool does not contain the required information at

that moment. The source of monitoring information (e.g., a

log statement or an exception) can be found based on moni-

toring information, andmonitoring information can be found

based on its source.

(3) SearchCapability:Monitoring information should be search-

able in the IDE, e.g., the classes with the highest number of

exceptions.

void method() {

  // ...
  log.error("error occurred " + var);
  if(...) {
    // ...
    log.warn("warn: " + var2);
    // ...
  }

  throw new RuntimeException();
}

10k

7k

2k

A.java     102k       0 new exceptions    
B.java      23k       2 new exceptions
C.java      12k       0 new exceptions

Searchable 
monitoring 
information of the 
entire software 
system

Quickly indicates 
how often a log 
statement or 
exception happens 
in production

Detailed information 
about that statement

Last 24 hours: 540
...

[Go to the monitoring]

Figure 2: Interaction design of a Monitoring-Aware IDE.

Numbers on the left bar indicate how often a log statement

or exceptions happen in production. Developers can ask for

more detailed monitoring information (box on the right) or,

as last resource, go to the real monitoring system and ob-

serve the full data there. Finally, search options at the bot-

tom of the IDE (e.g., ilter by class name, order by exception

frequency).

4 MONITORING-AWARE IDE PROTOTYPE

To empirically study our proposal, we built a prototype of aMonitoring-

Aware IDE. We set the following goals for the prototype:

(1) it should deliver enough value to Adyen developers, so that

they would beneit from this study,

(2) to be as non-obtrusive as possible to Adyen developers, so

that they would not feel the burden of using an łunknownž

tool,

(3) to deliver enough features so that we, as researchers, could

empirically validate our Monitoring-Aware IDEs proposal.

We highlight the fact that this tool was also developed inside

in partnership with Adyen, incorporating iterative feedback (from

February to June 2018). Throughout its ive months of development,

our prototype received feedback from several Adyen developers

after beta versions. The irst three authors of the paper discussed

all their suggestions and whether they were useful or essential

for the prototype. In this paper, we report the inal version of the

prototype.

Our tool collects monitoring data that is currently available in

Adyen’s monitoring systems (ELK stack). Adyen allowed us to

collect new data from their monitoring systems every 15 seconds,

which gives near real-time information. We trace back the origin

of a log message to its original log statement in the source code

using heuristics (Adyen does not log class name and line number

that originates the message due to performance reasons). More

speciically, we generate regular expressions based on every log

statement of the source code and matched them against the log

message that comes from the monitoring system, following Xu’s et

al. work [61]. We observed that the link, as also reported by Xu et

al., indeed happens with high accuracy (97% after an evaluation in

100k log messages), which implies that our tool is accurately able to

show monitoring information in the source code. Finally, we show

the monitoring information inside IntelliJ, the Java IDE that is used
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at Adyen, by means of a plugin that we developed. We discuss the

details of the prototype’s architecture in Section 7.1.

In Figure 2, we present an interaction design of how the tool

presents information to developers6. The tool supports all the re-

quirements we set out in Section 3. Whenever developers open any

class in their source code, our tool shows monitoring information

near all the log statements and thrown exceptions. The information

is continuously extracted from Elasticsearch, the underlying doc-

ument database Adyen uses to store the monitoring data of their

production systems. The numbers near every log statement in the

left box show how often they have been triggered in the last month.

When developers hover with their mouse, our tool shows a sum-

mary of monitoring information about that statement (currently,

how often that statement was executed in the last hour, 24 hours,

and month). To facilitate the switching to the monitoring tooling

with more detailed information, we also provide a direct traceabil-

ity link to the dashboard of that speciic class and log statement.

Finally, the tool also provides developers with search options, such

as ilter by class name, and order by exception frequency.

5 FIELD EXPERIMENT

In the remainder of this paper, we take the irst step towards empiri-

cally understanding the value of Monitoring-Aware IDEswe

posed in the previous section. To that aim, we propose three re-

search questions:

RQ1. How do developers interact with a Monitoring-Aware

IDE?

RQ2. What impact does a Monitoring-Aware IDE bring to

software development teams?

RQ3. What are the developers’ perceptions about the useful-

ness of a Monitoring-Aware IDE to support their monitoring

practices?

Given the complexity of simulating an environment that requires

constant monitoring, such as the likes of Adyen, we opted for a ield

experiment. According to Stol and Fitzgerald [48], a ield experiment

refers to an experimental study conducted in a natural setting with

a high degree of realism. In this strategy, the researcher manipulates

some properties in the research setting with the goal of observing

an efect of some kind. Also, according to Stol and Fitzgerald, the

natural study setting is realistic, but subject to confounding factors

that can limit the precision of measurement.

To that aim, we make use of quantitative and qualitative data

that we collected after providing 12 developers from Adyen with a

Monitoring-Aware IDE prototype for four weeks. In summary, our

ield experiment happened as follows:

(1) We recruited 12 developers fromAdyen (the selection criteria

is explained in Section 5.2), installed the prototype in their

IDEs, and gave them a short tutorial on what the prototype

does and how it works,

(2) The 12 participants used our Monitoring-Aware IDE proto-

type for four weeks to perform their daily tasks,

(3) We collected information about the usage of the prototype,

automatically via telemetry,

6We can not show an actual screenshot of the tool being used as it would reveal
proprietary information.

(4) We collected information about the impact of the tool through

a weekly survey,

(5) At the end of the four weeks, we performed a inal survey

with the 12 participants to understand their overall percep-

tion of the beneits of a Monitoring-Aware IDE.

5.1 Methodology

Data collection and analysis.We added instrumentation to our

prototype that collects the following interactions between the de-

veloper and the tool: (1) when the developer opens a ile containing

source code for which monitoring data exists, (2) when the devel-

oper asks for detailed monitoring information in a speciic line of

code as well as how much time they spend on it, and (3) when the

developers opt to navigate to the real monitoring system.

To understand whether and how the IDE impacted developers

in their development tasks (RQ2), we surveyed the participants

weekly, asking about their speciic interactions with the tool and

what actions they took.

We created surveys tailored for each developer. Based on all

the usage data collected from our prototype during that week, we

showed a list of all classes in which participants observed any

monitoring information during that week. For each of these classes,

participants had to answer questions about in what way the tool

impacted (or did not impact) their work.

We provided participants with a list of possible follow up actions

that one could have taken after having analyzed the monitoring

information. We devised this list of consequences in collaboration

with Adyen developers (using their monitoring and DevOps prac-

tices as a basis, see Section 2.2 and Figure 1).We also give developers

a free box where they can provide any other action. We iteratively

monitored their open answers to improve our list. We also provided

a łdid not perform any actionž option, so that participants would

not feel obliged to choose any consequence.

The inal list can be divided into three categories: observations,

code changes, and logging code improvements.

• Observations: Insights into the behavior of their systems, based

on monitoring data: (O1) Identiied a bug, (O2) Identiied per-

formance issue, (O3) Identiied security issue, (O4) Identiied an

issue in the log code, (O5) Understood the business process, and

(O6) Understood the stability of the implementation.

• Code changes: Production-code improvements, based on monitor-

ing data: (I1) Fixed a bug, (I2) Improved code quality (refactoring),

(I3) Improved code performance, (I4) Improved code security, and

(I5) Implemented new functionality.

• Logging code improvements: Improvements to the log code based

on monitoring data: (L1) Improved log message, (L2) Changed

log severity, (L3) Removed log line, and (L4) Added log line.

Although participants may have worked in the same class and

asked for its detailed monitoring information (maybe for diferent

purposes) multiple times during the week, that class appeared only

once in that week’s survey. We made this decision for two reasons:

1) we do not believe participants would have an accurate perception

and memory for such a ine-grained survey, 2) the survey would be

too extensive as we conjectured that participants would interact

with a large number of classes a week. Nevertheless, we allowed

participants to choose multiple actions for the same class, which
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would enable them to express multiple actions they might have

taken in that class during that entire week.

In addition, some of the possible interactionswith our tool cannot

be automatically collected by our prototype (e.g., we have no data

to infer whether participants looked at the number we show in

front of any log statement). Thus, at the end of the survey, we ask

them whether the tool helped (or not helped) in any way that we

did not ask before.

Post-questionnaire. Finally, with the goal of augmenting and ex-

plaining the data we obtained employing the weekly surveys and

the prototype, we asked participants to answer an open question-

naire at the end of the four weeks (P1, P6, and P7 were unavailable

for the questionnaire).7 Questions were based on the results we

had obtained until that moment.

The questionnaire contained open questions about both their

usage of the tool as well as the impact the tool had on their daily

jobs. More speciically, about the tool usage, we asked:

(1) Did you look at the monitoring data we provide at the left

bar of your IDE? In your opinion, how important and/or

useful are they?

(2) We noticed that you went to the external monitoring while

using our tool. Why did you go there?

Concerning the impact of the tool, we asked the following two

questions for each of the ive most perceived beneits (represented

by <X> in the following questions):

(1) How does the tool help you in doing <X>?

(2) How did you perform <X> before having aMonitoring-Aware

IDE? What are the diferences?

Note that we use this post-questionnaire also as a way to collect

perceptions on the comparison between using and not using a

Monitoring-Aware IDE, given that establishing a control group is

not possible in the context of our study. We use the questionnaire

as a way to mitigate the possible threat, which we discuss in detail

in Section 7.2.

Data analysis. We applied descriptive statistics to all quantitative

data we collected (i.e., usage data coming from the prototype and

survey answers). We analyzed the post-questionnaire data using

the following procedure:

(1) To each of the questions in the questionnaire, we grouped

similar answers in high-level themes.

(2) Whenever a new theme was created, we revisited all the

previous answers to that question, and evaluated whether it

would better it the new theme,

(3) We stopped the process when there were no more themes

to create.

The irst two authors were involved in the coding of the data and

in deriving higher-level themes. We use the high-level themes as

main topics of discussion in our Results section.

Ethical concerns. We do not collect sensitive or private informa-

tion from the developers or from Adyen in any of the steps of our

ield experiment. All the participants were aware of all the data be-

ing collected before joining the study. Besides, this ield experiment

7While P1, P6, and P7 did not participate in the post-questionnaire, they provided data
for RQs 1 and 2, which we used in the analysis.

Table 1: Proile of the participants in our study. Participants

are ordered according to the number of interactionswith the

tool (P1 interacted the most, P12 interacted the least).

Development Experience

Experience at Adyen

Team Participant (in years) (in years)

A

P1 1.5 0.5

P2 4.5 3

P10 6 0.5

B P3 4 1

C P4 3 2

D
P6 5 0.5

P12 7 0.5

E
P7 8 4

P8 2 1

F P9 7 1

G P5 5 2

was also approved by the Ethics Committee of Delft University of

Technology.

5.2 Participants

We invited 12 developers (from 7 diferent teams) to use our pro-

totype for four weeks. We applied convenience sampling to ind

the 12 participants of our study. We made a general announcement

at Adyen’s internal chat application explaining our study and pro-

totype and asked for participants. All participants had to pass the

following criteria: (1) more than one year of experience as a soft-

ware developer, (2) more than six months of experience at Adyen,

and (3) a frequent user of Adyen’s monitoring systems. We show

participants’ proiles in Table 1.

We asked participants to perform their regular development

tasks using our prototype. Before the ield experiment, we gave

participants some time to try out the tool and learn how to use

it. We highlight that, during these four weeks, we did not force or

require developers to use our tool in any situation, as we wanted

to observe their real-world behavior.

6 RESULTS

6.1 RQ1: How do developers interact with a
Monitoring-Aware IDE?

In Figures 3a and 3b, we show howmuch each participant interacted

with the monitoring features of our Monitoring-Aware IDE.

In the four weeks, developers opened 1,249 iles that contained

monitoring information, which represents 14% of all the 8,958 iles

opened throughout the four weeks. Inside these iles, the IDE dis-

played data about 4,465 log statements. According to our post-

questionnaire, the quick summary we provide near every log state-

ment (i.e., the number of occurrences of that log statement in the

last month, left bar in Figure 2) was perceived as useful by devel-

opers: such information enabled them to quickly observe whether
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mation in a log statement or exception (total=109).

Figure 3: How much participants used our Monitoring-Aware IDE (N=12 participants).

there was any unexpected activity in that part of the system (P2,

P12) and whether these problems were urgent (P3, P4, P5, P8, P9,

P11). We observed that developers mostly focused on whether the

numbers displayed were łout of expected rangesž, e.g., near zero or

very high numbers.

P2: łWhat matters to me is mostly if the number is zero or not. If

it’s not zero and very high (e.g., 30K), I can tend to ignore it as it

sounds like an ‘acceptable’ warning. If it’s a low number higher

than 0 (e.g., 40) I would immediately like to check what’s going

on. In this case, the actual number was not really important, I

was just checking whether the count was higher than 0ž

.

In 109 occasions, developers asked for more detailed monitoring

information (i.e., the periodic distribution of times that log state-

ment appeared in the log data), either directly in the Monitoring-

Aware IDE itself (67 times) or visiting the monitoring tool using

the link we provide (42 times). According to the post-questionnaire,

developers also visited the actual monitoring tool to retrieve ad-

ditional, more detailed information about the problem they were

investigating, e.g., the stack trace of the problem (P4, P11), the val-

ues of certain variables (P3, P5, P12), and to get the log messages

that happened before the error under investigation (P9).

Interestingly, we observed that, at Adyen, developers have own-

ership of the features they build. Speciic teams are responsible for

their features, including their monitoring. This behavior can also

be observed in our data.

P12: łI myself go back to things I worked on from time to time as

well.ž

We observed that monitoring the same class over time is a recur-

rent task. 50.46% of all interactions are part of a series of interactions

in the same class in diferent weeks. In the post-questionnaire, when

presented with these numbers, developers airmed that recurrent

monitoring is common due to the size of their systems, and to the

size of the features they commonly build (P3, P5, P12), and that due

to weekly deployments, they often go back to see whether their

features are still working.

6.2 RQ2: What impact does a Monitoring-Aware
IDE bring to software development teams?

Together, participants completed 29 weekly surveys (out of 48 possi-

ble). Developers informed us that, in 45 opportunities, the usage of

our Monitoring-Aware IDE had a positive impact on their software

systems, which we show in Figure 4.

We observe that developers took meaningful actions after ob-

serving monitoring data. 9 out of the 12 participants (P1-P9) had a

positive consequence of using a Monitoring-Aware IDE. We notice

that the three participants who did not observe any positive efects

(P10-P12) were the ones with the least number of interactions with

our tool (Figure 3b). There is a strong correlation between asking

for detailed information and being positively impacted by our tool

(Pearson correlation = 0.85, p-value=0.001).

Understanding the business process through monitoring was

the most common consequence of using our Monitoring-Aware

IDE (15 times out of 45, or 33%). Moreover, understanding perfor-

mance issues (5 times, 11%), as well as the stability of implementa-

tion (9 times, 20%) were also common consequences of using our

Monitoring-Aware IDE. Developers accredited a few identiication

and bug ixing activities in their software systems (3 and 2 times, re-

spectively) to our Monitoring-Aware IDE. Although identifying and

ixing bugs did not happen as often as the understanding, we state

that Adyen already has a mature software and, thus, we would not

expect developers to identify and ind several bugs that often, and

any bug found has signiicant positive impact on their software. Fi-

nally, monitoring information also helps developers in maintaining
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Figure 4: How our Monitoring-Aware IDE impacted our de-

velopers (N=45, 12 participants).

their logging code (8 times, 16%). We observed developers adding

new log lines (1 times, 2%), improving an existing log message (2

times, 4%), changing the severity of a log statement (2 times, 4%),

or removing an existing log statement (1 time, 2%).

Interestingly, developers did not identify any security issues

using our tool. When asked about it in the post-questionnaire,

developers airmed that they would not expect to ind security

issues with our tool given that their logs do not focus on it (P2, P4,

P5, P11). P11, speciically, said that they would need to write log

statements whose sole purpose is to monitor security, which then

our tool would help monitor. Finally, P2, P3, P8, and P11 pointed

out the fact that Adyen has already a secure software and security

issues do not often happen (and thus the likelihood of such an issue

to happen during our ield experiment was too small). We indeed

conjecture that providing developers with traditional monitoring

data only is not enough for them to observe security issues. A

follow-up step for this work would be to study how security-related

aspects would it in a Monitoring-Aware IDE.

6.3 RQ3: What are the developers’ perceptions
about the usefulness of a Monitoring-Aware
IDE to support their monitoring practices?

We observed that developers spent a signiicant amount of time

going back and forth between their monitoring tools and their IDEs.

Our overall perception was that this context switching was not

productive.

These observations were corroborated in our post-questionnaire.

Developers airmed that our Monitoring-Aware IDE did not replace

their monitoring systems, but it helped them in saving time and

reducing cognitive load when compared to the way they use to

perform the same monitoring tasks before our tool. Several of our

participants airmed to spending less time querying their monitor-

ing systems (P2, P3, P4, P8).

P2: łI still use Kibana as much as I used it before. I do like however

the easy navigation from a log statement in Intellij to Kibana.ž

P3: ł[Kibana] Requires a lot of manual work (writing query) for

the other tools to actually notice errors that happen in a class that

you work in.ž

Automatically establishing traceability by performing the link

between the log message and the actual log statement as well as

not having to query the monitoring tool also helps developers in

following the low of the source code more productively.

P8: łInstead of having to follow the low of the code by changing

parameters on a Kibana search, the faster interaction with the

plugin makes navigation smoother.ž

P5: łNow I don’t have to select a constant string from the log

statement and hope to ind it in the logs. Also I know earlier

whether it is worth investigating further or not.ž

Finally, P8 also adds that the tool reduces his amount of context

switching and that the tool also saves time when communicating

about an error.

P8: łIf someone tells me about an error, I can ind it in code easily

[and] then ind all related log instancesž

In the post-questionnaire, developers also perceived other bene-

its in Monitoring-Aware IDEs that go beyond saving time (corrob-

orating the results of RQ2). The instant (near) real-time feedback

and the timely observations that our IDE ofer enables develop-

ers to quickly identify possible bugs or bottlenecks (P3, P4, P5, P9,

P11, P12). As we stated before, developers pay a lot of attention

to the frequency of a log statement. Developers seem to implicitly

formulate hypotheses on behavior in production. The frequency al-

lows them to immediately make judgments about their hypotheses,

i.e., whether this number seems to be łout of placež (e.g., near 0, or

very large).

P5: łAn error or warning on its own doesn’t indicate a bug, but

the number of time it gets triggered might. That’s why the tool is

useful, to identify them.ž

P5 also provided us with a concrete example of how he was able

to track a performance bug.

P5: łIt helped me ind a situation where data had to be loaded

explicitly, while it should have been preloaded.ž

Developers also see a positive impact in having monitoring data

and logging code together (P2, P3, P5, P8).

P2: łSo far it stimulated me to improve logging where the amount

of warnings was very high (e.g., 100K).ž

Other participants mentioned that thanks to the real-time feed-

back, they are better able to decide which log level to use in a log

statement (P3), help in identifying situations where better logging

is required (P5), and remove less useful log statements (P8).
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Figure 5: High-level architecture of our Monitoring-Aware

IDE. The monitoring data aggregator is responsible for ag-

gregating and linking data from both data sources and for

providing monitoring data for the IDE plugin.

P5: łI wouldn’t say the tool helps me to improve log messages

directly, but it helps me ind interesting situations, which may

require better logging. In that case it indirectly helps I suppose.ž

P8: łYou can see which log messages are useless, and also given

the quicker feedback loop on seeing the detailed logs on Kibana

you are more inclined to make improvements.ž

Indeed, developers noticed that a Monitoring-Aware IDE does

not entirely replace their existing tooling, but rather complements

it. P11, for example, says that he still uses the ELK stack to follow

the low of a transaction (as the monitoring tool allows him to

see all messages related to a speciic transaction ID). P11 also uses

another internal tool to help in identifying performance issues.

P2: łDon’t think the tool covers the need of monitoring via other

means and it can’t replace them. It gives extra insights only into

the code/class that we are working on. Monitoring via automated

patch monitoring or Kibana gives better functionalities on aggre-

gating log data from multiple places.ž

Finally, the developers provided us with some insightful sugges-

tions on the next steps of our tool. Most of their suggestions are

related to either adding more information (P2, P3, P4, P5, P9) or

adding ilters (P11). Showing monitoring data at package-level and

not only at class-level as is now (P4), personally coniguring the

date and time periods to show (P9), summarize the status of the log

statements developers have written themselves (P11), and adding

charts that would show the complete periodic distribution of that

log statement (P3) are among the suggestions.

7 DISCUSSION

In the following, we discuss the several challenges of building a

Monitoring-Aware IDEs, and how we mitigate possible threats to

the validity of this study.

7.1 Building Monitoring-Aware IDEs

The Architecture of a Monitoring-Aware IDE. Designing such

an IDE, from an architectural point of view, is worth discussing.

Monitoring data can be extensively large (as with our industry

partner) and any (local) data analysis might take too much, or even

crash the IDE. Thus, Monitoring-Aware IDEs should be designed

with scalability in mind. Our prototype has been shown to be scal-

able, and thus, we dedicate the next paragraphs to describe our

architectural decisions.

As we show in Figure 5, themonitoring data aggregator is a large

process that runs in a separate server. It is where most of the expen-

sive computational calculations (e.g., parse log data and generate

templates, match the log data with its original log statement, up-

date counters, pull up-to-date source code and refresh templates)

happen. The Monitoring-Aware IDE is implemented as a plugin on

top of an existing IDE, such as IntelliJ. The plugin mostly queries

data from the aggregator and shows it to the developer. No heavy

calculations happen in the IDE, which means developers do not

sufer from possible slowliness.

On the other hand, we still see performance improvements to be

done. Our current prototype queries Adyen’s monitoring systems

every 15 seconds for new log data. Due to Adyen’s weekly release

cycles, we also re-generate the regular expressions from their source

code every week (and not at every new commit, as the generation

process currently takes 35 minutes). We refresh the monitoring

information in the developers’ IDEs whenever they open a class.

While this currently gives near real-time up-to-date information

to developers, we see the following steps as required to build a

state-of-the-art real-time Monitoring-Aware IDE:

(1) A streaming system in place that would stream log data as

they come would be needed. Current industry solutions, like

the ELK stack, ofer such streaming.

(2) The monitoring data aggregator would have to be able to

handle the vast amount of regular expression matching that

would happen for each log message. Matching regular ex-

pressions is neither a cheap or fast operation, particularly in

languages like Java, which implements a Nondeterministic

Finite Automaton (NFA) backtracking algorithm [19]. We

see parallelization as a future requirement.

(3) The monitoring data aggregator would have to generate new

regular expressions from the source code every time a new

deploys happens. Our current regular expression generator

takes around 35 minutes to run in a codebase with a few

million lines of code8, and can take even longer in larger

codebases.

(4) The IDE and the monitoring aggregator server would have

to periodically communicate with each other, so that the

IDE always has up-to-date data. The communication should

happen in a way that developers do not notice any delays in

their IDEs.

The Importance of Logging Code. It is interesting to notice how

important the quality of the log code is, and how much develop-

ers monitored and improved their quality. Throughout our study,

developers ixed issues, added, and removed log code.

The quality of log lines is indeed important, and researchers

have been working on log code best practices. Fu et al. [25], for

example, studied common logging practices especially focusing

on where in the source code developers log. They conclude that

common logging practices can be used to automate the logging

process partially. Zhu et al. [64] implemented a tool which learns

common logging practices and uses it to indicate positions that can

8We are not allowed to disclosure the total LOC of their systems.
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be improved by adding a log statement. Chen and Jiang [14] studied

anti-patterns, which are deined as recurring mistakes in logging

code, which may hinder the understanding and maintainability of

log statements. Therefore, given that developers are now quite used

to use static analysis tools (or linters) to spot bugs and maintenance

issues [8, 51, 52], we suggest tool makers to start incorporating

such log code quality measures in their linters.

As an orthogonal aspect, Adyen uses Log4J, the most popular

Java logging framework. Given their scale and the number of re-

quests per second their servers receive, Adyen developers can not

store the line number of the log statement that originates a log

line that one sees in the monitoring tool. This is why we use Xu

et al.’s heuristic [61] to link the log line back to its originating log

statement. However, although the heuristic has worked well in

our settings, our developers had a good amount of implementation

work to adapt it to Adyen’s code style. From the practical point

of view, we see, as future work, logging frameworks being able to

log meta-information (e.g., class name, line number) with reduced

computational costs.

Custom-madeMonitoring-Aware IDEs.Adyen uses Elasticsearch

and Kibana dashboards to monitor their systems. We observed that

developers pay a great attention to the number and type of excep-

tions that are going on in production as well as how the (new) code

they wrote is behaving. The features of the Monitoring-Aware IDE

prototype we study in this paper were based on these observations.

However, developers of a diferent company may use monitoring

systems in a diferent way, e.g., customized metrics or analysis.

Monitoring-aware IDEs should also provide the extensive lexi-

bility that current monitoring tools ofer to developers. This means

that the perfect IDE for one team might be diferent than the one

for another team. This raises interesting points for IDE makers:

how to make a monitoring feature that is generic enough for most

developers to use, but customizable enough so that developers can

obtain all the beneits that their current monitoring systems ofer?

Connected IDEs. We bring to attention the fact that we are used

to seeing IDEs as standalone tools. After installation, they tend not

to require any connections with the external world and developers

can use it even without a network connection. In a world where

IDEs are strongly connected with monitoring, both worlds should

talk to each other. IDEs should not be standalone tools anymore.

Researchers indeed have been studying cloud-based IDEs [2, 27,

54, 56, 59], and companies have been developing them (e.g., Ama-

zon’s Cloud9). Cloud-based IDEs eliminate any need for speciic

hardware or operational systems, and try to increase collaboration

and coding among developers. We argue that the ideas of cloud-

based IDEs are in line with Monitoring-Aware IDEs. We conjecture

that the fact that cloud-based IDEs naturally exist in a cloud environ-

ment would facilitate the development of the monitoring features

we suggest in this paper.

Fylaktopoulos et al. [26] noticed that runtime monitoring (or

auditing, as authors call in their paper) is still an area not yet ex-

plored in such IDEs. Authors discuss how developers are currently

required to build their own debugging and auditing tools outside

of IDEs. We suggest researchers to explore the connection between

cloud-based and Monitoring-Aware IDEs.

7.2 Threats to Validity

Internal Validity. (1) We use our prototype as a proxy to under-

stand the impact of a Monitoring-Aware IDE in software develop-

ment teams. As we present in Section 5, our Monitoring-Aware IDE

prototype contains features that we derived from Adyen’s monitor-

ing and DevOps practices (Section 2.2). We do not claim that our

prototype fully represents and/or contains all possible features of

an idealistic Monitoring-Aware IDE. We consider, nevertheless, our

prototype suicient enough to provide initial evidence that such an

IDE can provide beneits to developers; (2) Participants P1, P6, and

P7 were not available during the post-questionnaire. Nevertheless,

we do not believe it afects in any way our conclusions, given that

the answers of all other participants clearly converged; (3) We did

not have an explicitly controlled baseline in our ield experiment, as

that would be impractical at Adyen’s realistic settings. Instead, we

explicitly collected data about the developers’ perceptions on using

and not using a Monitoring-Aware IDE in the inal questionnaire,

which enriched our analysis. We deem this setting to be appropriate

given our goal to collect qualitative insights into how developers

interact with our approach in their natural worklow. As future

work, we plan to replicate our study in a more controlled setting,

now that we have a better insight into what can/should be used as

independent and dependent variables.

External Validity. This entire research was conducted at Adyen,

a large-scale payment company that deals with large amounts of

sensitive data, produces large amounts of log data, and sees moni-

toring as a fundamental activity. Although we diversiied our ield

experiment with developers from seven diferent teams that rep-

resent various kinds of development contexts, we can not claim

any generalization. However, given the size, scale, and importance

of the software built by Adyen, we believe this idea is worthy of

further investigation.

8 CONCLUSIONS

Software developers reason about the behavior of large-scale soft-

ware systems in production by examining log data in external mon-

itoring tools. However, most of their software development activity

happens in the source code view in the IDE. Leaving their devel-

opment worklow in the IDE to understand production software

behavior leads to increased context-switching and split attention

efects that increase cognitive load.

We propose to unify both development and monitoring contexts

by developing a new concept of Monitoring-Aware IDEs. We inte-

grate monitoring aspects into the worklow and context of software

development tasks by incorporating frequency information on log

statements into the source code view of an IDE. We implement

this concept as an IntelliJ plugin and conduct a one-month ield

experiment with 12 developers in a large company, Adyen. Devel-

opers using our approach in the ield experiment reported that

they were able to better understand business processes, identify

performance issues and functional bugs, improve code quality, and

better maintain their logging code.

We irmly believe that Monitoring-Aware IDEs plays an essen-

tial role in improving how developers interact with monitoring to

reason about production behavior and take action in development.
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