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ABSTRACT

Using API reference documentation like JavaDoc is an integral part of software development. Pre-
vious research introduced a grounded taxonomy that organizes API documentation knowledge in
12 types, including knowledge about the Functionality, Structure, and Quality of an API. We study
how well modern text classification approaches can automatically identify documentation contain-
ing specific knowledge types. We compared conventional machine learning (k-NN and SVM) and
deep learning approaches trained on manually-annotated Java and .NET API documentation (n =
5,574). When classifying the knowledge types individually (i.e., multiple binary classifiers) the best
AUPRC was up to 87%. The deep learning and SVM classifiers seem complementary. For four
knowledge types (Concept, Control, Pattern, and Non-Information), SVM clearly outperforms deep
learning which, on the other hand, is more accurate for identifying the remaining types. When con-
sidering multiple knowledge types at once (i.e., multi-label classification) deep learning outperforms
naı̈ve baselines and traditional machine learning achieving a MacroAUC up to 79%. We also com-
pared classifiers using embeddings pre-trained on generic text corpora and StackOverflow but did
not observe significant improvements. Finally, to assess the generalizability of the classifiers, we
re-tested them on a different, unseen Python documentation dataset. Classifiers for Functionality,
Concept, Purpose, Pattern, and Directive seem to generalize from Java and .NET to Python docu-
mentation. The accuracy related to the remaining types seems API-specific. We discuss our results
and how they inform the development of tools for supporting developers sharing and accessing API
knowledge. Published article: https://doi.org/10.1145/3338906.3338943

1 Introduction

Software developers reuse software libraries and frameworks through Application Programming Interfaces (APIs).
They often rely on reference documentation to identify which API elements are relevant for the task at hand, how
the API can be instantiated, configured, and combined [1]. Compared to other knowledge sources, such as tutorials
and Q&A portals, reference documentation like JavaDoc and PyDoc are considered the official API technical doc-
umentation. They provide detailed and fundamental information about API elements, components, operations, and
structures [2, 3].
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Directive

Figure 1: A reference documentation page in the JDK API annotated with the knowledge types it contains.

As API documentation can be thousands of pages long [4, 5], accessing relevant knowledge can be tedious and time-
consuming [1]. Moreover, the information necessary to accomplish a task can be scattered across the documentation
pages of multiple elements, such as classes, methods, and properties. Thus, developers try to use other sources to
fulfill their information needs. For example, although the Java Development Kit (JDK) API documentation contains
more than 7,000 pages, as of early 2019, there are more than 3 million StackOverflow posts tagged as java.

Over the last decade, software engineering researchers studied what information developers need when consulting API
documentation [3, 6, 7]. One line of research focuses on automatically matching information needs with the types of
knowledge available in the documentation. Maalej and Robillard [3] took a first step in this direction by developing
an empirically-validated taxonomy of 12 knowledge types found within API reference documentation. A single doc-
umentation page can include several knowledge types (Figure 1). Functionality and Directive are particular types of
knowledge needed to accomplish a development task, whereas the Non-information type contains only uninformative
boilerplate text [3]. Maalej and Robillard argue that such knowledge categorization allows for a) understanding and
improving the documentation quality and b) satisfying developers’ information needs. [3]

The research community has shown interest in studying specific knowledge types contained in API reference docu-
mentation. For example, Montperrus et al. [8] and Seid et al. [9] studied Directive to prevent the violation of API usage
constraints. Robillard and Chhetri [5] filtered Non-information when recommending APIs to developers. However,
these automated approaches are based either on linguistic features engineering [5] or on syntactic patterns [8].

This work investigates how well modern text classification approaches can automatically identify the knowledge types
suggested by Maalej and Robillard in API documentation. Based on a dataset of 5,574 labelled Java and .NET doc-
umentation, we trained, tested, and compared conventional machine learning approaches—i.e., k-Nearest Neighbors
(k-NN) and Support Vector Machines (SVM)—as well as deep learning approaches—i.e., recurrent neural network
(RNN) with a Long Short-Term Memory (LSTM) layer. The RNN learns features from a semantic representation of
general purpose text (i.e., embeddings). Hence, we studied how our results are impacted by training the network using
software development-specific corpora from StackOverflow as opposed to a general purpose one. Finally, we studied
the generalizability of the classifiers to an unseen dataset obtained from the Python standard library.

This paper makes three contributions. First, we present a detailed classification benchmark for API documentation.
The settings include different machine learning approaches and configurations, different word embeddings for the
RNN, different datasets for different APIs, as well as various evaluation metrics. Researchers and tool vendors can
use the benchmark, for example, to select and optimize a specific classifier for a specific cofiguration of API and
knowledge types. Second, as we share the code and data of this study,1 several top-performing classifiers (e.g.,
AUPRC ≥ 80%) already have practical relevance. Third, our findings and discussion of related work provide insights
to researchers, tool vendors, and practitioners on how machine learning can help better organize, access, and share
knowledge about API.

The rest of the paper is organized as follows. Section 2 describes our research settings, Section 3 presents the con-
figurations of the classifiers, and Section 4 reports their performance We discuss related work in Section 5 and the
implication of our results in Section 6. Finally, Section 7 concludes the paper.

1https://zenodo.org/badge/latestdoi/194706952
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2 Research Settings

This section introduces the research questions, method, and data.

2.1 Research Questions and Method

Maalej and Robillard [3] proposed an empirically-validated taxonomy of 12 knowledge types based on grounded
theory and systematic content analysis (17 experienced coders, 279 person-hours effort). Table 1 reports the identified
knowledge types which represent the basis for this work. Our primary goal is to study how well simple machine
learning for text classification, without additional feature engineering or advanced natural language processing (NLP)
techniques, can identify these knowledge types. That is, our classifiers label a document with one or more knowledge
types.

Table 1: Twelve knowledge types included in reference documentation (adapted from Maalej and Robillard [3]).
Knowledge type Brief description

Functionality Describes the capabilities of the API, and what happens when it is used.
Concept Explains terms used to describe the API behavior or the API implementation.
Directive Describe what the user is allowed (not allowed) to do with the API.
Purpose Explains the rationale for providing the API or for a design decision.
Quality Describes non-functional attributes of the API, including its implementation.
Control Describes how the API manages the control-flow and sequence of calls.
Structure Describes the internal organization of API elements including their relationships.
Pattern Explains how to get specific results using the API.
Example Provides examples about the API usage.
Environment Describes the API usage environment.
Reference Pointers to external documents.
Non-information Uninformative, boilerplate text.

There are two main text classification approaches which we study in this paper. Traditional approaches usually learn
the classes from the occurrences of certain keywords or phrases in the training set. More computational intensive
approaches, often referred to as deep learning, use the semantics of the keywords—i.e., the context of the keyword
occurrences [10].

For traditional approaches, we study two algorithms frequently used for text classification, k-NN and SVM. For deep
learning, we used RNN with an LSTM layer, which is particularly effective for text categorization problems [11]. This
architecture is recommended over, for example, Convolutional Neural Network (CNN). While the latter is more suited
for image recognition [12], RNN with LSTM handles more efficiently the dependencies between features [11]. We
also compare these classifiers to naı̈ve baselines.

The task tackled in this study is to assign knowledge types to an API document. As the document can contain more than
one knowledge type, this task is modelled as a multiple binary classification problem consisting of independently train
one binary classifier for each knowledge type. Another approach is to train a multi-label classifier—i.e., a classifier
that outputs a set of knowledge types rather than a single one. We analyze and report the results for both approaches
when answering the following research question.

RQ1. How well can text-based classifiers identify knowledge types in API reference documentation? In particu-
lar, can deep learning improve over traditional approaches?

For text classification tasks, the input layer of an RNN usually consists of embeddings trained on large unlabeled
textual corpora necessary to capture rich semantic features [13]. Pre-trained embeddings are available and can be
easily “plugged” in the network without further effort. However, while these embeddings save computational time and
well represent common language tasks, they can miss software engineering or API-specific semantics. This motivates
our second research question.
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RQ2. Do software development-specific text embeddings improve classification results compared to general
purpose ones?

Finally, a common question for machine learning evaluation is whether a model trained on a certain dataset generalizes
to other data. The original dataset includes documentation of the standard Java and .NET libraries [3]. Since we aim
to assess the generalizability of our approach to API reference documentation written in a different style, we manually
annotated a new datase sampled from the Python standard library documentation. We used this dataset as an additional
test set to report our classifiers performance.

RQ3. Can documentation classification based on knowledge types be generalized across API?

We assess models based on 10-fold cross-validation using 10% of the dataset as test set. When comparing individual
knowledge types classifiers, we report Area Under Precision-Recall Curve (AUPRC). Precision-Recall curves are a
common metric to evaluate binary classification and are obtained by plotting precision and recall values at different
probabilities thresholds [14]. In particular, they are used to evaluate machine learning model trained on imbalanced
data sets [14]. Therefore, AUPRC is a summary measure of performance irrespective of a particular threshold.

When comparing classifiers for multiple knowledge types, we report performance according to two types of metrics,
item-based and label-based. The item-based metrics are a) Hamming Loss, namely the ratio of wrongly classified
labels to the total number of labels (its best value is zero) and b) Subset Accuracy, namely the percentage of exact
matches between the predicted and the actual labelset.

The label-based metrics are precision, recall, F1-measure (Formula 1), and Area Under Receiving Operator Curve
(AUC).

F1 =
2× TruePositives

2× TruePositives+ FalsePositives+ FalseNegatives
(1)

The Receiving Operator Curve is created by plotting recall against false positive rate (FPR, Equation 2), at different
probability thresholds. Accordingly, AUC does not depend on a particular threshold [15]. To calculate the value of
True Positive, False Positives, and False Negatives we used 0.5 as probability threshold [10].

FPR = 1− TrueNegatives

TrueNegatives+ FalsePositives
(2)

The label-based metrics are macro-averaged. Macro-averaging applies the metric to the binary partition of each pre-
dicted label and then averages the results—i.e., labels have equal contribution in the final result. In contrast, micro-
averaging first aggregates the individual metric components (i.e., true positives, false positives, true negatives, and false
negatives) of each label and then averages them. Therefore, micro-averaging is biased toward the majority classes and
should be avoided when evaluating unbalanced datasets [16].

We compare the results of the classifiers to naı̈ve baselines, MF1, MF2, and RAND. The first two always assign the
first (respectively one of the first two) most-frequent labels to each document, whereas the latter assigns a random
label.

Table 2: Overview of the CADO dataset.
#documents Words max. Words mean Vocab. size

.NET 2,782 2,874 89 10,630
JDK 2,792 2,099 86 10,763

Total 5,574 2,874 87 17,758

2.2 Research Data

We use the CADO dataset created by Maalej and Robillard [3] as the result of their content analysis of the JDK 6
and .NET 4.0 API reference documentation. CADO contains 5,574 observations. The columns include the name of
the API element (e.g., a class, a method, or a property), its documentation text, and 12 binary values indicating the
presence (or absence) of the corresponding knowledge type. Table 2 summarizes the dataset textual properties.
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The most frequent knowledge types are Functionality and Non-information, whereas Quality and Environment are
the least frequent. We did not merge some of the knowledge types as Maalej and Robillard reported no significant
evidence of their co-occurence [3].

The majority of the documents (90.5%) contains one to five of the 12 knowledge types. We use the SCUMBLE [17]
score (∈ [0, 1]) to report the level of unbalancedness. For a given label, a high SCUMBLE score represents a large
difference between the frequencies of all the other co-occurring labels. In general, datasets with high scores are
problematic for classification tasks [18]. However, for datasets characterized by low SCUMBLE score, resampling
can reduce unbalancedness [18]. CADO mean SCUMBLE score is 0.11.

We applied random under- and over-sampling to 90% of the dataset (i.e., the training set). We did not resample the
test set (10% of the dataset) to avoid sampling bias. For resampling, we removed 30% of the documents containing
Functionality and Non-Information in their labelset and duplicated 50% of the documents containing Environment and
Quality. The thresholds were obtained empirically based on the SCUMBLE score. After resampling, the training
and test sets contain 3,876 and 430 observations respectively. Figure 2 presents the label frequencies in the dataset we
used to train the models after re-sampling.

We prepared a new PYTHON dataset consisting of 100 API documentation pages (i.e., modules, types, attributes, and
methods) from the Python 2.7 standard library.2 We selected the Python standard library since its code is organized dif-
ferently than Java or .NET as it makes extensive use of modules in which functions, classes, and variables are defined.
The Python programming paradigm is more functional than Java and .NET which instead follow an object-oriented
paradigm. Python is dynamically typed, and its reference documentation tends to focus on functions, whereas types
documentation is embeddable in the source code (e.g., through Docstrings). Finally, its development and documenta-
tion are driven by an open source, non-profit community (the Python Software Foundation) whereas Java and .NET
are owned by corporations.

We followed the sampling strategy suggested by Maalej and Robillard [3]—i.e., stratified random sampling. We
first created strata for each of the base modules and then randomly sampled API documentation from each stratum
proportionally to their frequencies.

2https://docs.python.org/2.7/library/

Figure 2: Knowledge types distribution in the CADO dataset after resampling.
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Figure 3: Knowledge types distribution in the PYTHON dataset.

Two Ph.D. students in software engineering, accustomed to work with Python, manually labelled the knowledge
types in each document. For this task, we provided them the same guidelines from Maalej and Robillard3 with small
adaptations, such as providing examples using the Python programming language. The agreement on the label set was
14%—i.e., 14 out of the 100 examples were labeled with the exact same set of knowledge types. The overall agreement
was 75%—i.e., of the 1200 labels (100 examples × 12 labels), 300 were conflicting. Two of the authors addressed
the conflicts and created the final dataset. Figure 3 shows the distribution of knowledge types in the PYTHON dataset.
Functionality is the majority label. However, as PYTHON represents an additional test set (i.e., no examples from this
dataset are used to train the classifiers), we did not resample it to avoid biased results.

Table 3: Summary of the corpora used to train the GloVe embedding.

ID Name Corpus description #docs #vocabulary

CC Common Crawl General purpose, high-quality text crawled from Internet pages 2.2M ∼220.000
CCOTF Common Crawl on-the-fly Common Crawl where missing words are learned from CADO 2.2M ∼220.000
SO StackOverflow StackOverflow questions and answers 20M ∼400.000
SOAPI StackOverflow Java and .NET posts StackOverflow questions and answers tagged as java or .net 4M ∼100.000

For both datasets, we performed several, simple operations to clean and prepare the textual data. We lower-cased,
tokenized, and applied stop-words removal to the API documentation text. Then, we transformed terms in an order-
preserving one-hot vectors.

For the deep learning classifiers in our benchmark, we train GloVe [19] embeddings based on four large corpora, sum-
marized in Table 3. The Common Crawl (CC) is a pre-trained embedding downloaded in March 2018.4 It includes
840B tokens and a vocabulary of 2.2M words. The corpus contains high-quality, general-purpose text crawled from
the Internet. However, the CC corpus is missing domain-specific terms present in the CADO dataset. Accordingly,
in the CCOTF embeddings, the missing words from the CC corpus are trained on-the-fly [20]. Finally, we obtained a
completely domain-specific representation of the input by training embeddings on two additional corpora, StackOver-
flow (SO) and StackOverflow API (SOAPI). The former includes 20 million posts, while the latter includes 4 million
posts tagged as java or .net.

3 Classifiers Configuration

This section reports information about the configuration of both machine learning and deep learning classifiers used
in this study.

3.1 Traditional Machine Learning

The machine learning approaches we selected for our classification task are SVM [21] and k-NN [22] as well as their
adaptations to multi-label problems, namely One-vs-Rest SVM (OvRSVM) and Multi Label k-NN (ML-kNN). We use
unigrams and bigrams extracted from the CADO dataset as their input features as n-gram language models are easy to

3https://cado.informatik.uni-hamburg.de
4https://commoncrawl.org
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compute and use. Moreover, they have been used in studies where machine learning and natural language processing
are applied to software engineering contexts [23, 24].

SVM is one of the most investigated approaches for statistical document classification and it is considered state-
of-the-art [25, 21]. Moreover, it showed good results in software engineering-specific text classification problems
(e.g., [26, 27]). SVM finds the hyper-plane maximizing the margin between two classes in the feature space, and it can
learn and generalize high-dimensional features typical for text classification tasks [21, 25]. When taking into account
multiple knowledge types at once, we trained and reported the results of a SVM model adapted to such problem—i.e.,
OvRSVM using binary relevance [28]. OvRSVM considers additional parameters and constraints necessary to solve
the optimization problem with several classes and to handle the separation of several hyper-planes [28]. For the SVM
classifiers, we report the best model after hyper-parameters tuning using GridSearch [29].

k-NN is a widely-used approach in machine learning [30]. It determines the k nearest neighbors of a document using
Euclidean distance. Then it assigns the document a label based on the document neighbors using Bayes decision
rules [30]. For the multi-label classification, we use ML-kNN, which outperforms well-established multi-label classi-
fiers [31].

3.2 RNN with LSTM layer

Deep learning has recently brought substantial improvements in the field of machine vision and natural language
processing (NLP) [10]. The LSTM layer extends RNN capabilities by utilizing several gates and a memory cell in the
recurrent module to alleviate the vanishing gradient problem and to handle more efficiently the long-term dependencies
between features [11].

tanh ReLU ReLU

sigmoid

Input LSTM Dense Dense Output

Figure 4: Architecture of the RNN used for classification of the knowledge types.

Figure 4 shows the architecture we used in this work. The network is composed of a single LSTM layer, two dense
layers, and an output layer. The number of units in the LSTM layer is proportional to dimensions of the vectors used
to represent each word. The dense layers contain 128 and 64 units respectively. The number of units in the output
layer is the number of knowledge types (i.e., 12 units).

The core component of the LSTM layer is a memory cell which stores the information related to the previous analysis
steps within the network. At each step of the training, the network predicts the output based on a) the new input, b)
the previous state of the other hidden layers of the RNN, and c) and the current state of the memory cell. Accordingly,
the role of the gates is to learn how to modify the memory cell to enhance prediction accuracy (see Figure 5).

The forget gate (ft ) processes the information from the previous hidden state layer (ht−1 ) and the current input (Xt)—
i.e., a representation of the API documentation text. It then decides what information should be discarded or kept from
the previous state of the memory cell (Ct−1 ). The input gate (it ) is responsible for selecting new information from
the input (Xt ) that should be stored in the cell state. The third gate is called output gate (ot ) and decides which part of
the available information in the memory cell should be used to produce the final output (ht ).

The role of the forget cell in our network is to optimally discard information related to previous knowledge types when
they change in the new input. For instance, when the knowledge type in the new input is Directive, the forget gate
removes the pieces of information associated with other knowledge types. Consequently, the forget gate reduces the
ambiguity of the memory cell when learning individual types. The features associated with the knowledge type in the
current input document are moved into the memory cell. In the memory cell, the input gate decides what information
should be stored. For example, when the current input contains Directive, its features will be extracted and stored in
the memory cell using the input gate. Finally, the output gate selects the most significant features associated with the
Directive type.

The input layer for the RNN consists of word embedding vectors trained using GloVe [19]. GLoVe relies on the
global occurrences of a word in a corpus by defining a word-to-word co-occurrence matrix. Each value of the matrix
contains the probability P of word j appearing in the context of word i, as reported in Equation 3. In particular, Xij

denotes the number of times word j occurs in the context of word i and Xi denotes the number of times that any word
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Figure 5: A single LSTM recurrent module containing input (it), output (ot), and forgets gates (ft).

k appears in the context of word i. Namely, GLoVe defines a learning function that estimates the probability ratio of
the co-occurrence of two target words, i and j, given a context word k [19].

Pij = P (j|i) = Xij/Xi, Xi =
∑
k

Xik. (3)

As input vectors with identical length speed up the process of building the embedding layer of the RNN [32], we
considered 300 as the maximum vector length and padded shorter vectors with zeroes. Therefore, our input layer
is a 2D matrix where each row is a 300-dimensional unit (artificial neuron). The number of units in the input layer
depends on the vocabulary size of the corpus used to train the embeddings. When a document is fed to the RNN, the
units associated with the document terms will be activated.

The first hidden layer is a LSTM unit which learns textual features of an input document. It is suited to learn long-
term dependencies, such as in the case of the large API reference documentation text. To prevent over-fitting, we
applied a dropout technique to the weights matrix and to the bias vector [33].

The output of the LSTM layer (i.e., a set of features that can be associated with a knowledge type) goes through two
fully-connected dense layers. The dense layers provide deep representations of the features extracted by the LSTM
layer and enable the network to learn their hierarchical and compositional characteristics. To alleviate feature loss due
to the projection of the features from a high-dimensional space to the low-dimensional space of the output layer, the
model smoothly reduces the number of units in the dense layers from 128 to 64 [10]. We use the ReLU activation
function for the dense layers to prevent over-fitting [10].

The output layer provides the predicted knowledge types using a sigmoid activation function. Hence, the number of
units in the output layer is the number of labels that the model learns. As the output of the sigmoid is a probability
value between 0 and 1, each neuron in this layer learns to estimate the probability of observing one of the labels. To
binarize the predicted probabilities we used different thresholds according to the different metrics.

We tuned the following network parameters.
Epoch is a complete pass (back and forward) of every sample through the neural network. As customary, we run 100
epochs [10].
Batch size is the number of samples passed through the network at once. As customary, we used a batch size of 32 [10].
Optimizer is the optimization method minimizing the prediction error. We use Adam, a state-of-the-art algorithm for
training RNN [34].
Loss Function is the measure of the network prediction error. We use sigmoidal cross-entropy as it is efficient for text
classification [35].
Learning Rate is the parameter controlling the adjustments to the weights with respect to the prediction error. We used
a customary learning rate of .001 [10].

4 Results

In this section, we compare the performance of RNN and traditional machine learning approaches for the classification
of API reference documentation. We contrast the performance of RNN classifiers trained using different embeddings.
Moreover, we assess the classifiers generalizability to another test set.

8
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Table 4: Comparison between Deep learning classifiers (trained with embeddings from general purpose and software
development corpora), traditional machine learning, and naı̈ve approaches for classifying individual knowledge types
in the CADO dataset. Values report the Area Under Precision-Recall Curve (AUPRC).

Naı̈ve baselines Traditional approaches Deep learning (General Purpose) Deep learning (Software dev.)
Knowledge Type

MF1 MF2 RAND k-NN SVM RNNCC RNNCCotf RNNSO RNNSOapi

Functionality 0.69 0.73 0.72 0.76 0.39 0.86 0.84 0.87 0.87
Concept 0.11 0.14 0.12 0.13 0.57 0.25 0.28 0.28 0.28
Directive 0.26 0.16 0.17 0.22 0.04 0.40 0.41 0.41 0.45
Purpose 0.22 0.21 0.17 0.17 0.09 0.36 0.40 0.40 0.41
Quality 0.04 0.04 0.05 0.12 0.13 0.78 0.69 0.68 0.54
Control 0.08 0.12 0.09 0.08 0.81 0.28 0.32 0.30 0.30
Structure 0.37 0.37 0.35 0.38 0.42 0.61 0.56 0.63 0.60
Pattern 0.14 0.17 0.14 0.21 0.59 0.46 0.46 0.48 0.51
Example 0.24 0.23 0.20 0.25 0.60 0.90 0.85 0.90 0.90
Environment 0.04 0.03 0.06 0.16 0.43 0.68 0.80 0.66 0.51
Reference 0.11 0.14 0.16 0.13 0.15 0.35 0.35 0.41 0.30
Non-information 0.29 0.31 0.28 0.33 0.71 0.57 0.58 0.62 0.55

4.1 Knowledge Types Identification

Individual knowledge types. We trained two RNN-based classifiers using a general-purpose corpus to create the
embeddings for the input layer—RNNCC and RNNCCotf. Table 4 reports the evaluation of our classifiers. RNN
and traditional machine learning approaches improve over the naı̈ve baselines for all the individual knowledge type
classification by up to 74% (41% on average). SVM always performed better than k-NN.

Deep learning classify Functionality, Example, and Environment with high precision and high recall at different prob-
ability thresholds (AUPRC ≥ 80%) outperforming machine learning approaches. The RNNs yields subpar results for
Directive, Purpose, Reference, Concept, and Control (AUPRC < 50%). However, the best SVM outperforms the best
RNN only for the latter two types.

The best classifiers for Quality, Structure, Patterns, and Non-information yield an AUPRC between 59% and 78%.
Also in this case, the best machine learning approach (i.e., SVM) outperforms the best RNNs classifiers only for the
latter two types. Compared to machine learning, RNNs classify better eight knowledge types.

Multiple knowledge types. The second step is to consider our task as a multi-label classification problem rather than
building individual classifiers for each knowledge type. We compare the RNN classifiers to the multi-label adaptation
of the same two machine learning models and two naı̈ve baselines (see Table 5).

ML-kNN and OvRSVM perform worse than the baselines for the item-based metrics, whereas the RNNs shows the
best performance. The RNNs outperform ML-kNN, OvRSVM, and the baselines for label-based metrics. There is an
11% improvement regarding the most strict metric (i.e., Subset Accuracy) between the best RNN and machine learning
classifiers. Regarding MacroPrecision, MacroRecall, and MacroF1, there is an improvement between 25% and 28%
for the RNN. MF1 performs better than traditional machine learning regarding MacroAUC, which RNNs improves by
17%.

Answer to RQ1. One-third of the knowledge types can be automatically identified with good results (i.e.,
AUPRC ≥ 80%). RNN can more accurately (¿ 10%) identify eight of the 12 knowledge type compared to tradi-
tional machine learning approaches. When considering multi-label classification, RNN outperforms traditional
machine learning approaches for item- and label-based metrics.

4.2 Software Development-specific Corpus

Individual knowledge types. One RNN uses freely-available, pre-trained embeddings based on a general purpose
textual corpus (i.e., RNNCC), whereas RNNCCotf uses the same corpus but learns missing words on-the-fly from the
CADO dataset. The assumption behind text statistical representations such as GloVe is that the meaning of a document
is determined by the meaning of the words that appear in it [36]. Accordingly, RNNSO and RNNSOapi use corpora in
a domain closer to the one of API documentation.

As shown in Table 4, the best among these RNNs performs similarly to their general domain counterparts (∆AUPRC
= 4%). For Functionality, Purpose, Control, and Structure the differences are minimal (1-2%). However, for Quality
and Environment there is a substantial decrease in performance when using software development-specific embeddings

9
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Table 5: Comparison between Deep learning classifiers (trained with embeddings from general purpose and software
development corpora), traditional machine learning, and naı̈ve approaches for classifying multiple knowledge types in
CADO.

Naı̈ve baselines Traditional approaches Deep learning (General Purpose) Deep learning (Software dev.)
Metric

MF1 MF2 ML-kNN OvRSVM RNNCC RNNCCotf RNNSO RNNSOapi

Hamming Loss 0.17 0.20 0.18 0.30 0.16 0.14 0.14 0.14
Subset Accuracy 0.00 0.13 0.11 0.02 0.20 0.22 0.19 0.21

MacroPrecision 0.05 0.08 0.41 0.21 0.56 0.66 0.61 0.63
MacroRecall 0.16 0.16 0.24 0.27 0.55 0.39 0.30 0.33
MacroF1 0.10 0.10 0.27 0.24 0.55 0.44 0.40 0.43
MacroAUC 0.62 0.50 0.55 0.61 0.73 0.74 0.78 0.79

(10% and 14%, respectively). Overall, the improvement is rather limited given the overhead in obtaining the corpus
and computing the embeddings.

Multiple knowledge types. Table 5 shows that RNNCC and RNNCCotf outperform RNNSO and RNNSOapi when
considering label-based metrics (except for MacroAUC) and perform similarly when considering item-based metrics.
The RNN trained using Java and .NET StackOverflow posts yields the best MacroAUC (79%).

Answer to RQ2. RNN using software development-specific embeddings show slight to no improvement over
RNN using general purpose embeddings for classification of individual knowledge types. When considering
multi-label learning, except for MacroAUC, using general purpose embeddings yields better results across item-
and label-based metrics.

4.3 Classifiers Generalizability

Individual knowledge types. Table 6 reports the performance of the individual RNN-based classifiers on the PYTHON
test set. Also in this setting, no naı̈ve baseline performs better than traditional or deep learning approaches. The
RNNs are the best classifiers for seven knowledge types, whereas SVM shows the best results for the remaining
five. Consistently with the CADO setting, SVM is the best classifier for Concept, Pattern, and Non-information.
Classifiers for Functionality, Concept, and Purpose show some improved performance compared to the CADO settings
(∆ AUPRC = 8.3%).

There is a large absolute difference (∆ AUPRC = 33%) between the two settings when considering Directive, Quality,
Control, Structure, Example, and Environment, suggesting that these knowledge types are dependent on the settings.
On average, the performance on the PYTHON dataset decrease by ∼16% over the 12 knowledge types.

Multiple knowledge types. Table 7 present the results of the multi-label classification task. Regarding item-based
metrics, our classifiers perform worse or on par with respect to the naı̈ve baselines. The classifiers show low precision
(40% for the best classifier, SVM) and recall (26% for the best classifiers, RNNCCotf and RNNSOapi). SVM also
achieves the best F1 (30%). RNNSOapi shows the best performance for MacroAUC (64%) .

Answer to RQ3. Classifiers for Functionality, Concept, Purpose, Pattern, and Directive seem to generalize from
Java and .NET to Python documentation. The generalization for multiple knowledge types classifiers is limited.

5 Related Work

To the best of our knowledge, this is the first study, addressing the automated identification of several knowledge types
within API reference documentation. In this section, we report related work investigating some of the knowledge
types individually. We present studies comparing traditional machine learning and deep learning approaches for text
classification in software engineering.

5.1 Knowledge Types in API Documentation

Identifying a document based on the knowledge types it contains can support documentation quality assessment and
improvement. For example, Ding et al. [37] systematic review of 60 primary studies investigates documentation quality
attributes. The authors focus on knowledge-based approaches used to address quality issues of API documentation.
Although retrievability is reported as an essential quality attribute, the authors show a lack of advanced ways to retrieve
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Table 6: Comparison between Deep learning classifiers (trained with embeddings from general purpose and domain
specific corpora), traditional machine learning, and naı̈ve approaches for classifying API documents based on individ-
ual knowledge type in the PYTHON dataset. Values report the Area Under Precision-Recall Curve (AUPRC).

Naı̈ve baselines Traditional approaches Deep learning (General Purpose) Deep learning (Software dev.)
Knowledge Type

MF1 MF2 RAND k-NN SVM RNNCC RNNCCotf RNNSO RNNSOapi

Functionality 0.89 0.89 0.92 0.85 0.94 0.90 0.89 0.95 0.94
Concept 0.29 0.28 0.31 0.26 0.64 0.40 0.33 0.49 0.41
Directive 0.41 0.41 0.49 0.42 0.71 0.49 0.44 0.55 0.63
Purpose 0.28 0.28 0.25 0.30 0.13 0.46 0.40 0.51 0.39
Quality 0.17 0.17 0.19 0.17 0.27 0.20 0.17 0.20 0.32
Control 0.27 0.27 0.32 0.24 0.33 0.43 0.46 0.39 0.35
Structure 0.24 0.24 0.24 0.32 0.11 0.26 0.24 0.30 0.32
Pattern 0.22 0.22 0.24 0.29 0.61 0.50 0.30 0.41 0.43
Example 0.36 0.36 0.38 0.43 0.44 0.48 0.49 0.51 0.48
Environment 0.16 0.16 0.17 0.16 0.37 0.15 0.15 0.18 0.17
Reference 0.12 0.12 0.17 0.11 0.22 0.16 0.19 0.24 0.25
Non-information 0.23 0.23 0.24 0.27 0.61 0.30 0.39 0.30 0.28

Table 7: Comparison between Deep learning classifiers (trained with embeddings from general purpose and software
development corpora), traditional machine learning, and naı̈ve approaches for classifying multiple knowledge types in
PYTHON.

Naı̈ve Traditional approaches Deep learning (General Purpose) Deep learning (Software dev.)
Metric

MF1 MF2 MLkNN OvRSVM RNNCC RNNCCotf RNNSO RNNSOapi

Hamming Loss 0.23 0.25 0.28 0.35 0.27 0.30 0.26 0.27
Subset Accuracy 0.05 0.05 0.02 0.01 0.02 0.03 0.04 0.05
MacroPrecision 0.07 0.10 0.33 0.40 0.36 0.31 0.31 0.31
MacroRecall 0.08 0.16 0.24 0.24 0.24 0.26 0.21 0.26
MacroF1 0.07 0.13 0.28 0.30 0.29 0.28 0.25 0.28
MacroAUC 0.50 0.50 0.53 0.54 0.60 0.57 0.62 0.64

specific information from API documentation. On the one hand, our work represents a first step towards developing
retrieval mechanisms for documents containing a set of knowledge types from the Java and .NET API reference
documentation. On the other hand, the individual classifiers showing a performance (e.g., Functionality, Control,
Example, and Environment) can be used to retrieve documents containing a specific knowledge type. Moreover, our
classifiers can be used to retrieve documents containing Functionality from the Python standard library documentation.

Previous research tried to automatically retrieve particular knowledge from API documentation. Robillard and
Chhetri [5] presented an approach to identify API-related information that developers should not ignore as well as
non-critical information. Their approach—based on natural language analysis (i.e., part-of-speech tagging, word
patterns)—shows 90% precision and 69% recall when applied to 1000 Java documentation units. However, the au-
thors needed to manually assess, on top of the sensible knowledge items, also obvious, unsurprising, and predictable
documentation—i.e., what we consider Non-information [5]. Our SVM classifier, trained using simple features, iden-
tifies Non-information with 71% accuracy.

Montperrus et al. [8] studied a particular knowledge type found in API reference documentation, Directive. They
analyzed more than 4000 API documentation from open source libraries. To determine the documents containing
Directive, they developed a set of syntactic patterns associated with concerns reported in the documentation. Finally,
they manually created a taxonomy of 23 directives. Pandita et al. [38] proposed an NLP-based approach to verify the
legal usage of API methods against its description extracted automatically from the documentation. Their approach
uses features derived from part-of-speech tagging and chunking techniques to semantically analyze text. Moreover,
using a domain dictionary, the authors extracted methods specifications as first-order logic expressions to verify their
legal usage in client code.

Conversely, in this work, we attempted a simple approach based only on features which can be automatically extracted
from the raw text. Our goal was to create a benchmark which can be improved by including, for example, natural
language patterns specific for each knowledge types and domain-specific models. We show that some classifiers have
already practical relevance.
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5.2 Deep Learning in Software Engineering

Xu et al. [39] use CNN to semantically link together knowledge units from StackOverflow. Their approach focuses
on predicting several classes of relatedness (e.g., duplicate, related information). The network input is the word2vec
representation of 100,000 Java-related posts from StackOverflow, whereas the dataset includes 8,000 knowledge units
balanced among relatedness types. The CNN outperformed machine learning baselines—i.e., SVM trained using
tf-idf and word2vec. However, Fu and Menzies [27] replicated Xu et al. study comparing their results to the same
SVM baselines optimized using hyper-parameter tuning. The authors showed improved results for the baselines which
perform closely (if not better) to the CNN, although the latter required 84x more time to train. In this work, we also
used a deep learning approach with a semantic representation of the input based on StackOverflow. We found that, for
our task, there are only a few small improvements due to the software development-specific corpus, which may not be
worth when considering the extra effort required to obtain and train the embeddings. We compared the deep learning
approach to (among others) SVM models trained in line with the suggestions of Fu and Menzies [27]. We showed that
the approaches are complementary as their performance depends on the specific knowledge types.

Fakhoury et al. [40] applied deep learning and traditional machine learning to the detection of language anti-patterns
in software artifacts (e.g., poor naming conventions and documentation) using a dataset of 1,700 elements collected
from 13 large Java system. The authors showed that using Bayesian optimization and model selection, traditional
machine learning models can outperform deep learning not only in accuracy but also regarding the use of compu-
tational resources. They advise researchers and practitioners to explore traditional machine learning models with
hyper-parameter tuning before turning to deep learning approaches. Our results for individual knowledge types partly
support this conclusion. However, when tackling multi-label problems, our work shows that deep learning performs
better than traditional machine learning for all the reported metrics.

6 Discussion

In this section, we discuss the implications for practitioners and researchers. Then, we present the limitations of this
study.

6.1 Implications

Building automated knowledge extraction tools. Classifiers showing good performance (AUPRC ≥ 80%) can
already be used in practice to tag documents containing crucial information for developers. Moreover, these classifiers
are trained using either traditional machine learning algorithms with simple text features or using deep learning but
with readily available embeddings.

A document containing Functionality can answer developers’ information needs regarding what the API does, whereas
Control and Example address how to accomplish a task using the API. The classifier for Functionality can be applied
also to Python documentation. The Environment classifiers can be used to get information regarding an API usage
context. Classifiers for Quality and Non-information showed encouraging results (AUPRC ≥ 70%). The former is
relevant to understand API performance, whereas the latter is useful for suggesting information that a developer can
ignore. Moreover, the Non-information classifier showed promising results generalizing to the Python documentation.
Given its particular use case, we suggest research to focus on maximizing recall to ensure that all uninformative
documents can be tagged appropriately. For the other knowledge types, we suggest maximizing precision to guarantee
that fundamental information is correctly tagged.

The results for other knowledge types can be improved by adding NLP-based features. For example, Structure usually
contains references to other API elements that can be identified using a specific named-entity tagger (e.g., [41]).
Concept and Pattern are strongly characterized by explanations of specific terms and sequence of steps. These can be
identified through specialized features based on linguistic inquiry [42], such as drives (e.g., “do this to achieve that”)
and time orientation (e.g., “do this, then do that”). As these classifiers showed similar results when applied to the
Python documentation, their improvement can also increase their generalizability.

The classifiers showed the worst results (AUPRC < 50%) for Directive, Purpose, and Reference knowledge types. The
first two can be the subject of further research. In particular, features for a Directive classifier can be extracted from
Maalej and Robillard work [3] as well as from the specific taxonomy developed by Montperrus et al. [8]. Furthermore,
previous work on rationale mining for other software engineering tasks (e.g., [43, 44]) can be adapted to improve the
results for the Purpose knowledge type. The Reference classifier showed some of the weakest performance but it can
be improved with simple syntactical features—e.g., the presence of links.

12



On Using Machine Learning to Identify Knowledge in API Reference Documentation A PREPRINT

There is a variation in performance between the classifier configurations (e.g., traditional machine learning vs. deep
learning) and between the individual knowledge types. We hypothesize that some knowledge types can be sensitive
to specific keywords, such as “callback,” “event,” and “trigger” in the case of Control. On the other hand, knowledge
types such as Environment and Example are characterized by a change in the language context. The former tends to
interpolate text with numbers (as it includes information such as version and copyright year), while the latter contains
sequences that do not occur in natural language (i.e., source code). We postulate that the RNN can capture this change
of context. However, the explanations for some classifiers results are more subtle. For example, Non-information
implies expressing in natural language information already provided by a method signature. This implies a mapping
between source code tokens and natural language ones which need to be further investigated. Similarly, the Purpose
knowledge type contains information—i.e., the answer to a “why” question—which can be difficult to identify, from
a semantic perspective, using the simple configurations of our classifiers. Arguably, the intrinsic difficulty to identify
a knowledge type, even for a human expert, can explain some of the poor results. For instance, Maalej and Robillard
report low agreement for Purpose—a knowledge type showing subpar results (AUPRC = 41%).

Another explanation for the different performance between traditional machine learning and deep learning can lay in
the parameters used to tune the latter. A suggested improvement is to create 12 binary RNNs (one for each knowledge
type) and select different parameters for a) the activation function of the output layer (e.g., SoftMax [45]), b) the loss
function (e.g., Categorical Cross-Entropy [46]), and c) the optimizer (e.g., RMSProp or ADA [47]).

Using knowledge types when developing software. One of the main applications for the classifiers presented in this
study is documentation filtering. On top of the current option (e.g., by package or class), API websites can offer their
users the possibility to search documentation based on specific knowledge types. For example, a developer fixing a
specific performance bug (e.g., related to wireless connectivity) can search the network API documentation containing
the Quality knowledge type. In this scenario, the classifier can be optimized for precision—i.e., the developer would
consult a small number of documents which are likely to contain the information she needs. On the other hand, a
developer exploring possible usage of a new set of APIs can filter them according to Functionality which describes the
their capabilities. In this scenario, the classifier can be optimized for recall—i.e., the developer consults a substantial
amount of documents which offer her a complete overview of the API functionalities, even if some may be irrelevant.
Our benchmark is a starting point for selecting which classifier to optimize according to specific scenarios. Classifiers
with AUPRC ≥ 80% can already be utilized the scenarios above. Classifiers with AUPRC ≥ 50% need further
optimization.

The proposed benchmark is also a stepping stone to support software developers filtering API documentation based on
multiple knowledge types of interest. Given the complexity of such a task, our best classifier (RNNSOapi) showed good
results (MacroAUC = 79%). However, when disregarding recall—based on the assumption that a developer will not
read a large number of documents—the classifier with the highest precision (66%) is RNNCCotf. Conversely, when
a developer can tolerate noisy yet comprehensive results, we recommend using RNNCC—i.e., the classifier with the
best recall. In both cases, the classifiers rely on “affordable” embeddings.

Using knowledge types when authoring documentation. API documentation providers can leverage the results
of this work to monitor their product. For example, they can use simple machine learning models (e.g., SVM) to
find documents containing Non-information and remove irrelevant text that increase the developers’ cognitive effort
(e.g., the repetition of a method signature in textual form). Furthermore, they can monitor the presence of knowledge
types containing crucial information for software developers, such as Functionality, Control, and Example. API
documentation provider can also monitor the decrease of important knowledge types (e.g., Functionality) or increase
of harmful ones (i.e., Non-information) before releasing new version of an API and its documentation. API defects
can be diagnosed by identifying (and subsequently improving) documentation containing Directive and Quality.

Further research outlets. Researchers investigating documentation quality can benefit from the results of our work.
For example, quality models can be devised based on the presence (or absence) of specific types. A first step is the
identification of knowledge types in a set of documents. In our benchmark, the RNNSOapi model showed good results
(MacroAUC = 0.79). The classifier correctly identifies documents containing a set of knowledge types with 60% false
positives rate when maximizing recall.

Researchers should also consider the trade-off between using a pre-trained embedding while losing some performance
(5%) in terms of MacroAUC. Given the results obtained on the Python standard library, we recommend researchers
to be careful when applying our multi-label models to different API documentation. Researchers have shown interest
in studying how the usage of particular elements in a framework is documented (e.g., [5, 9, 8]). This line of research
can benefit from an approach to automatically retrieve API reference documentation containing the Functionality
knowledge type using the RNNSO model, as it showed good performance on different test sets.
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6.2 Threats to Validity

The API reference documentation used to train our classifiers is based on two libraries, JDK and .NET. While the
language paradigms are similar, their documentation styles are different [3]. Moreover, we directly addressed a threat
to generalizability by investigating the less structured documentation of the Python programming language API [48].
We acknowledge that our results may not hold for API reference documentation in other domains (e.g., for a specific
framework) or for a different programming paradigm (e.g., declarative programming). Although Maalej and Robillard
taxonomy is general enough [3], other knowledge types may exist.

The labeling of our new test set can introduce a threat to internal validity. To mitigate such threat, two raters indepen-
dently labeled the documents using validated guidelines [3]. We reconciled the disagreements (approximately 50%
were clear mistakes) by discussing borderline cases and reaching consensus among the authors.

Our benchmark only includes two traditional machine learning algorithms, one specific deep learning architecture,
and four representations for the RNN input layer. Nevertheless, there may be other algorithms, embeddings, and
configurations worth of investigation.

The results can be biased due to the unbalancedness of the dataset. To reduce this threat, we applied common resam-
pling techniques to the training set and reported the performance according to appropriate metrics. We did not observe
a correlation between the classifiers performance and the distribution of the labels.

7 Conclusion and Future Work

In this paper, we built several classifiers, using machine learning and deep learning approaches, to automatically
identify the 12 knowledge types proposed by Maalej and Robillard [3] in API documentation. We used Java and .NET
manually-annotated API documentation (n = 5,574) as a dataset for training and testing the classifiers. We showed
good results (i.e., AUPRC≥ 80%) for one-third of the knowledge types. In particular, RNN identifies eight types more
accurately than traditional machine learning. When considering multiple knowledge types at once (i.e., multi-label
classification), RNN outperforms traditional machine learning approaches.

When word embeddings (i.e., the RNN input layer) are created from StackOverflow posts, rather than from general-
purpose text, there is slight to no improvement in performance (∆AUPRC = 4%). When considering multiple labels,
software development-specific embeddings yield better results for MacroAUC (79% vs. 74%).

We applied the classifiers to a new test set (n = 100) obtained from the Python API documentation. Classifiers for
Functionality, Concept, Purpose, Pattern, and Directive generalize to Python. However, the generalization of multi-
label classifiers is limited.

Some of the classifiers presented in this work can be already used by practitioners (e.g., developers, API providers)
in different application scenarios. Moreover, we propose possible improvements to the classifiers based on features
specific for a knowledge type.

For further studies, we plan to evaluate other deep learning and hybrid approaches. Based on our benchmark, we plan
to implement a tool (e.g., a browser plugin) to filter API documentation based on knowledge types and evaluate its
usefulness with software developers. Finally, our long-term goal is to achieve knowledge identification in specific
sentences or paragraphs of API documentation.
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