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ABSTRACT
PyGGI is a research tool for Genetic Improvement (GI), that is de-
signed to be versatile and easy to use. We present version 2.0 of
PyGGI, the main feature of which is an XML-based intermediate
program representation. It allows users to easily define GI operators
and algorithms that can be reused with multiple target languages.
Using the new version of PyGGI, we present two case studies. First,
we conduct an Automated Program Repair (APR) experiment with
the QuixBugs benchmark, one that contains defective programs
in both Python and Java. Second, we replicate an existing work
on runtime improvement through program specialisation for the
MiniSAT satisfiability solver. PyGGI 2.0 was able to generate a
patch for a bug not previously fixed by any APR tool. It was also
able to achieve 14% runtime improvement in the case of MiniSAT.
The presented results show the applicability and the expressive-
ness of the new version of PyGGI. A video of the tool demo is at:
https://youtu.be/PxRUdlRDS40.

ACM Reference Format:
Gabin An, Aymeric Blot, Justyna Petke, and Shin Yoo. 2019. PyGGI 2.0: Lan-
guage Independent Genetic Improvement Framework. In Proceedings of The
27th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE 2019).ACM, New York,
NY, USA, 5 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Genetic Improvement (GI) uses an automated search to find im-
proved versions of existing software [18]. It has already led to sig-
nificant breakthroughs with GI-improved code incorporated into
production [12, 14]. For functional property improvement, such as
correctness, Automated Program Repair (APR) techniques based
on the GI paradigm have made significant advances during the
last decade [9, 22, 23, 26]. For non-functional property improve-
ment, topics such as execution speed improvement [13], automated
problem specialisation [19], and energy consumption [7] have been
studied, to name a few.

Many of the existing GI techniques involve makingmodifications
to the program source code and observing their effects on prop-
erties under observation, such as test execution results, execution
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time, or power consumption. This, in turn, requires effective and ef-
ficient ways to define modifications, i.e., GI operators, with respect
to specific program representations. A wide range of approaches
exist in the literature, ranging from line-level modifications [2],
BNF grammar-like modifications [13], C Intermediate Language
(CIL) based Abstract Syntax Tree (AST) modifications [22], and a
custom Java parser based AST modifications [24]. Most of these
are coupled with a single target language, such as C via CIL [22]
or Java via JavaParser [24], as modifications have to be defined
syntactically. The grammar-based approach of Langdon and Har-
man [13] captures syntax information by translating the program
into a specific notation, on which GI operates: modifications made
to the program representation become source code modifications.
While this approach is theoretically language independent, Lang-
don and Harman’s tool only supports C and C++ programs, and the
framework would require internal code changes and a dedicated
translation tool to apply it to other programming languages.

PyGGI has been originally introduced as an easy to use GI frame-
work that is written in, as well as targets, Python [1, 2]. The initial
release supported both line-level and AST-level modifications such
as swap, insertion, and deletion. The choice of Python as the im-
plementation language was a conscious one. The dynamic typing
and interpreted runtime make it well-suited for fast prototyping.
The choice of Python as the target language, however, was partly
forced upon by the limited range of parsers for other languages im-
plemented in Python (Python as the target language was supported
by the use of internal ast module).

This paper introduces version 2.0 of PyGGI, which supports
a wider range of target languages, such as Java, C/C++, and C#,
via the use of an XML-based representation of program source
code. In our case studies, we utilise the srcML parser. The tree rep-
resentation of srcML has been used to perform various program
analysis tasks [3–5, 10]. By using the srcML as an intermediate rep-
resentation, users of PyGGI can easily implement GI techniques for
multiple languages, without having to deal with multiple parsers.

We show the capabilities of version 2.0 of PyGGI with two case
studies. The first one is an APR experiment using QuixBugs [15,
25] that contains 40 defective programs translated to both Java
and Python. We show that PyGGI can be used to write a single
APR algorithm that works for both languages. The second one is
a replication of MiniSAT program specialisation [20] (the original
work used line-level modification). We show that PyGGI is capable
of finding similar improvements.

We believe that PyGGI 2.0 will contribute towards faster uptake
and popularisation of GI techniques. With the new XML engine,
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the framework allows for quick experimentation among multi-
ple programming languages. PyGGI 2.0 is publicly available at
https://github.com/coinse/pyggi.

2 DESIGN OF PyGGI 2.0
With this new version, PyGGI focuses on flexibility, versatility and
expressiveness. Its core structure has been upgraded, most of its
components being extracted and generalised, in order to further
support future extensions and variations for particular applications.
In addition, PyGGI 2.0 now provides support for XML files as a
way to handle multiple programming languages. In this section,
we first discuss the architecture of PyGGI 2.0, then introduce its
notion of engines, before finally describing how XML is used as an
intermediary source code representation.

2.1 From PyGGI 1.1 to PyGGI 2.0
The initial version of PyGGI [1] only targeted language-agnostic
source code lexical modifications, i.e., it only considered muta-
tion of full raw lines of code. PyGGI 1.1 [2] introduced support
for the second type of mutations, targeting Python lines of code,
thus enabling an empirical study comparing lexical and syntactic
mutations. However, PyGGI 1.1 was built directly on top of the
first, purposely very simple and straightforward, version of PyGGI.
Granularity level was also strongly tied to the choice of the specific
parser used. Consequently, its codebase was monolithic, with inter-
twined components sharing multiple responsibilities, and overall
not adapted to further extensions.

If PyGGI 1.1 was an easy gateway for practitioners to try and
use GI, PyGGI 2.0 aims to also provide researchers with a cleaner
and more robust environment to try out new ideas, implement
new functionalities, and perform experiments. In particular, GI
components are generalised and abstracted so that concepts can be
more easily compared over multiple types of granularity levels or
types of source code targeted.

While PyGGI 1.1 implementation was contained within a single
Python module —pyggi— PyGGI 2.0 makes use of Python submod-
ules to further structure its codebase, described hereafter:

pyggi/base is the main submodule of PyGGI 2.0; it defines
the base classes of programs, engines (introduced in the
following section), patches, edits, and algorithms.

pyggi/algorithms contains the local search of PyGGI 1.1.More
algorithms are planned to be integrated in the near future.

pyggi/utils includes general helpers.
In addition, code pertaining to the two granularity levels of

PyGGI 1.1 have been relocated into the two following submodules:
pyggi/line defines array-based program representations and

mutations. It includes PyGGI 1.1’s line-based representation.
pyggi/tree defines tree-based program representations and

mutations. It includes PyGGI 1.1’s representation of Python
statements, together with the new XML representation.

2.2 File-Specific Engines
Together with the structural refactoring, the other main feature of
PyGGI 2.0 architecture is the introduction of engines. While multiple
files could be considered at the same time, in PyGGI 1.1 granularity
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Figure 1: Workflow of PyGGI 2.0 for tree-based programs

was a global property, i.e., all files of the targeted source code had
to share the same granularity level. In PyGGI 2.0 this constraint is
lifted as different parts of the same source code can now bemanaged
by different engines. Engines define both the representation of a
single source code file —how to parse the initial contents of the file
together with their modification points and how to convert back
to text format— and the available atomic operations that can be
performed on it, e.g., deletion, replacement, or insertion.

PyGGI 2.0 provides two types of engines naturally associated
to the two granularity levels of PyGGI and the two submodules
pyggi/line and pyggi/tree. Each of the two submodules defines
an abstract interface enabling edits to be shared between engines of
the same type. In total PyGGI 2.0 provides three concrete engines,
one under pyggi/line for general line-based operations, and two
under pyggi/tree for Python statements and XML trees. Figure 1
details PyGGI 2.0’s usual workflow for a tree-based program.

Engines enable granularity level to be dissociated from the con-
crete source code parser. This means, for example, that any experi-
ment on a specific language (e.g., Python) can easily be replicated
on another (e.g., C++) as long as both parsers implement the same
granularity level abstract interface. In practice, the XML engine
provides a shared representation at very high granularity for source
code, greatly improving PyGGI’s scope for potential experiments.

2.3 XML Integration
The two modes of PyGGI 1.1 enabled it to either consider language-
agnostic files at the line granularity level, or Python files at the
statement level. The third engine of PyGGI 2.0 introduces handling
of XML files, and enables it to easily tackle C, C++, C# and Java files
at various granularity levels through the use of the srcML1 parser.

Listing 1 shows how source code can be translated to XML. Note
that srcML outputs a highly detailed XML tree, which is here simpli-
fied to a much simpler format for the sake of keeping a reasonable
search space. For example, the statement “x = j;” would actu-
ally be converted into the very detailed following XML fragment:

1https://www.srcml.org/
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Listing 1: C++ code, srcML translation, modification points
if ( j > i ) {

x = j;
}
--------------------------------------------------
<stmt >if <condition >( j &gt; i )</condition > {

<stmt >x = j;</stmt >
}</stmt >
--------------------------------------------------
% /stmt [1]
<stmt >if <condition >( j &gt; i )</condition > {

<stmt >x = j;</stmt >
}</stmt >
% /stmt [1]/ condition [1]
<condition >( j &gt; i )</condition >
% /stmt [1]/ stmt [1]
<stmt >x = j;</stmt >

“<expr_stmt><expr><name>x</name> <operator>=</operator>
<name>j</name></expr>;</expr_stmt>”, allowing the consider-
ation of much more precise and specific edits. XML also provides
XPath as a very convenient way of traversing the tree of nodes, with,
for example, the path “/stmt[1]/condition[1]” corresponding
to the first “condition” child of the first “stmt” child of the root
node. This is similar to the strategy already used in the Python
engine to access specific statements.

3 EXPERIMENTAL DESIGN
In order to show how PyGGI 2.0 can be used for program improve-
ment, we present two case studies. The first one is concerned with
the improvement of a functional property (repair), while the other
is focused on non-functional property improvement (runtime ef-
ficiency). We also target 3 programming languages: Python, Java,
and C. In this section we outline our experimental design.

3.1 Automated Program Repair
3.1.1 Dataset. We evaluate PyGGI 2.0 on the QuixBugs bench-
mark [15, 25], which consists of 40 defective programs translated
into both Python and Java. As only 31 of the programs have a test
suite, we target those programs as our repair subjects. Furthermore,
for 11 of 31 defective programs failing on all test cases, we tried
additionally to generate passing test cases since this may make it
difficult to distinguish the original faulty program from even worse
programs. To do so, we repeatedly mutated the initial failing test
inputs until finding passing test inputs that satisfy the described
input precondition and yield the same output on both correct and
defective programs. As a result, we succeeded to generate such
passing test cases for 8 out of 11 programs, and the new test cases
are merged into the benchmark’s master branch. All defective Java
programs are translated to XML files using srcML Beta v0.9.5.

3.1.2 Experimental Setting. The experiment is conducted at both
line and statement granularity level, with three modification op-
erators deletion, replacement, and insertion. For the Java programs
translated to XML files by srcML, we targeted only srcML elements
classified as statements2 along with “decl_stmt” and “expr_stmt”.

Table 1: Number of unique QuixBugs patches

Python Java

Line Statement Line Statement

lis 2 3 3 4
wrap 0 4 0 0

quicksort 0 0 0 3
sieve 0 0 0 3

To evaluate each candidate patch, we use a simple fitness function
defined by the number of failing test cases (including test cases
that timed out), and a basic descent first hill climbing algorithm
is employed as a search algorithm. In each step, either a random
edit is added to the current best patch or one of the existing edits
is removed from the best patch to generate neighbouring solutions.
The time limit for test suite execution is set to 10 seconds, and
each run of the hill climbing search is given the fitness evaluation
budget of 500 steps: the stopping criterion is either when the budget
expires, or when a plausible patch is found. We execute the repair
experiment 20 times for each fault.

3.1.3 Results. The hill climbing algorithm is able to generate 22
plausible (test-suite adequate) patches for four programs among
the 31 defective programs, and the number of unique patches is
reported in Table 1. Both Python and Java versions of lis are repaired
in both granularity levels, whereas the other three programs are
repaired in only one combination of language and granularity.

Interestingly, the program sieve have not been repaired by any
repair system in previous work [25]. The three plausible patches
of seive, which are semantically, but not syntactically, equivalent,
consist of more than one atomic operation, while the patches for
the other programs are composed of only one operation. This patch
shows that the simple hill climbing algorithm can gradually find
multi-edit patches when an appropriate partial repair is generated.
Overall, the results show that PyGGI 2.0 can be used to implement
program repair systems in different programs languages, Python
and Java, and also at different granularity levels.

3.2 Running time Improvement
3.2.1 Dataset. As for our second case study, we consider a run-
ning time optimisation scenario specialising the MiniSAT [8] SAT
solver, building on previous GI work [20, 21]. In particular, we
use an existing instrumentalised MiniSAT source code —based on
MiniSAT2-070721— from which we translate the main solving al-
gorithm (“Solver.C”) using srcML, and a benchmark of 130 combi-
natorial interaction testing (CIT) SAT instances.

3.2.2 Experimental Setting. We operate on both statements and
Boolean conditions. Most of the tags of the MiniSAT XML tree
are ignored, as we only consider statement ones (e.g., “break”,
“continue”, “decl_stmt”, “do”), togetherwith the “condition” tags
of “do”, “for”, “if”, and “while” statements. As in the previous
case study, we consider deletion, replacement, insertion of either
statements or conditions. Mixed mutations (e.g., replacement of a

2See the Statements row at https://slides.com/collard/srcmloverview#/10
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Table 2: MiniSAT evolved mutants

Mutant Lines of code Time (sec)

baseline 28398038591 (100.0%) 67.49 (100.0%)
seed 0 24247029088 ( 85.4%) 67.36 ( 99.8%)
seed 3 28094544573 ( 98.9%) 67.23 ( 99.6%)
seed 4 23327239091 ( 82.1%) 72.01 (106.7%)
seed 5 22496801475 ( 79.2%) 62.36 ( 92.4%)
seed 6 25050800206 ( 88.2%) 63.51 ( 94.1%)
seed 7 20066013444 ( 70.7%) 58.66 ( 86.9%)
seed 9 18197820457 ( 64.1%) 58.04 ( 86.0%)
seed 22 26562843149 ( 93.5%) 76.15 (112.8%)
seed 26 23229870424 ( 81.8%) 65.65 ( 97.3%)

statement by a Boolean condition) are forbidden. Finally, Boolean
conditions such as “<condition>foo</condition>” are automati-
cally rewritten as “<condition>(foo)||</condition>0” so that
deletion and insertion of conditions work as expected.

Following the previous work [20, 21], in order to have a deter-
ministic fitness function, during training we count the number of
statements of “Solver.C” executed as a proxy for runtime. This
metric is easily obtained by prefixing a global counter increment
before all single-line statements and at the beginning of every “do”,
“for”, and “while” statements.

Finally, as GI search process we use PyGGI 2.0’s local search
with a budget of 2000 steps. Previous work used a genetic program-
ming approach with 5 instances selected in each generation from
5 bins (based on instance difficulty and satisfiability), containing
overall 74 instances. Since we do not change instances during the
search, we increase the size of the training set to 15, in order to
avoid overfitting. Each mutant is first compiled, then executed on
15 instances selected at random at the beginning of the search from
the training set. Mutants failing to solve all 15 instances are imme-
diately discarded. Training is performed 30 times, with different
independent random seeds. Performance of the 30 final mutants is
then reassessed using the second test set of 56 SAT instances (used
in previous work).

3.2.3 Results. Table 2 shows the assessment of 9 of the 13 final
mutants that were able to correctly solve every of the 56 previously
unseen test instances, averaged over 30 executions. As for the 21
other mutants, 4 correctly solved every instance but required no-
ticeably more time than the baseline (between 100 and 200 seconds),
10 incorrectly classified at least one instance, 5 were discarded after
spending more than 120 seconds on a single instance, and finally 2
experienced errors during execution.

The best mutant —seed 9— reduced to only 64.1% the cumulative
amount of statements executed by the baseline (the empty patch,
i.e., the original source code) on all 56 test instances. Improvements
in fitness mostly translate to improvement in running time, with the
best mutant clearing the test benchmark in 58.04 seconds, compared
to the 67.49 seconds of the baseline, improving it by 14%.

Furthermore, analysis of mutant 9 highlighted a mutation which
applied on its own yielded a 19.4% speed-up in running time. This
mutation inserts a line manipulating variable activity levels, thus re-
balancing the priority queue for variable assignment during search.

This mutation is different from the one-line “good change” mod-
ification found in previous work [20, 21]. Interestingly these two
mutations are compatible, leading to a mutant clearing the test
benchmark without error in only 49.44 seconds (26.8% speed-up).

4 RELATEDWORK
The area of Genetic Improvement (GI) arose as a separate field of
research only in the last few years [18]. GI tools can be divided into
two categories: those that deal with the improvement of functional
and non-functional program properties.

In the first category program repair tools3, such as GenProg [11],
have gathered a lot of attention and led to the development of the
field of Automated Program Repair (APR).Within the field, however,
currently only the ASTOR [17] framework allows for comparison
of different repair approaches. Another functional property for
improvement tackled by GI is the addition of a new feature [16].

With regards to improvement of running time, memory or energy
consumption, there is a plethora of GI frameworks available that
target a specific programming language [21]. However, a lot of
these tools are not available, and, aside from one exception, have
not been designed to be general GI frameworks. The closest in the
objectives of PyGGI is the Gin toolbox [6, 24]., which targets Java.

There also exist a few code manipulation frameworks that came
from the field of GI. Among these, the Software Evolution Library
(SEL)4 is worth mentioning, as it aims to manipulate multiple pro-
gramming languages. However, it’s been written in Lisp and re-
quires a substantial learning overhead. PyGGI, on the other hand,
aims to be a light-weight framework for work in GI.

5 CONCLUSIONS
We present PyGGI 2.0, a Python General Genetic Improvement
framework, that allows for quick experimentation in GI for multi-
ple programming languages. This is achieved by the use of XML
representation incorporated in version 2.0 of the tool. We conducted
two experiments, showing two usage scenarios of PyGGI 2.0: for the
purpose of improvement of functional (repair) and non-functional
(runtime efficiency) properties of software. We show that PyGGI
2.0 can find 22 patches for four programs from the QuixBugs bench-
mark, including a fix not previously produced by an APR tool. We
were able to find these both in the Python and Java implementa-
tions of the subject programs. Moreover, we show that PyGGI 2.0
can also find efficiency improvements of up to 14% in the MiniSAT
solver when specialising for a particular application domain, finding
additional improvements to previous work. We thus demonstrate
that PyGGI 2.0 is a useful tool for GI research, facilitating quick
comparisons between different programming languages.
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