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ABSTRACT
Until two decades ago, industrial networks were deemed secure
due to physical separation from public networks. An abundance
of successful attacks proved that assumption wrong. Intrusion de-
tection solutions for industrial application need to meet certain
requirements that differ from home- and office-environments, such
as working without feedback to the process and compatibility with
legacy systems. Industrial systems are commonly used for several
decades, updates are often difficult and expensive. Furthermore,
most industrial protocols do not have inherent authentication or
encryption mechanisms, allowing for easy lateral movement of an
intruder once the perimeter is breached. In this work, an algorithm
for motif discovery in time series, Matrix Profiles, is used to detect
outliers in the timing behaviour of an industrial process. This pro-
cess was monitored in an experimental environment, containing
ground truth labels after attacks were performed. Furthermore, the
graph representations of a different industrial data set that has been
emulated are used to detect malicious activities. These activities
can be derived from anomalous communication patterns, repre-
sented as edges in the graph. Finally, an integration concept for
both methods is proposed.
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1 INTRODUCTION
Around the world, enterprises are benefiting from the digitalisation.
The Industry 4.0 is promising reduced costs and time for acts like
maintenance, set up and configuration while increasing efficiency
and thus revenue. Similar to the Internet of Things (IoT) opening
possibilities in end user environments, the Industry 4.0 creates new
business cases [24, 47]. However, the increase in interconnectivity
and use of embedded intelligence on which the digitalisation of
industry strives creates novel attack surfaces as well. In the last
decades, attacks on industry have increased drastically [9]. Open-
ing network protocols that are not built for security to insecure
public networks poses a threat to operation. On the one hand, crim-
inals are targeting the cyber space, and particularly the industrial
sector. Since 2007, cyber crime creates a larger revenue than drug
trafficking [7, 43]. On the other hand, state-sponsored actors have
allegedly taken a great interest in espionage and sabotage of critical
infrastructure and industries, with the Ukrainian power blackouts
in December of 2015 [22] or Stuxnet [29] being only the widely-
known examples.

In order to protect industrial applications, reliable intrusion de-
tection methods and tools are necessary. Researchers and vendors
alike have taken an interest in industrial intrusion detection and
prevention systems. In contrast to home- and office applications,
where intrusion detection and prevention is well-established, in-
dustrial applications pose different requirements on such solutions.
Legacy systems and protocols have to be integrated, as well as
often application specific entities in a network. Downtimes are
unacceptable as availability is the most important objective. Up-
dates are difficult due to the distributed nature of devices. These
requirements have to be considered by potential solutions. In this
work, inherent features of industrial networks are made use of. First,
behaviour during operation is predictable and regular. Second, the
structure of a network is expected to remain stable for the most
part. Those characteristics are considered in a graph-based time
series approach to detect attacks in a realistic data set created by an
industrial use case. First, a naive approach to time series is used to
detect outliers. After that, the traffic is represented in a graph-based
way as to determine cause and effect of an attack. In this application,
entity-specific time series-based analysis is performed.

The contribution of this paper consists of three parts:
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• The application of time series-based anomaly detection for
detecting attacks in industrial process data is evaluated,

• the application of graph-based anomaly detection of Internet
Procotol (IP)-based indicators of intrusions in Operation
Technology (OT) networks is evaluated and

• the concept of a combination of both approaches is discussed
The remainder of this work is structured as follows: In Section 2,
relatedwork is presented. The data set and the industrial application
it is derived from is discussed in Section 3. After that, the applied
time series algorithm is introduced and evaluated in Section 4. A
structural analysis of an industrial attack scenario is discussed in
Section 5. Both approaches are then combined in a concept for
a holistic intrusion detection approach in Section 6. Finally, the
findings are discussed in Section 7.

2 RELATEDWORK
In this section, an overview of graph-based and time series-based
anomaly detection in the context of intrusion detection is provided,
with a focus on industrial networks. A summary of the related
work is listed in Table 1. There are reviews addressing the chal-

Table 1: Research Topics Covered by the Individual Works

Subject Covered Scientific Work
Reviews [19, 27]
Graph-based methods [2, 12, 13, 36, 37, 41, 42]
Graph-based and time-sensitive methods [1, 45]
Machine learning-based [6, 14, 32]
Statistical processes [33, 44, 48, 50]
Wavelet analysis [25, 31, 35]
Industrial Intrusion Detection [3, 15, 18, 20, 23, 28, 34, 38, 39, 46]

lenge of anomaly detection for intrusion detection. García-Teodoro
et al. address the challenges of this field of work while present-
ing techniques and systems [19]. Jyothsna and Prasad provide a
review of anomaly-based Intrusion Detection Systems (IDSs) [27].
Graph-based methods for detecting anomalies contain different
approaches. Akoglu et al. provide an exhaustive overview of the
different kinds of methods [2]. They distinguish between static and
dynamic graphs. In static graphs, the goal is to identify nodes or
edges that are significantly different from the rest of nodes or edges
respectively. In dynamic graphs, the goal is to compare the object
under observation in a graph representation in different time steps.
If at any time the characteristics differ, an outlier shall be detected.
In 1996, Staniford-Chen et al. present an IDS for large networks,
based on a graph representation of said network [41]. The network
information is aggregated into activity graphs, making it feasible
to detect coordinated attacks. This system is presented in more
detail in a succeeding work [4]. Swiler and Phillips present a graph-
based system for network vulnerability analysis [42]. The general
idea lies in the assignment of properties to each node and edge in
the network under observation. This is mapped to possible attack
vectors in the network, resulting in a probability for each type
of attack on each asset in the network. Noble and Cook introduce
novel methods for anomaly detection in graphs [36]. Additionally,
they present a metric for the regularity of a graph, indicating the
probability of an outlier. This method is extended by Eberle and

Holder [12]. They add types of anomalies to the model and pro-
vide methods for detecting different kinds of anomalies at different
places in the graph. Pasqualetti et al. present a method specifically
for detecting attacks on Cyber-Physical Systems (CPSs) while con-
sidering graph-properties [37]. A different kind of approach for
detecting anomalies in graph is presented by Eswaran and Falout-
sos [13]. They consider dynamic graphs and look at the edges in
any given time step, called an edge stream. This stream of edges
is then used to detect anomalies by identifying bogus edges. Tao
et al consider graph representations of online accounts [45]. They
extract patterns, use them to train deep neural networks such as
Long Short-Term Memorys (LSTMs) and employ these to detect
fraudulent takeover of accounts.

Time series-based anomaly detection is used to detect outliers
in a data series that is sequential in time. These outliers are usually
anomalous in comparison to the previous values of the time series.
After creating time series from a data set, there are different ways
to analyse this data. Akoglu and Faloutsos combine graph-based and
time series-based anomaly detection [1] They consider mobile com-
munication networks and analyse the behaviour of communication
over time. If entities in the network change their behaviour, they are
detected as responsible for anomalies. One way of analysing time
series is by using it to train neural networks. Debar et al. present a
neural network-based approach in 1992 [6]. Even though they do
not explicitly mention the concept of time series, they use a neural
network to learn normal behaviour in a network and flag devia-
tions as attacks. Ma and Perkins employ one-class Support Vector
Machines (SVMs) to find anomalies in time series [32]. Ferdousi and
Maeda employ unsupervised outlier detection techniques on time
series data, namely peer group analysis [14].

Other than that, statistical processes are used to model the timing
behaviour. Consequently, an anomaly is detected if the observed
behaviour does not match the modeled values. A common approach
is using Auto-Regressive Integrated Moving Average (ARIMA) to
model time series behaviour [33, 48], Tabatabaie et al. include a
chaotic behaviour prediction into their ARIMA model [44]. Yu et al.
present an anomaly detection scheme based on ARIMA forWireless
Sensor Networkss (WSNs) [50].

Apart from ARIMA models, wavelet analysis has been employed
for detecting anomalies in network traffic [31], in flows [35]., i.e.
aggregated network traffic information and to detect Denial of Ser-
vice (DoS) attacks [25].

Intrusion detection in the industrial domain is specific with
respect to certain parameters. Legacy systems without inherent
security mechanisms have to be addressed [15, 18, 34], critical states
that can have severe effects on the physical world need to be pre-
vented [28] and deterministic behaviour of processes can be lever-
aged to detect anomalies [23]. Sequences are relatively unifom in
industrial applications, this characteristic can be incorporated into
an IDS [3]. Tsang and Kwong present an industrial IDS based on the
ant colony clustering approach [46]. Regis Barbosa and Pras present
a novel flow-based intrusion and anomaly detection method [39].
Air gapped Industrial Control Systems (ICSs) and attacks on such
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Figure 1: Relation of Sub-Processes

systems are evaluated by Ponomarev and Atkison [38]. Ghaeini and
Tippenhauer present a hierarchical model for industrial intrusion
detection to combine information from the physical, as well as the
Programmable Logic Controller (PLC) layer [20].

3 DATA SET
In this work, a data set containing network and process data of a
research facility is investigated. The process has been monitored
for a total of eleven days, where seven days were ran as normal
operation, while the four last days contained attacks. The data set
used in this work is provided by iTrust, Centre for Research in Cyber
Security, Singapore University of Technology and Design and is titled
Secure Water Treatment (SWaT ) [21, 26]. It consists of pcap-files
containing the packets of the OT network traffic as well as csv-lists
containing the sensor and actuator values at each time point. It
has been widely used in scientific reserach, e.g. by Schneider and
Böttinger [40]. The process contains six different sub-processes,
controlled by one PLC each. In the course of the process, raw water
is stored, assessed for its quality and treated by different methods.
The sub-processes are:

• P1: Raw water storage
• P2: Pre-treatment
• P3: Membrane Ultra Filtration (UF)
• P4: Dechlorination by Ultraviolet (UV) lamps
• P5: Reverse Osmosis (RO)
• P6: Disposal

These sub-processes are connected as described in Figure 1. First,
the raw water is stored in a tank. It is treated by initial measures.
After that, it is filtered and treated with UV light and RO. If it is
sufficiently clean, it is stored in the final tank. If not, the UF and
UV treatment are repeated.

Each sub-process is controlled by one PLC. These PLCs control
sensors and actuators in a ring network. They are in turn controlled
andmonitored by HumanMachine Interfaces (HMIs), a Supervisory
Control And Data Acquisition (SCADA) workstation as well as a
data historian in a star network. A schematic representation of the
communication relations can be found in Figure 2. After seven days
of normal operation, a total of 41 attacks was introduced to the
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Figure 2: Schematic Overview of the Process Environment

process. All data is labeled, providing ground truth for the data.
The operators distinguish four different kinds of attacks [21]:

• Single Stage Single Point (SSSP): Single stage attack on one
point in the process, 26 instances in the data set

• Single Stage Multi Point (SSMP): Single stage attack on multi-
ple points in the process, 4 instances in the data set

• Multi Stage Single Point (MSSP): Multi stage attack on one
point in the process, 2 instances in the data set

• Multi Stage Multi Point (MSMP): Multi stage attack on multi-
ple points in the process, 4 instances in the data set

Of the total 41 attacks, 18 did not create an actual change in one of
the sub-processes.

In total, 51 sensors and actuators were controlled by the six PLCs.
The exhaustive list and functionality can be found in the work of
Goh et al. [21]. The attacks were executed on 27 of these sensor and
actuators. In Table 2, the top five of affected sensors are listed, their
function is described as well as the number of attacks executed on
it, including the number of attacks that did not result in a change in
the process. Apart from the source, each attack could be detected

Table 2: Sources of the Attacks

Elem. Sub-Process Description Total No Change
P-102 P1 Pump (backup) 3 0
P-101 P1 Pump 2 0
MV-101 P1 Motor valve 2 0
P-203 P2 Dosing pump 2 0
P-302 P3 UF feed pump 2 0

at one point in the system. The top five points of detection, their
descriptions, as well as the numbers of attacks that should affect
them and the numbers that actually did, are shown in Table 3.
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Table 3: Detectable Points of Attacks

Elem. Sub-Process Description Total No Change
LIT-101 P1 Raw water tank level 7 3
P-101 P1 Pump 2 0
LIT-301 P3 UF feed tank level 5 3
MV-303 P3 Motorised valve 2 0
LIT-401 P4 RO feed tank level 3 1

4 TIME SERIES ANALYSIS: MATRIX PROFILES
In this section, a relatively novel method for time series analysis is
applied to the data set described in Section 3: The Matrix Profiles
approach [49]. It was introduced by Yeh et al. in 2016 and has re-
ceived many extensions since.

The concept of Matrix Profiles is to calculate the distance of any
part of the time series, called motif, from any other motif in the
time series. Then, the minimal distance of the given motif from any
other one is used as theMatrix Profile. A lowMatrix Profile indicates
at least one similar motif in the time series, while a high Matrix
Profile indicates an outlier. In the context of this work, outliers are
of interest. A general assumption about industrial processes is a
regularity in the timely behaviour. Consequently, any attack that
disrupts this regular behaviour will be detected as it creates motifs
that are unique. One of the non-trivial challenges of anomaly-based
intrusion detection is distinguishing between non-malicious and
malicious attacks. However, for the course of this work and as a
generalisation, any disturbance in process behaviour is worth inves-
tigating. Only the consequence should differ, i.e. the detection of an
attack should result in defense mechanisms, while non-malicious
anomalies should result in maintenance efforts. Furthermore, there
can be slow changes in process behaviour that are normal, as well
as abrupt changes due to reconfiguration of the process. The former
can be addressed by Matrix Profiles [51], while the latter can be
addressed by annotated Matrix Profiles [5], as reconfigurations are
expected to be known beforehand.

Matrix Profiles require one hyperparameter,m, the length of the
motifs. This hyperparameter, however, is robust to changes. We
found that the highest occurring frequency in a time series signal
is a good guess. In the context of this work, two thirds of a day of
normal behaviour was used as a baseline for theMatrix Profiles. Any
possible deviations and irregularities in the normal behaviour are
expected to occur during that time. Furthermore, about three days
of process during which attacks occurred were analysed, namely
the 29.12.2015 at 18:09:28 until the 31.12.2015 at 02:36:40. During
this time, ten attacks, which are supposed to be detectable at twelve
sensors and actuators, occur. The reason for not taking into account
all of the available data lies in the size: In the course of this work,
more than 230 000 time points were analysed. Each of the time
points contains the values of 51 sensors and actuators. In order to
evaluate the data set, sensors and actuators that are affected by
the given attacks are identified and evaluated. However, Matrix
Profiles do have an extension that provides multidimensionality. We
used the single-dimensional approach for better visualisation and
interpretation of the data, an automated approach would consider

many dimensions at once.

We considered 13 sensors and actuators to evaluate for indicators
of attacks:

• AIT-502: Sensor, measures NaOCl-level in RO-subprocess
• DPIT-301: Sensor, measures differential pressure in backwash-
subprocess

• LIT-101: Sensor, measures raw water tank level
• LIT-301: Sensor, measures UF water tank level
• LIT-401: Sensor, measures UF water tank level
• MV-101: Actuator, controls water flow to raw water tank
• MV-201: Actuator, controls water flow to UF water tank
• P-101: Actuator, pumps water from raw water tank to second
subprocess

• P-203: Actuator, HCl dosing pump
• P-205: Actuator, NaOCl dosing pump
• P-302: Actuator, pumps water from UF subprocess to RO
suprocess

• P-501: Actuator, pumps dechlorinated water to RO
• UV-401: Actuator, removes chlorine from water

However, only AIT-502 to LIT-401 provided sensible results. The
other sensors and actuators are binary in their value range. Un-
fortunately, Matrix Profiles do not work well with digital values.
The z-normalisation is not meant for motifs with zero standard
deviation which occur frequently in case of 0 and 1. Extensions
are possible for boolean values encoded as binary digital, creating
motifs and calculating distances based on different distance metrics.
However, they are not in the scope of this work and are left as
future extensions.

The attacks occurring during the evaluated time period are listed
in Table 4, including the source and result of the attack. It should

Table 4: Attacks During Evaluation

Attack number Source Detectable
1 AIT-504 AIT-504
2 AIT-504 AIT-504
3 MV-101, LIT-101 LIT-101
4 UV-401, AIT-502, P-501 UV-401, AIT-502, P-501
5 P-602, DIT-301, MV-302 DPIT-301, FIT-301
6 P-203, P-205 P-203, P-205
7 LIT-401, P-401 LIT-401
8 P-101, LIT-101 LIT-301, LIT-101
9 P-302, LIT-401 LIT-401
10 P-302 LIT-401, P-302

be noted that attacks number 1, 2 and 3, attacks number 6 and 7,
and attacks number 9 and 10 respectively are indistinguishable in
the following figures due to their appearances shortly after one
another. In the following figures, the attack numbers are noted next
to the corresponding events. Even though the attacks are supposed
to be detectable only at certain points in the system, LIT-401 can
be used to successfully detect seven attacks, shown in Figure 3.
The attacks are annotated in the lower signal, one indicating an
attack according to the label. This constitutes the visualisation of
the ground truth for evaluation purposes. The middle line shows
the Matrix Profile, i.e. the minimal distance of the motif at this
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Figure 3:Matrix Profile of LIT-401

position with length m from any other motif. For this sensor, m
was set to 500 seconds. It can be seen that seven of the attacks
correspond to drastic increases in the minimal distance, indicating
anomalous behaviour. The sensor LIT-301 can be used to detect
attack number eigth, indicated by the second right peak in the
attack-line of Figure 5. The sensor LIT-101 can be used to detect
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Figure 4:Matrix Profile of LIT-301

every attack except for attack number 4, indicated by the second
left peak in the lower line. This is shown in Figure 5. The sensors
DPIT-301 and AIT-502 can be used to detect attacks as well, shown
in Figures 6 and 7. However,m was increased in these cases. Even
though it is robust to change, large differences between period and
m lead to suboptimal performance. The autocorrelation analysis of
DPIT-301 shows a period at 2000 seconds, thus,m was set to 2000
seconds. As a rule of thumb,m has proven to need to at least exceed
the first period of the time series data under investigation. This
knowledge can be used by automated anomaly detection algorithms
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Figure 5:Matrix Profile of LIT-101
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Figure 6:Matrix Profile of DPIT-301

as well, since it is easy to compute. Starting from this value, the
quality of attack detection increases. Preliminary analyses indicate
that a value ofm of the first period or larger significantly improves
the performance of Matrix Profiles. AIT-502 does not have a clear
period, but the quality of detection also increases withm. In this
evaluation, a value of 5000 seconds was chosen for m. AIT-504
shows constant behaviour with small deviations and one definite
outlier, depicted in Figure 8. The comparably high values for the
minimal distances during the training period make detection of the
attacks difficult. According to the description of the data set [26],
the first two attacks affect this sensor. Despite the variations, this
constitutes the highest minimal distance.

5 GRAPH-BASED ANALYSIS
The data set analysed in the previous sections contains attacks
that are based on tampered process parameter. Sensor and actuator
values are changed in order to disrupt the process flow. However,



ARES ’19, August 26–29, 2019, Canterbury, United Kingdom S. D. Duque Anton et al.

150

200

250

Va
lu

e 
in

 l

25

50

75

M
in

. D
ist

.

0 50000 100000 150000 200000
Seconds

0

1

At
ta

ck

1, 2, 3 4 5 6, 7 8 9, 10

Figure 7:Matrix Profile of AIT-502

0

100

200

Va
lu

e 
in

 l

25

50

75

M
in

. D
ist

.

0 50000 100000 150000 200000
Seconds

0

1

At
ta

ck

1, 2, 3 4 5 6, 7 8 9, 10

Figure 8:Matrix Profile of AIT-504

the attack vector that was used to gather access to said sensors
and actuators is not described. Assumptions could be made, about
attackers breaching air-gapped SCADA-networks of industrial ap-
plications. Since no traces of breaches can be found in themonitored
network traffic, these assumptions do not aid intrusion detection
mechanisms.

Due to the strict topology of industrial networks, communica-
tion patterns can be employed to detect attacks as well. Lemay and
Fernandez created a set of network traffic they monitored in an
emulated environment [30]. This set of network traffic contains
of pcap-files containing the OT network packets for different set-
ups. After simulating an industrial process consisting of circuit
breakers, they introduce different kinds of attacks into the system.
These attacks do not employ specifics of the used Modbus protocol,
but instead are TCP/IP-based attacks conducted with metasploit.
That means process-based features are of no use to detect attacks.

However, network packet characteristics [11], as well as meta-data
information as a time-series [8] can be used to successfully detect
attacks. The number of port- and IP-pairs has a strong impact on
the detection in doing so.

Three of the data sets presented by Lemay and Fernandez con-
tain labeled malicious traffic, namely CnC_uploading_exe_modbus_
6RTU_with_operate, Moving_two_files_Modbus_6RTU and Send_
a_fake_command_Modbus_6RTU_with_operate. Each of them has
been monitored in a network consisting of six PLCs and one Master
Terminal Unit (MTU). Due to the nature of the introduced attack
traffic, each data set contains communication that is not present
during normal behaviour. If the communication was drawn as a
graph, with the PLCs and the MTU being the nodes and any com-
munication creating an edge between the nodes, the attacks can
be distinguished as anomalous edges. This behaviour is shown in
Figures 9 to 11. In Figures 9 and 10, there are malicious packets

PLC 1

PLC 2

PLC 3 PLC 4

PLC 5

PLC 6Broadcast

MTU

Figure 9: Communication Structure of Data Set CnC_
uploading_exe_modbus_6RTU_with_operate

PLC 1

PLC 2

PLC 3 PLC 4

PLC 5

PLC 6Broadcast

MTU

Figure 10: Communication Structure of Data Set Moving_
two_files_Modbus_6RTU

addressed at the broadcast address. Additionally, there are mali-
cious communication activities among the entities. This depicts the
attempt to move laterally. In every scenario, PLC 1 is infected by
a malware and performs different attempts to maliciously affect
other entities. Furthermore, in the scenarios CnC_uploading_exe_
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Figure 11: Communication Structure of Data Set Send_a_
fake_command_Modbus_6RTU_with_operate

modbus_6RTU_with_operate and Moving_two_files_Modbus_6RTU,
the MTU is infected and performs malicious activities.

These kinds of attacks are relatively easy to detect, e.g. by con-
sidering the fan-in and fan-out of nodes. If it is considered as a time
series that corresponds to the polling intervals, malicious changes
in the behaviour are detected effectively.

6 THE HYBRID APPROACH
As shown in the previous sections, the success of an intrusion
detection approach depends on the kind of attack. If an attacker
has obtained access to the control infrastructure of a process and
does not try to move laterally, it is hard to detect from a network
perspective. The attacker is in a position to alter parameters in a
way that looks genuine. However, since the attacker tries to change
the process behaviour, considering process parameters can be used
to detect attacks. On the other hand, there are attacks that do not
alter the process behaviour itself. Instead, network resources are
used to move, extract or upload data. Even though this does not
directly impact the process behaviour, this constitutes unwanted
activity. It can easily be detected by considering communication
graphs. For each of the data sets analysed in this work, only one of
these characteristics was present and could be used for intrusion
detection. The work of Lemay and Fernandez focuses on malicious
network traffic that can be detected by alterations in the commu-
nication pattern [30]. However, the process remains unchanged.
In contrast, the data set provided by iTrust, Centre for Research in
Cyber Security, Singapore University of Technology and Design only
focuses on the impact of changes in parameters on the process.
Network-based lateral movement, pivoting, command and control
or data exfiltration are not considered.

In combining both approaches, i.e. a time series analysis of pro-
cess data and a communication pattern analysis, a holistic overview
of attacks can be derived. Furthermore, the source and destination
of malicious activity can be derived. The hybrid approach can be
mapped on an aggregation model [10]. As one of the most impor-
tant requirements on industrial intrusion detection is functionality
without feedback, this needs to be addressed by any IDS. Network
information can be obtained from routers by mirroring the ports.

The traffic should normally not exceed the throughput limit of the
mirror ports. Host data, such as process information on the HMI,
can be gathered there directly. The integration and aggregation of
all the data can be performed in a hierarchical fashion, providing
extensive information with no feedback, e.g. in employing an aggre-
gation concept as presented byDuque Anton et al. [10]. Furthermore,
the concept can be adapted to an online detection fashion. This
means that during operation, a data set can be created containing
topology and timing behaviour along nodes and edges. Each newly
introduced data point is compared to this data set, calculating an
anomaly score. Since these methods do not need training as such,
set up is easily done. Since the amount of data, however, is large in
comparison to office Information Technology (IT) networks, stor-
age and calculation will become tedious. Some metric needs to
be employed that summarises past events in order to efficiently
calculate the anomaly score.

7 DISCUSSION
In this work, two types of intrusion detection methods were pre-
sented and evaluated. First, a time series-based analysis method,
Matrix Profiles, was used to detect attacks in the process parameters
of an industrial process. The process is based on an industrial envi-
ronment that performs water treatment in different steps. Attacks
in this work were introduced without consideration of the parame-
ter breach, thus leaving no trace in the network communication.
However, the uniform and periodic nature of industrial processes
enables the analysis method to detect the effects of any attack in
an unsupervised manner. Any outlier has been indicated by the ap-
plication of Matrix Profiles. A major advantage is the small number
of hyperparameters - one - as well as the ease of use. Furthermore,
Matrix Profiles do not have a distinct training phase, making em-
ployment and set-up feasible with low effort. There are two main
assumptions about outlier detection by distance calculation: First,
any outlier is considered as an attack. With this method, there is
no way to distinguish between misconfiguration and attacks. Sec-
ond, attacks can only affect the process parameters in a unique
fashion. This means that if an attack has the exact same impact on
the process a second time, it will not be detected as an outlier by
Matrix Profiles, as one similar motif will then create a low minimal
distance. This can be mitigated by keeping track of the number of
similar motifs in a time series. Furthermore, threshold calculation is
a non-trivial challenge in unsupervised learning. In the evaluation,
any attack could easily be detected by sight. However, formally
setting a threshold after which an automated IDS triggers an alarm
depends on the nature of the signal and the choice ofm.

Second, a different data set, that has already been discussed in
literature, e.g. by Duque Anton et al. [8, 11], has been analysed with
respect to structure. It can be seen that the attacks introduced in the
data set change the topology of the communication, even though
they do not impact the process behaviour itself.

Finally, the concept for integrating both methods in order to de-
tect various kinds of attacks, based on meta-data as well as process
information is presented. It should address different types of attacks
and detect an attack in different stages. Usually, after a perimeter
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breach, lateral movement is attempted, preceded by reconnaissance.
This creates anomalous traffic while not changing the process. Af-
ter pivoting, an attacker could attempt to alter process parameters,
changing the behaviour. If one of the stages is not detected by the
IDS, detecting the attack in another stage is likely. In addition to
the presented ways of detecting anomalies, attacker attribution and
deception technologies, as presented by Fraunholz et al. can aid
detection and identification of attackers [16, 17].
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