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1. Introduction

Undirected st-connectivity (USTCON) is a fundamental computational problem,
and algorithms for it serve as basic subroutines for more complex graph
problems. It is complete for the class SL of symmetric nondeterministic log-
space computations [Lewis and Papadimitriou 1982], and is a subproblem of
directed st-connectivity which captures the class NL of general nondeterministic
computation. The combinatories of USTCON as well as its time complexity are
extremely well understood. However, its space complexity is still a mystery, which
was a source of some beautiful discoveries in complexity theory. We adopt
NC-style notations and let La 5 DSPACE((log n)a).

Savitch’s result [Savitch 1970] NL # L2 implies a deterministic (log n)2 space
bound for SL directly. Remarkably, since then, all progress went via probabilistic
algorithms for USTCON and their derandomization.

In the late 70’s, Cook suggested universal traversal sequences (UTS) as a basis
for log-space algorithms for USTCON. A traversal sequence is a (deterministic)
instruction sequence for a pebble moving on the vertices of a graph, in much the
same way as the random coin provides such instructions in a random walk. Such
a sequence is universal if it eventually leads the pebble to visit all nodes in every
connected graph of a given size.

Aleliunas et al. [1979] proved not only the existence of such a UTS of
polynomial length, but did it via the probabilistic method, giving in particular a
probabilistic log-space (RL) algorithm for USTCON. Thus, they established SL
# RL. Unfortunately, it did not provide deterministic space-efficient algorithms
to generate such short UTS.

In a seminal paper, Nisan [1992] proved that a UTS can be constructed in L2.
This construction was based on a pseudorandom generator that fools RL
machines. In particular, it can be used to derandomize the above probabilistic
algorithm. This hierarchical generator requires log n universal hash functions of
O(log n) bits each. While not directly improving the deterministic space bound
for USTCON, Nisan’s techniques were the basis of all subsequent progress,
starting with his own paper [Nisan 1994] proving RL # SC (which in particular
gives a (log n)2-space, polynomial time algorithm for USTCON).

The first reduction in space for this problem was achieved by Nisan et al.
[1992] who proved SL # L3/ 2. The key idea is to scale down Nisan’s UTS. They
use short (O(log2 k) bits) UTS’s from every vertex of the graph to visit large
(size k) neighborhoods. Then a pairwise independent sample of the vertices,
which is easily derandomized, is used to create a new graph which is much
smaller (by a factor of k), but still captures the connectivity essence of the
original. Iterating this process eventually leads to solving USTCON on a 2-node
graph. The bottleneck for improving this bound was that log-space UTS can only
guarantee neighborhoods of size exp(=log n), implying a similar shrinking in
size per iteration, which implies =log n iterations.

Although it seems that the symmetric structure was essential for the above
improvement, Saks and Zhou [1999] found a completely different way to obtain
the stronger result RL # L3/ 2. They showed that Nisan’s generator can be
replaced by a weaker process, an off-line randomized algorithm, which uses only
=log n hash functions, that are used repeatedly in =log n iterations. This
required a mechanism for removing the dependencies of the outcome of each
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iteration on the choice of hash functions, which was achieved by (easily deran-
domized) perturbations and rounding.

In this paper, we show:

THEOREM 1. SL # L4/3.

The bound of this paper, SL # L4/3, requires a careful combination of the
ingredients of both papers above, with some new ideas. We will follow the
shrinking scheme of Nisan et al. [1992]. However, we replace the UTS of Nisan et
al. [1992] by a pseudorandom walk using Nisan’s generator with short hash
functions. We show that such a walk of length kO(1), just like a random one, will
visit (the neighbors of) O(k) vertices with constant probability on every graph of
any size! Note that since only (log k)2 bits are used, Nisan’s analysis does not
apply, and the analysis we provide is one of the technical contributions of the
paper.

Next, we would like to repeatedly use the same hash functions of this
pseudorandom walk in many iterations, in Saks and Zhou [1999] style. To
remove dependencies we approximate the average behavior of this set of
functions (an object independent of any particular one function) with sufficient
accuracy and high probability. This is achieved without space and random bit
penalty via deterministic sampling of either Bellare et al. [1993] or the recent
extractor constructions of Zuckerman [1996]. This technique for removing
dependencies, stated as Theorem 2, is the other technical contribution of this
paper, and may become a useful derandomization tool.

The rest of the paper is organized as follows: We start with some preliminaries
(Section 2), continue with an informal overview (Section 3) followed by a
high-level description of our algorithm (Section 4). We then describe the two
results upon which the construction is based: the sampler that (w.h.p.) does not
depend on its random coins (Section 5), and the derandomized short random
walks (Section 6).

2. Preliminaries

2.1. RANDOM COMPUTATIONS. The usual definition of a randomized space
bounded computation allows the machine to flip a random coin at any point of
the computation. It does not allow the machine to recall the outcome of previous
coin tosses. This is equivalent to giving the machine a read-once access to a
long-enough random tape.

A different variant to this model is the one where the machine is allowed
multiple access to the random tape. We call such algorithms off-line randomized
algorithms [Saks and Zhou 1999]. They are sometimes also called algorithms with
2-way random input. An off-line randomized algorithm A is a randomized
algorithm such that upon receipt of an input x, it first computes the total number
R( ux u) of random bits it will need for the computation and then requests a
random string y [ {0, 1}R( ux u) from the random source and stores it in a
read-only section of memory; given x and y, the computation is then completely
deterministic. We use the notation ( x; y) to separate the “true” input x from the
“off-line random input” y.

An off-line randomized algorithm A is said to have off-line random bit
complexity R( z ) and processing space complexity S( z ) if on any input of length
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l, the algorithm requests R(l ) random bits and given these bits it runs in space
S(l ).

We say that A accepts a language with one-sided error if for a given input x in
the language, the probability over a randomly chosen y [ {0, 1}R( ux u) that
A( x; y) outputs 1 is at least 1/2; and for a given x not in the language, it always
outputs 0.

There is a trivial way to derandomize an off-line randomized algorithm A with
one-sided error: given an input x, we simply enumerate over all the choices of y
and run A( x; y), and output 1 if and only if any of the runs outputs 1. The
enumeration over y clearly takes space O(R( ux u)) and for each y the computation
of A( x; y) takes processing space O(S( ux u)) by definition. Observing that the
same processing space can be re-used for each y, the space needed for the trivial
derandomization is O(R( ux u) 1 S( ux u)).

2.2. MATRIX ALGORITHMS. A matrix algorithm A is an algorithm that gets a
primary input x and in addition two indices i, j [ [d]; the output of A is
interpreted as the (i, j)th entry of a d 3 d matrix over the reals, denoted A( x).
Since the entire matrix A( x) can be obtained by running the algorithm over all
the indices i, j [ [d], in a sense, a matrix algorithm is a function that maps
inputs x to square matrices over the reals, given in some finite representation.
Understood that the computation operates in the way described, we will say that
a matrix algorithm A on input x computes a matrix A( x).

Let M0 5 M, M1, . . . , Mp be a sequence of square matrices and z1, . . . , zp

be a sequence of additional parameters. For typographical simplicity, we will
denote a sequence [ x1, . . . , xp] by [ xi]p, for example, [Mi]p stands for (M1, . . . ,
Mp) and [ zi]p for ( z1, . . . , zp). We also denote the dimension of M by dim(M),
that is, if M is a d 3 d matrix then dim(M) 5 d. The following fact is well
known:

PROPOSITION 1. Suppose there is a matrix algorithm A such that for any 1 # i #
p, A on input (Mi21, zi, i) computes Mi and runs in space Si $ log(dim(Mi21)).
Then there is a matrix algorithm F such that F on input (M 5 M1, [ zi]p) computes
Mp and runs in space O((i51

p Si).

Such an algorithm F will be called a recursive matrix algorithm and we say that
F on input (M, [ zi]p) (recursively) computes a sequence of matrices [Mi]p.

3. Informal Overview

One common point of the algorithms presented in Savitch [1970] and Nisan et al.
[1992] for connectivity is that they both can be viewed as a recursive matrix
algorithm such that on an input instance (G, s, t) of undirected st-connectivity,
it computes a sequence of graphs [Gi]p that satisfy the following properties,
which we call recursive connectivity properties (RCP):

(1) For each 1 # i # p, s, t are vertices in Gi and s, t are connected in Gi if
and only if they are connected in Gi21, where G0 5 G.

(2) The sizes of Gi are nonincreasing.
(3) Gp is a transitive closure graph (union of cliques).
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The output of the algorithm is “yes” iff s is connected to t in Gp. Clearly, such an
algorithm recognizes the language undirected st-connectivity.

3.1. SAVITCH’S ALGORITHM. We will identify a graph G with its adjacency
matrix, denoted also by G, in which G[i, j] is 1 if (i, j) is an edge in G and is 0
otherwise.

In Savitch [1970], the algorithm computes the sequence of graphs [Gi]p such
that Gi 5 Gi21

2 5 G2 i

. In words, vertices u, v are connected in Gi if and only if
there is a path of length at most 2 i from u to v in G. Clearly, [Gi]p satisfy RCP.
We can see that the space used at every recursive level (to compute Gi given
Gi21) is O(log n) and p is log n. So the total space required is O(log2 n) (by
Proposition 1).

3.2. THE ALGORITHM OF NISAN, SZEMERÉDI AND WIGDERSON. The algorithm
of Nisan et al. [1992] computes a sequence of matrices [Gi, Ni]p depending on a
parameter k which we call the shrinking parameter. The sequence [Gi]p satisfies
RCP, and has the property that dim(Gi) # dim(Gi21)/k, that is, the algorithm
“shrinks” the graph G by a factor of k at every recursive level and at the same
time preserves RCP.

The computation at each recursive level consists of computing two matrices Gi

and Ni. Ni is a k-rich neighborhood matrix:

Definition 1 (Neighborhood Matrix). Let G be a graph. A neighborhood ma-
trix N of G is a real matrix of dimension dim(G) such that all the entries are in
the range [0, 1] and if N[i, j] Þ 0 then vertex i is connected (by a path) to vertex
j in G. A Boolean neighborhood matrix of G is a neighborhood matrix of G with
Boolean entries.

Definition 2 (Rich Boolean Neighborhood Matrix). A Boolean neighborhood
matrix N of G is k-rich if any row of N is k-rich. A row i is k-rich if it contains at
least min {k, #CC(i)} “1” entries, where #CC(i) is the number of the vertices
in the connected component of i in G.

Ni is obtained by taking a walk on the graph Gi according to the universal
traversal sequence constructed in Nisan [1992], which takes space O(log2 k 1 log
n). Using the UTS property, it can be easily proved that Ni is indeed k-rich. The
computation of Gi is based on a matrix algorithm which we denote by SRNK for
graph shrinking procedure. This algorithm will be the basic building-block of the
construction of our algorithm and we summarize its properties as follows:

LEMMA 1. Given as input (G, s, t, N), where G is an undirected graph of size n,
s, t are vertices in G and N is a k-rich neighborhood matrix of G, the algorithm
SRNK runs in space O(log(n)) and computes a graph G9 such that

(1) s, t are distinct vertices in G9 and s is connected to t in G iff it is connected in
G9.

(2) dim(G9) # dim(G)/k.

In the Nisan et al. [1992] algorithm, Gi is computed as SRNK (Gi21, s, t,
Ni21). We see that the space required at every recursive level of the algorithm is
O(log2 k 1 log n) and the number of recursive levels is O(log n/log k), thus the
total space needed for the computation is O(log2 n/log k 1 log n log k). By
choosing log k 5 log1/2 n, the algorithm has space complexity O(log3/2 n).
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3.3. OUR VARIANT—INTUITION: In Nisan et al. [1992], the rich neighborhood
matrix Ni, at each recursive level i, was computed using a UTS, constructed by
Nisan using his pseudorandom generator. As we will see, the NSW algorithm can
be modified so that it directly uses the generator. At each recursive level, we use
a random string y9i of length O(log2 k) and additional space O(log(n)) to
compute a neighborhood matrix Ni( y9i) which is k-rich with high probability.
Summing over the recursive levels, the naive derandomization of this algorithm
uses, as before, space O(log(n) log(k) 1 log2 n/log(k)).

The advantage of this modification is that if we can find a way to reduce the
number of random bits, we can improve the space complexity. As described, we
generate a new set of O(log2 k) bits at each recursive level. Suppose that we
could reuse the same bits at every recursive level. Then, the overall space
requirements would be O(log2 k 1 log2 n/log(k)), and choosing log(k) 5 log2/3

n would give O(log4/3 n) space complexity.
Reusing the random bits introduces dependencies at the various recursive

levels, which must be controlled. A technique for this was developed in Saks and
Zhou [1999]. However, their technique requires that at each recursive level there
is a “target” matrix such that with very high probability the randomized
algorithm produces a matrix that is very close to the target. This is not the case
for us, because the neighborhood matrix Ni( yi) produced at level i heavily
depends on the random string yi, and different strings yi produce very different
neighborhood matrices.

To overcome this, we notice that if we average over all the possible neighbor-
hood matrices Ny that our randomized algorithm can give, that is, taking 1 5
Ey[Ny], we also get a rich neighborhood matrix. The crucial point is that the
average does not depend on y. Here, we also see another advantage of replacing
the UTS by a randomized algorithm: since most y’s are good the average is also
good.

We are left with the problem of approximating 1 using only small space. One
way to compute 1 is by computing Ny for every possible y, which results in space
complexity that is essentially the length of the random string y, which is too
expensive for us. A more efficient way is by using efficient samplers [Bellare et
al. 1993; Zuckerman 1996].

4. The New Algorithm

We now formally describe how to implement the ideas presented in Section 3.3.

4.1. AN ALGORITHM FOR FINDING RICH NEIGHBORHOODS. We apply Nisan’s
pseudorandom generator for space-bounded computation [Nisan 1992] to simu-
late short random walks on graphs, and construct an off-line randomized
algorithm, which we call WALK for pseudorandom walks, that gives the following:

LEMMA 2. Given as input a graph G of size n and an integer m, the algorithm
WALK (G, m; y) takes an off-line random input y [ {0, }r of length uyu 5 r 5
O(m2), runs in space O(log n) and computes a Boolean neighborhood matrix Ny of
G such that for each 1 # v # n,

Pr
y[{0, 1}r

@the vth row of Ny is 2m-rich# $
2

3
.
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We prove this lemma in Section 6.

4.2. THE AVERAGE IS ALSO RICH. The significance of procedure WALK can
be seen if we consider the expectation over y

1~G, m! 5 E y@Ny# 5 E y[{0, 1}O(m2) [WALK ~G , m; y!]

We first extend the notion of a rich neighborhood matrix and then we show
that 1(G, m) is (k, 1/n)-rich.

Definition 3 (rich neighborhood matrix). A neighborhood matrix N of G is (k,
a)-rich if any row of N is (k, a)-rich. A row i is (k, a)-rich if it contains at least
max{k, #CC(i)} entries j with N[i, j] . a, where #CC(i) is the number of
vertices in the connected component of i in G.

LEMMA 3. For any graph G of size n and any m, 1(G, m) is a (2m21, 1/n)-rich
neighborhood matrix of G.

PROOF. If 1 (G, m)[i, j] . 0 then there is at least one y such that WALK
(G, m; y)[i, j] . 0. Thus, i must be connected to j in G, and 1(G, m) is a
neighborhood matrix of G. Now we prove it is rich. Recall that

1~G, m! 5 22r O
y[{0, 1}r

WALK ~G , m; y!

where r is the number of random bits requested by algorithm WALK on input
(G, m). Let i [ [n] be arbitrary and let w be the number of entries of
1(G, m)[i, z ] that are bigger than 1/n. We want to show that w $ 2m21.

By the definition of w, we know that

O
j[[n]

1~G, m!@i, j# # w z 1 1 ~n 2 w! z
1

n

On the other hand,

O
j[[n]

1~G, m!@i, j# 5 22r O
y[{0, 1}r

O
j[[n]

WALK ~G , m; y!@i, j# $
2

3
2m

where the inequality follows from Lemma 2, because for at least 2/3 of the y’s,
WALK (G, m; y)[i, z ] contains at least 2m entries with value 1. Thus, w $
(2/3)2m 2 1 $ 2m21 and the proof is complete. e

Notice that the averaging argument allows us relaxed requirements from the
algorithm WALK; Instead of requiring that most y’s are “good” for every vertex
v, we only require from algorithm WALK that for every vertex v most y’s are
“good” (for different v’s, different y’s are good).

4.3. APPROXIMATING THE AVERAGE. We now want to approximate the aver-
age 1(G, m), using an off-line randomized algorithm. For reasons that will
become apparent soon, we want the approximation to be (almost) independent
of the off-line random string that we use. Employing ideas from Saks and Zhou
[1999] this can be done without any space penalty. We start with a definition:
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Definition 4. Let A( x; y, q) be a randomized off-line algorithm, whose
off-line random input is partitioned into two parts y and q. For each x and q we
define MA( x; q) to be the output value A( x; y, q) that occurs with maximum
probability over y (with ties broken arbitrarily).

We say A and q are g-oblivious to y, for g # 1, if

@x Proby~ A~ x; y, q! 5 MA~ x; q!! $ 1 2 g

and in that case we say q is g-good. We say A is g-oblivious to y with probability
at least p if

@x Prob~q is g-good! $ p.

We have the following general theorem:

THEOREM 2 (APPROXIMATING AN AVERAGE). Let A(x; y9) be an off-line ran-
domized algorithm with random bit complexity R(uxu) and processing space complex-
ity S(uxu); the output of A is in K 5 [0, 1]d on which we define the l` norm i z i.

Let b , 1 and b , R( ux u)b. There is an algorithm B( x; y, q) such that:

(1) B is nearly independent of y: B is g-oblivious to y with probability at
least 1 2 (2d/ 2b) where g 5 (d/ 2R( ux u)).

(2) Correctness: For all x and g-good q [{0, 1}b, iMB( x; q) 2 !( x)i ,
22b, where !( x) 5 Ey9[{0, 1}R( ux u)[A( x; y9)].

(3) Complexity: B has O(S ux u) 1 b) 1 polylog R( ux u) processing space
complexity. Also uy u # 3R( ux u) and uq u # b.

We prove this Theorem in Section 5.

4.4. REPEATED AVERAGING. We can use Theorem 2 to get a recursive matrix
algorithm that repeatedly computes the average of an algorithm using the same
off-line random string in all levels.

THEOREM 3 (REPEATED AVERAGING OF P LEVELS). Let K 5 [0, 1]d be a space
with l` norm i z i. Let Ai, i 5 1, . . . , p, be a sequence of off-line randomized
algorithms with input and output in K, processing space complexity S(uxu) and
off-line random bit complexity R(uxu). Define !i (x) 5 Ey[{0, 1}R(uxu)Ai(x; y).

Let b , 1. Then for every integer b , R( ux u)b there exists a randomized
algorithm AVER with input x0 [ K that outputs a sequence AVER ( x0; y,
q) 5 ( x1, . . . , xp) of p elements in K such that

—For every x0 [ K,

Proby , q~?ii xi 2 ! i~ xi21!i $ 22b! # pd~22R( ux0u) 1 22b11!

—AVER has O( p(S( ux0u) 1 b 1 polylog R( ux0u))) processing space com-
plexity and O(R( ux0u) 1 pb) off-line random bit complexity.1

PROOF (OF THEOREM 3). We first define the algorithm AVER:

1 We repeat here, at the risk of boring the reader, that in the off-line random bit complexity, p– the
number of recursive levels–multiplies only the b, and not the original R( z ).
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ALGORITHM AVER. On input x0 [ K, and parameter b, toss off-line random
input y [ {0, 1}3R(uxou) and qW 5 (q1, . . . , qp) [ ({0, 1}b)p. The algorithm outputs the
sequence [ xi]p, where

xi11 5 Bi~ xi; y, qi!

for i 5 1, . . . , p where Bi is the algorithm that approximates the average of
Ai by Theorem 2.

Notice that we use the same y in all different levels. The off-line random bit
complexity of the algorithm is immediate. The processing space complexity is
also simple. By Proposition 1, the space complexity is the sum of the space
complexities of all the different recursive levels, and at each such level the space
complexity is at most O(S( ux0u) 1 b) 1 poly log R( ux0u). We are left to prove
that:

i xi 2 ! i~ xi21!i # 22b

for i 5 1, . . . , p.
For every qW 5 (q1, . . . , qp), the sequence we see is some x1, . . . , xp. The

sequence we would like to see (and in fact we almost always see!) is z0 5 x0 and
zi 5 MBi

( zi21, qi) for i 5 1, . . . , p. Notice that the sequence z is independent
of y. We have:

Pr
y , qW

@?i [ @ p# , xi Þ zi# 5 Pr
y ,qW
F p

ø
i51

~ xi Þ zi!∧@ x# i21 5 @ z# i21G
5 O

i51

p

Pr
y ,qW

@Bi~ zi21; y, qi! Þ MBi
~ zi21; qi!∧@ x# i21 5 @ z# i21#

# O
i51

p

Pr
y ,qW

@B~ zi21; y, qi! Þ MBi( zi21; qi)# .

But since y and qi are independent of zi21, it follows by Theorem 2 that Pry,qW
[?i [ [ p], xi Þ zi] # p z (d22R( ux0u) 1 2d22b). Hence, with probability at least
1 2 p z (d22R( ux0u) 1 2d22b) over y and qW the sequence x1, . . . , xp is exactly the
sequence z1, . . . , zp. Since zi 5 MBi

( zi21, qi), we know by Theorem 2 that
i zi 2 ! i( zi21)i # 22b. In particular, i xi 2 ! i( xi21)i # 22b for any i 5 1,
. . . , p. e

4.5. THE CONNECTIVITY ALGORITHM. The connectivity algorithm is now a
simple application of Theorem 3. We choose the domain K to be the set
{(G, N)} of all n 3 n matrices G, N such that G is a Boolean adjacency matrix
of an undirected graph, and N is a real neighborhood matrix of G. Given k1,
k2 [ K we view k1 and k2 as elements of [0, 1]d (with d 5 2n2) and we let
ik1 2 k2i be their maximal difference in any coordinate, that is, we use the l`

norm.
Given x 5 (G, N) we let A( x; y) be (G9, N9) where G9 5 SRNK (G, s, t,

N) and N9 5 WALK (G9, m; y). That is, the randomized algorithm A first
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shrinks G according to N and then computes a new neighborhood matrix N9. A
has O(log(n)) processing space complexity and O(m2) off-line random bit
complexity. The shrunken graph G9 has fewer vertices, and hence can be
represented using fewer dimensions. However, to avoid using different domains
Ki, we represent G9 as if it still has n vertices with nonactive vertices having zero
rows and columns. The average is !( x) 5 Ey[{0, 1}R( ux u)[A( x; y)]. On input
(G, N) we have !(G, N) 5 (&9, 19) where &9 5 EySRNK (G, s, t, N) and 19
5 Ey [WALK (G9, m; y)]. However, SRNK (G, s, t, N) does not depend on y
and therefore &9 5 SRNK (G, s, t, N).

Given an undirected graph G, and two distinguished vertices s and t, we form
the input x0 5 (G, I), where I is the identity neighborhood matrix. We define
A1, . . . , Ap to be the algorithm A with m 5 log2/3 n. Applying Theorem 3 with
the parameters b 5 5/6, d 5 n2, b 5 4 log n and p 5 Q(log n/m) 5 Q(log1/3

n), we get an algorithm AVER that outputs a sequence ( x1, . . . , xp) such that:

—With probability at least 1 2 1/n, i xi 2 !( xi21)i # 1/n2 for every i 5
1, . . . , p.

—AVER has O(log4/3 n) processing space complexity and O(m2 1 log4/3 n) 5
O(log4/3 n) off-line random bit complexity.

We complete the proof of Theorem 1 by proving

LEMMA 4. Let x0 5 (G, I) [ K be an input, where G is an undirected graph
with two distinguished vertices s and t, and I is the identity neighborhood matrix. Let
p 5 Q(log n/m). For any sequence x1, . . . , xp [ K such that i xi 2 !(xi21)i , 1/n,
xp represents a graph with only two vertices s and t, and they are connected in xp iff
they are connected in G.

PROOF. Suppose xi 5 (Gi, Ni). We first prove by induction on i that for
every i s is connected to t in G iff it is connected in Gi. The base case i 5 0 is
trivial. Assume for i and let us prove for i 1 1. We know that !( xi) 5 (& i11,
1 i11) with & i11 5 SRNK (Gi, s, t, Ni), and we are given an element xi11 5
(Gi11, Ni11) such that i xi11 2 !( xi)i , 1/n. In particular iGi11 2 SRNK
(Gi, s, t, Ni)i , 1/n. Since both Gi11 and SRNK (Gi, s, t, Ni) are Boolean
matrices we conclude that Gi11 5 SRNK (Gi, s, t, Ni). Finally, as Ni is a
neighborhood matrix of Gi (as xi [ K) if follows that s is connected to t in Gi11
iff it is connected in Gi which by induction is iff s is connected to t in G.

The second thing we show is that the graph Gi11 represents a shrink by a
factor of 2m21 of Gi. To see this, look at !( xi21) 5 (& i, 1 i) (i $ 1). By
Lemma 3, 1 i is a (2m21, 1/n) rich neighborhood matrix of & i. Since i xi 2
!( xi21)i 5 d , 1/n, it follows that Gi 5 & i and Ni is a (2m21, (1/n) 2 d) rich
neighborhood matrix of Gi 5 & i. Hence, Gi11 shrinks by a factor of at least
2m21.

Hence, taking p 5 Q(log n/m), we end up with a graph with only two vertices
s and t that are connected iff they are connected in x0. e

5. The Proof of the Approximated-Averaging Theorem

In this section, we prove Theorem 2. Suppose we are given a randomized
algorithm A that outputs a value in [0, 1]. Using samplers, we can estimate the
expected value of A with polynomial accuracy. Clearly, there is no way we can
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avoid the error in the estimate and get perfect accuracy. Thus, the sampler’s
answer depends on the random bits it uses.

We would like to break this dependency. A natural way to do this, suggested by
Saks and Zhou [1999], is by truncating the approximated value to the desired
accuracy level. One can then hope that the resulting (truncated) value is exactly
the truncation of the correct value. Indeed, this is almost true. To make it true
with high probability, Saks and Zhou [1999] use first random perturbations. We
use this technique to prove Theorem 2.

5.1. DETERMINISTIC SAMPLING. Given a function f: {0, 1} r 3 [0, 1], we
want to efficiently approximate the expectation over a randomly chosen y9 [
{0, 1} r of f( y9), that is, to estimate

E@ f# 5 E y9[{0, 1}r@ f~ y9!# 5
1

2 r O
y9[{0, 1}r

f~ y9!

to a given accuracy, minimizing the number of random bits used.

Definition 5 [Bellare and Rompel 1994; Zuckerman 1996]. An (e, g) non-
adaptive sampler SMPLf : {0, 1}l 3 [0, 1] is a deterministic algorithm that on an
input l-bit string y, computes p queries to an oracle function f: {0, 1}r 3 [0, 1],
and based on the answers outputs a value v such that

Pr
y[{0, 1} l

@ uv 2 E@ f# u . e# # g

In other words, for all but g fraction of the y [ {0, 1} l uv 2 E[ f] u # e.
Clearly a natural way to obtain an (e, g) nonadaptive sampler is to randomly

choose independent sample points. In fact, a simple counting argument shows
that choosing p 5 O((1/e2)log(1/g)) points is enough. However, this way we use
too many random bits: l 5 pr. We would like to reduce l to only O(r) while
keeping the number of sample points small with p 5 poly(r, 1/e). Two optimal
methods for doing that are known, Bellare et al. [1993] and Zuckerman [1996].

The processing space complexity of a nonadaptive sampler is the processing
space needed to compute the queries plus the processing space needed to
compute the output given the answers to the queries. We remind the reader that
the processing space complexity can be much smaller than the size of the output
itself. We use a special case of Zuckerman [1996, Theorem 5.5] by setting m 5 r,
d 5 p, a 5 1/ 2 and g 5 1/ 2r to get Lemma 5:

LEMMA 5 [ZUCKERMAN 1996]. For any constant b , 1, any positive integer r
and any function f: {0, 1}r 3 [0, 1] computable in space s and any e . 22rb

, there is
an (e, 1/2r) sampler SMPLf: {0, 1}3r 3 [0, 1] computable in space s 1 logO(1) r.

We extend this Lemma to f: {0, 1}r 3 K (where K 5 [0, 1]d with the l`

norm i z i). We first need to extend the definition of the sampler to work on
norm spaces.

Definition 6. An (e, g) nonadaptive sampler SMPLf: {0, 1} l 3 K is a
deterministic algorithm that on an input l-bit string y, computes p queries to an
oracle function f: {0, 1}r 3 K, and based on the answers outputs a value v [ K

304 R. ARMONI ET AL.



such that

Pr
y[{0, 1} l

@iv 2 E@ f#i . e# # g

LEMMA 6. For any constant b , 1, any positive integer r, any function
f: {0, 1}r 3 K computable in space s and any a , rb, there is a (22a, d/2r) sampler
SMPLf: {0, 1}3 3 K computable in space O(s) 1 logO(1)r.

PROOF. Remember that K 5 [0, 1]d. For every j [ [d] let f j be the jth
coordinate of f, let SMPLf j

be the (22a, 22r) sampler of Lemma 5 and define

SMPLf 5 ~SMPLf1
, . . . , SMPLfd

! ,

Let vj be the jth entry of v. Then,

Pr
y[{0, 1}3r

@iv 2 E@ f#i . 22a# 5 Pr
y[{0, 1}3r

@∨ j[[d]uvj 2 E@ f j# u . 22a#

# O
j[[d]

Pr
y[{0, 1}3r

@ uvj 2 E@ f j# u . 22a# # d22r

By Lemma 5, for every j [ [d], the sampler SMPLf j
runs in space s 1 logO(1) r

(since f j is computable in space s) and while computing SMPLf we need only
extra O(log d) space to point to the jth entry in the output of f, but s $ log d
since the output is of length at least d. e

5.2. EXACT TRUNCATED SAMPLING. Now we construct the off-line random-
ized algorithm B that approximates the average of A in a way that (w.h.p.) does
not depend on the random bits we use. The construction uses the perturbation
and truncation scheme of Saks and Zhou [1999]. We start with a definition:

Definition 7 (Perturbations and Truncations). Let x be a real value. The
perturbed value of x, x2d, is defined to be max{ x 2 d, 0}. The perturbed and
truncated value of x, x2d t, is obtained by truncating the binary expansion of
x2d after t binary digits. These operators are extended to vectors in K 5 [0, 1]d

(v2d and v2d t) by simply applying them entry by entry to the vector v.
We set a 5 2b 1 1 and set a truncation parameter t 5 a 2 b. For every input

x, let y [ {0, 1}3R( ux u) and q [ {0, 1}b and let d 5 q22a. Define

!~ x! 5 E~ A~ x, z!!

and

B~ x; y, q! 5 SMPLA( x , z)~ y!2d t

and we prove:

LEMMA 7. For every input x, if a 5 2b 1 1 , R(uxu)b for some constant b , 1,
then

Pr
q[{0, 1}b

F Pr
y[{0, 1}3R( ux u)

@B~ x; y, q! 5 !~ x!2d t . 1 2 d22rG . 1 2 2d22b

.
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PROOF. A nonnegative real number x is said to be (a, t)-dangerous for
positive integers a . t if x can be written in the form 22tI 1 r where I is a
positive integer and r [ [222a, 22a), and is said to be (a, t)-safe otherwise.
For example, 0.76 5 3/4 1 0.01 is (6, 2)-dangerous and (7, 2)-safe. A vector v [
K is (a, t)-dangerous if one of its entries is (a, t)-dangerous and it is (a, t)-safe if
all its entries are (a, t)-safe.

For two positive integers a $ b, we define D(a, b) to be the set of 2b real
numbers {q22a u integer q [ [0, 2b 2 1]}. The proofs of the next two lemmas
can be found in Saks and Zhou [1999].

LEMMA 8 [SAKS AND ZHOU 1999, LEMMA 5.5]. Suppose v [ K and a $ b are
positive integers. Let t 5 a 2 b. Then,

Pr
d[D(a , b)

@v2d is ~a, t!-dangerous# # 2d22b.

LEMMA 9. [SAKS AND ZHOU 1999, LEMMA 5.2]. Suppose v [ K is (a, t)-safe.
Then for any v9 [ K such that iv 2 v9u # 22a it holds that vt 5 v9t.

Thus, by Lemma 8 for all but 2d22b fraction of the choices of d, !( x)2d is
(a, t)-safe. Also, by Lemma 6, for all but d/ 2R( ux u) fraction of the choices of y,
SMPLA( x, z )( y) is within 22a to the real average !( x). By Lemma 9, whenever
one vector is (a, t)-safe and a second vector is within 22a distance of the
first, then their truncation at position t is equal. This completes the proof of
Lemma 7. e

Note now that if Pry[{0,1}3R( ux u)[B( x; y, q) 5 !( x)2d t . 1 2 d22r, that
means that !( x)2d t is the value of B( x; y, q) that appears maximal number of
times over the random input y [ {0, 1}3R( ux u), which implies that MB( x; q) 5
!( x)2d t, which in turn implies that q is g-good for x, where g 5 d22r. Then,
by Lemma 7

Pr
q[{0, 1}b

@q is g-good for x# . 1 2 2d22b,

which proves the first item of Theorem 2. To complete the proof of the theorem,
one should note that i!( x)2d t 2 !( x)i # 2 z 22t because each of the
perturbation and truncation operation introduces an error of at most 22t which
proves the second item of the theorem, and since B is simply applying perturba-
tion and truncation to the sampler that runs in space O(s) 1 logO(1) r,
everything can be computed in space O(s 1 b) 1 poly log R( ux u), which
completes the proof of Theorem 2.

6. Pseudorandom Walks

In this section, we present algorithm WALK (G, m; h) and prove Lemma 2. The
algorithm receives a graph G and a number m as inputs, a random string h as an
off-line random input, and since it is a matrix algorithm it also receives two more
indices, s, u. It should output the value of the (s, u)th entry of the output
matrix. We want to show that for any graph G 5 (V, E) and any vertex s [ V,
for at least 2/3 of the off-line random inputs h, there are at least 2m vertices u
such that WALK (G, m; h)[s, u] 5 1.
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6.1. PRELIMINARIES

6.1.1. Random walks. Given an undirected regular graph G 5 (V, E) of
degree D and a vertex s [ V a sequence s1, . . . , s l [ [1 z zD] defines a “walk”
v1, . . . , vl11 of length l in the following way: v1 5 s, and vi11 is the s i’th
neighbor of our current vertex. A random walk of length l on an undirected
graph G 5 (V, E) is the walk obtained by a sequence s1, . . . , s l picked
uniformly at random from [1 z zD] l.

We are interested in random walks on irregular undirected graphs G 5 (V, E)
with degree at most D. When the graph is irregular we need to specify how an
instruction s i translates to a move. For example, how does the instruction s [
[1zz16] translate to a move from a vertex v that has 3 neighbors. There are several
standard ways to address this (e.g., by first converting the graph to a regular
graph) and we choose the following. We express D as [1, jd] ø [ jd 1 1, D]
where j is the biggest integer such that jd # D. If s i [ [1, jd], we let vi11 be
the s i mod d neighbor of vi; otherwise, vi11 5 vi, that is, we do nothing. Using
this solution, at least half of the moves are “real” moves, and moreover, each
neighbor of v has equal probability of being reached from v.

We need the following lemma of Barnes and Feige [1996]:

LEMMA 10 [BARNES AND FEIGE 1996]. Suppose G is a connected graph and s
is an arbitrary vertex in G. Let k be an integer. Then with probability at least 3/4 a
random walk of length l 5 l(k) 5 O(k3) on G from s visits at least k distinct vertices
or the whole connected component of s.

We could equally use a slightly weaker Lemma with l 5 O(k4) of N. Linial
(Private communication). For the rest of this section, let us fix the graph G, the
starting vertex (the row of the output matrix) s, the parameter m, the number of
vertices that we should visit k 5 2m and the length l 5 O(k3) given by Lemma
10. We will analyze random walks on G, that start from s.

6.1.2. Nisan’s generator. We remind the reader that an automaton Q is a
tuple ^S, (, qstart, qacc, d&, with states S, a starting state qstart [ S, an accepting
state qacc [ S, an alphabet ( and a transition function d: S 3 ( 3 S. If the
automaton is in state q and is given an input x [ (, the automaton moves to the
new state d(q, x). For a distribution $ over ( l, we denote by Q($) the
distribution over S obtained by starting at qstart and running the automaton Q
over a sequence drawn at random from $.

Our main tool is Nisan’s generator [Nisan 1992] that can be described as a
function Fq,r( x, h): {0, 1}q 3 {0, 1}2qr 3 {0, 1}q2 r

where q and r are
parameters that determine the quality of the generator. The key property of Fq,r
is given in the following lemma, which is derived from Nisan [1992, Lemma 2] by
plugging some specific constants that suit our needs.

LEMMA 11. Let S be a set with uSu 5 O(27m), k 5 2m and l 5 O(23m). There
exists a function n 5 O(m) such that for every automaton Q 5 ^S, ( 5 {0, 1}n,
qstart, qacc, d&, for all but k25 of the choices of h [ ({0, 1}2n)log l

iQ~Ul! 2 Q~Fn, log l~Ux, h!i # k25

where Ul is the uniform distribution over (l, Ux is the uniform distribution over (
and i z i is the l` norm.
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6.2. THE ALGORITHM WALK. Our algorithm is:

Algorithm WALK
Let l 5 O(k3) be as in Lemma 10 and n 5 O(m) as in Lemma 11.
Input: A graph G of n vertices and a parameter m; two vertices s , u .
Initialization: Set k 5 2m.
Off-line Random Input: h [ ({0, 1}2n)log l.
Output: Try every x [ {0, 1}n. If for one of the x ’s, a walk on G according to
F(x , h) from s passes through u or through a neighbor n of u , output 1.
Otherwise, output 0.

6.3. THE PROOF. We want to prove Lemma 2, that is, we want to show that
for any given vertex s, if we choose and fix h at random then with high
probability (over the choice of h) WALK ((G, s, u); h) 5 1 for at least k
different vertices u. This says, in a sense, that h is good for s: using the same h in
all the n different applications of WALK (G, s, u); h) yields at least k distinct
neighbors of s. The lemma claims that for any s, most h’s are good for s.

If the Lemma fails, then there is a graph G 5 (V, E) and a vertex s [ V such
that with probability at least 1/3 (over the choice of h) fewer than k 5 2m

vertices are found. Given such a “bad” instance we would like to build an
automaton Q, with only O(27m) 5 poly(k) states, for which Q(Ul) and
Q(Fn,logl) are very different. Since Lemma 11 guarantees that no such Q exists,
we conclude that no bad instance exists. The key property that we need from Q is
that it has only poly(k) states. To achieve that, we identify a set H of only
poly(k) vertices in V and prove that it is enough to focus on these vertices alone.

6.3.1. The Set H. Let Pv,w be the probability a random step from v moves to
w (and so if (v, w) ¸ E, Pv,w 5 0). We define r0(s) 5 1 and @v Þ s, r0(v) 5
0. For every i $ 0 define

Hi 5 H v:r i~v! $
1

2lkJ
Li 5 H v:0 , r i~v! ,

1

2lkJ
r i11~v! 5 O

w[Hi

r i~w! z Pw ,v

Hi is the set of vertices with “high” reaching probability in the ith step, Li are
the vertices with “low” reaching probability and r i(v) is the probability of
reaching v in the ith step when walking only through vertices in H1, . . . , Hi21.
Clearly, uHiu # 2lk # poly(k).

t will be the number of steps that we want to analyze. It is at most l, but if at
time i , l the probability of entering Li11 is too large, or, we discover a vertex
with at least k neighbors, then we stop. That is, denote by G(v) 5 {w: (u, w) is
an edge of G} the set of neighbors of v and for a subset U of vertices, let G(U)
denote the set of neighbors of U. Define:

t 5 minH $l% ø $i: ?v [ Hi, uG~v! u $ k% ø H i: O
v[Li11

r i11~v! .
1

2lJ J
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Denote by H 5 ø i50
t Hi.

LEMMA 12. uH ø G(H)u $ k.

PROOF. If t 5 l, the probability that a random walk leaves H is at most l z
(1/ 2l ) 5 1/ 2 and the probability that it does not visit k distinct vertices is at
most 1/4 (by Lemma 10). Thus, with probability at least 1/4, the random walk
both stays in H and visits k distinct vertices, thus uH u $ k.

If t , l, then there are two possible cases: (1) for some v [ Ht, uG(v) u $ k, or
(2) (v[Lt11

r t11(v) . 1/ 2l. If the first case happens, then clearly uG(H) u $ k. If
the second case happens, then since for every v [ Lt11, r t11 (v) , 1/ 2lk, it
must be that the size of Lt11 is at least k. Moreover, Lt11 # G(Ht) # G(H). We
see that in either case uG(H) u $ k. e

6.3.2. A Pseudorandom Walk Traverses H

LEMMA 13. For every v [ H, for all but k25 of the choices of h [ ({0, 1}2v)log l,
for at least one of the x [ {0, 1}v the walk according to the output of F(x, h) in G
will pass through the vertex v.

PROOF. Given the graph G 5 (V, E) and the vertex s [ V, we construct an
automaton M 5 ^S, (, qstart, qacc, d& of size polynomial in k. The states S of
the automaton M are

S 5 $~i, u!: 0 # i # t, u [ Hi ø $0%% .

It is easy to see that uS u 5 O(l2k) 5 O(k7) 5 O(27m). The starting state of M
is qstart 5 (s, 0). The alphabet ( of the automaton is ( 5 {0, 1}n, where n is a
parameter of the generator (n 5 O(m) 5 O(log k)).

We now define the transition function d. For a 5 0, d((i, a 5 0), s) 5 (i 1
1, 0). For a Þ 0 we have a [ Hi, and therefore it has d # k , 2n neighbors.
We again express [1zz2n] as [1 z zjd] ø [ jd 1 1 z z2n] with j being the largest integer
such that, jd # 2n. If s . jd, we define d((i, a), s) 5 (i 1 1, a), that is, we do
nothing. Otherwise, let b be the s mod d neighbor of a. If b [ Hi11, then
d((i, a), s) 5 (i 1 1, b); otherwise, d((i , a), s) 5 (i 1 1, 0).

We now claim that for every i # t and for every w [ Hi the probability over
s [ ({0, 1}n) i that a walk on M according to s reaches (i, w) is at least r i(w),
that is, in M(Ui) the state (i, w) has probability at least r i(w). To see that,
notice that any walk in G of length i that passes only through vertices in H1, . . . ,
Hi and ends up at w, has a unique corresponding walk on the automaton M that
ends up in (i, w).

Therefore, It follows by Lemma 11 that for all but k25 of the choices of h the
state (i, w) has probability at least r i(w) 2 2k25 in M(Fn ,log l)(Ux, h). We
conclude:

LEMMA 14. For all but k25 of the choices of h [ ({0, 1}2n)log l, for every i # t
and for every w [ Hi,

Pr
x[{0, 1}n

@M~F~ x, h!! passes through ~i, w!# $ r i~w! 2 2k25.
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Finally, we note that by the construction of the automaton M for every string
s [ ({0, 1}n) i, where i # t, if s takes M to some state (i, w) with w Þ 0, then
a walk on G according to s will end up at vertex w as well. Since r i(w) $
1/ 2lk $ V (k24), it follows that for at least one of the x [ {0, 1}n, the walk
according to the output of F in G will pass through the vertex w. e

6.3.3. Putting the Pieces Together

LEMMA 15. For at least 3/4 of the h, algorithm WALK using h will see at least k
distinct vertices or the whole connected component of s.

PROOF. If the connected component of s is smaller than k, then the walks
according to the output of F will traverse it completely for almost every h since F
is a pseudorandom generator for automata of such size. In the other case where
the connected component of s is at least of size k, we know that for all but k25 of
the possible h’s, the probability over the x’s that a walk on G according to
F( x, h) passes through a vertex v in H is positive. If uH u $ k, then for all but
k24 of the possible h’s, when we try all possible x’s, we see k elements of H. If
uH u # k, then for all but k24 of the possible h’s, when we try all possible x’s, we
see all the elements of H. However, by Lemma 12, uH ø G(H) u $ k, and WALK
outputs 1 for every u that it either traverses or a neighbor of a traversed vertex v,
thus WALK will output 1 for every vertex of H ø G(H). e

Finally, notice that the length of the off-line random input is 2n z log l 5
O(m2). As for the space complexity, n 5 O(m) and since m # log n, the space
needed to store an x [ {0, 1}n or an output block of F is certainly O(log n).
The space complexity of computing a block of F( x, h) is also O(log n) and the
space required to walk on a graph is of course O(log n) as well. We have proved
Lemma 2.
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