
HAL Id: hal-02932417
https://telecom-paris.hal.science/hal-02932417

Submitted on 5 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enabling adaptive bitrate algorithms in hybrid
CDN/P2P networks

Hiba Yousef, Jean Le Feuvre, Paul-Louis Ageneau, Alexandre Storelli

To cite this version:
Hiba Yousef, Jean Le Feuvre, Paul-Louis Ageneau, Alexandre Storelli. Enabling adaptive bitrate
algorithms in hybrid CDN/P2P networks. MMSys ’20: 11th ACM Multimedia Systems Conference,
Jun 2020, Istanbul Turkey, France. pp.54-65, �10.1145/3339825.3391859�. �hal-02932417�

https://telecom-paris.hal.science/hal-02932417
https://hal.archives-ouvertes.fr


Enabling adaptive bitrate algorithms in hybrid CDN/P2P
networks

Hiba Yousef∗†
Jean Le Feuvre∗

*LTCI, Telecom Paris, Institut Polytechnique de Paris
Paris, France

firstname.lastname@telecom-paris.fr

Paul-Louis Ageneau†
Alexandre Storelli†

† Streamroot
Paris, France

firstname.lastname@streamroot.io

ABSTRACT
As video traffic becomes the dominant part of the global Internet
traffic, keeping a good quality of experience (QoE) becomes more
challenging. To improve QoE, HTTP adaptive streaming with vari-
ous adaptive bitrate (ABR) algorithms has been massively deployed
for video delivery. Based on their required input information, these
algorithms can be classified, into buffer-based, throughput-based
or hybrid buffer-throughput algorithms. Nowadays, due to their
low cost and high scalability, peer-to-peer (P2P) networks have
become an efficient alternative for video delivery over the Internet,
and many attempts at merging HTTP adaptive streaming and P2P
networks have surfaced. However, the impact of merging these
two approaches is still not clear enough, and interestingly, the ex-
isting HTTP adaptive streaming algorithms lack testing in a P2P
environment. In this paper, we address and analyze the main prob-
lems raised by the use of the existing HTTP adaptive streaming
algorithms in the context of P2P networks. We propose twomethod-
ologies to make these algorithms more efficient in P2P networks
regardless of the ABR algorithm used, one favoring overall QoE
and one favoring P2P efficiency. Additionally, we propose two new
metrics to quantify the P2P efficiency for ABR delivery over P2P.

CCS CONCEPTS
• Information systems → Multimedia streaming.

KEYWORDS
HTTP Adaptive Streaming, P2P, CDN, ABR, Response Delay,

QoE
ACM Reference Format:
Hiba Yousef, Jean Le Feuvre, Paul-Louis Ageneau, and Alexandre Storelli.
2020. Enabling adaptive bitrate algorithms in hybrid CDN/P2P networks.
In 11th ACM Multimedia Systems Conference (MMSys’20), June 8–11, 2020,
Istanbul, Turkey. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3339825.3391859

1 INTRODUCTION
The ever increasing video traffic, according to Cisco studies, will
account for 79% of global Internet traffic by 2020 [8], putting in-
creasing pressure on video providers to provide good quality of

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
MMSys’20, June 8–11, 2020, Istanbul, Turkey
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6845-2/20/06. . . $15.00
https://doi.org/10.1145/3339825.3391859

experience (QoE) for their users who have different devices (smart-
phones, tablets, smart TVs, desktops...) and different bandwidth
characteristics (WiFi, DSL, fiber...). Achieving a higher QoE for
video streaming requires adapting the video playback to these vari-
able viewing conditions; this has led to the emergence and the
development of Adaptive Bitrate (ABR) streaming which has be-
come the key technology for delivering video over the Internet.
HTTP adaptive streaming relies on a web server to deliver media
data. Media (audio, video) is encoded in multiple bitrates (qualities),
and each quality is in turn subdivided into smaller parts, or seg-
ments, usually of constant duration but variable size. The choice
of which segment to download is left to the client, which uses an
online bitrate adaptation policy to maximize the QoE for the user.
This is characterized by many contradictory decisions: download-
ing the highest possible bitrate, starting the video playback as fast
as possible, keeping the switching rate between qualities reasonable
while keeping the probability of re-buffering as low as possible.

Popular implementations of ABR streaming over HTTP are
HTTP Live Streaming (HLS)[2] from Apple, Smooth Streaming
(Smooth) [3] from Microsoft, Adaptive Streaming (HDS) [1] from
Adobe and the MPEG-DASH [28] standard.

In addition, several ABR algorithms have been proposed. They
differ in the required input information needed for the upcoming
segment selection process. Based on this input information, ABR
algorithms can be classified into three categories: (1) Buffer-based
algorithms, like BBA [12] and BOLA [27], rely on the buffer char-
acteristics, specifically buffer level, in their decision. (2) Through-
put-based algorithms, such as Conventional, Panda [17], and Festive
[14], observe the TCP throughput and adapt the bitrate accordingly.
(3) Hybrid buffer-throughput algorithms, such as ABMA+ [4], use
both throughput (segment download time) and buffer level in their
decisions.

Once the ABR policy decision is made, the HTTP download
request is typically sent to a Content Delivery Network (CDN).

Nowadays, thanks to their self-scaling properties, Peer-to-Peer
(P2P) networks are becoming a popular alternative to CDN for
delivering media content over the Internet. In P2P systems, each
peer may ask for segments from either P2P network only or from
both P2P and CDN (hybrid CDN/P2P) depending on the segment
availability.

As a result of P2P and ABR improvements, there has been a
lot of efforts to merge these two approaches and many questions
have been raised. Since in ABR each client chooses each segment
based on its current viewing conditions, different clients end up

54

https://doi.org/10.1145/3339825.3391859
https://doi.org/10.1145/3339825.3391859
https://doi.org/10.1145/3339825.3391859


MMSys’20, June 8–11, 2020, Istanbul, Turkey Yousef, et al.

watching the video in different qualities, which makes the segments
exchanging between users (peers) more difficult.

Interestingly, most of the existing ABR algorithms were designed
to work in a server-based scenario, where the client requests seg-
ments directly from the CDN. However, when running these al-
gorithms in a P2P network, all the estimated input information
(throughput, segment download time, buffer value) will be depen-
dent on the P2P connections of the client. Some related works
implemented the ABR approach in P2P networks for both live [20]
[24] and VoD [13] media streaming, however, no prior work focused
on enabling the existing ABR algorithms in P2P systems.

In this paper we study the behavior of four state-of-the-art ABR
algorithms in P2P pre-fetching environment, and comment on the
main problems encountered. We also propose a new solution, called
Response Delay, to make these algorithms compatible with the
presence of P2P networks.

The rest of the paper is organized as follows. Section 2 provides
an overview about existing work in this domain. Section 3 describes
the P2P system model used. Section 4 presents the main challenges
related to the current ABR algorithms with P2P, and Section 5,
provides the proposed methodologies to enable the work of ABR
algorithms in P2P networks. The methodologies are evaluated in
Section 7, under simulation and realistic scenarios. Finally, in Sec-
tion 8, the paper is concluded and future work is discussed.

2 RELATEDWORK
2.1 HTTP adaptive streaming algorithms
In our study, we chose 4 common ABR algorithms that belong to
two different classes (throughput-based and buffer-based). These
algorithms have been studied and compared in CDN environments
in the literature [15][29][27], but a study of these algorithms in the
P2P-mesh environment is still missing.

2.1.1 Throughput-based Adaptation. Throughput-based adapta-
tion algorithms, such as Conventional and PANDA[17], use only the
TCP throughput measurements over enough probes as a mean to de-
cide on the next segment bitrate. These algorithms differ mostly in
the way they estimate and use the throughput. Conventional, Panda,
use a four-step adaptation model: starting with estimating, then
smoothing, and then quantizing the bandwidth and lastly sched-
uling the next segment. However, Panda uses a probing method
similar to the TCP congestion control and has an additive-increase-
multiplicative-decrease (AIMD), which makes PANDA more ef-
fective in terms of network utilization and fairness as users will
compete less aggressively for network resources.

2.1.2 Buffer-based Adaptation. Buffer-based adaptation algorithms
decide on the next segment bitrate based on the buffer character-
istics mainly, as the bandwidth variations can be translated into
changes in the buffer filling rate. Usually, these algorithms divide
the buffer into different ranges and take different decisions for each
buffer level range. BBA is one of the most well-known buffer-based
algorithms. In [12] authors started the adaptation by mapping the
buffer occupancy to a certain bitrate, then generalized the design to
mapping the buffer occupancy to the segment size since the buffer
dynamics are chunk size dependent. BOLA (Buffer Occupancy based
Lyapunov Algorithm) [27] is an online control algorithm that uses

Lyapunov optimization to achieve better QoE. It formulates the
bitrate adaptation as a utility maximization problem; the utility
increases by increasing the average bitrate, whereas rebuffering
decreases it.

2.2 P2P System Architecture
P2P architectures can be classified into tree or multitree-based,
mesh-based and hybrid tree-mesh based systems [5]. In tree-based
architectures, such as ESM[10] and SplitStream[7], the peers are
organized in tree-like layers, where each layer has one seeder and
multiple leechers. The seeders flow the data to the leechers and
organise the join/leave processes of their leechers. Although this
architecture is easy to implement, it is vulnerable to peer churn.

To avoid this vulnerability, mesh-based architectures, such as
CoolStreaming [32], and [19] were introduced. In mesh-based topol-
ogy, even if there is a large size of peers, although each peer may
have information about other peers in the system, yet it only con-
nects to a small number of peers called peer pool. Each peer can
exchange data with multiple peers inside this peer pool. Peers in
mesh-based topology are self organised, and every peer can be
seeder and leecher at the same time, which facilitates the peer-pool
management and resiliency against random peers joining or leav-
ing. However, the tradeoff is a higher network overhead due to
exchanging more control messages within the peer pool.

The hybrid tree-mesh based schemes, like MultiPeerCast [18]
and LayeredCast [21], inherits the benefits of both tree and mesh
architectures. In this scheme, some children can get data from
different parents (mesh structure), whereas other children can get
the data from only one parent (tree structure). However, most of
the hybrid schemes still face the complexity of the tradeoff between
stability and scalability [11].

In this work, we will use a mesh-based P2P protocol for both
simulation and real measurements.

2.3 Hybrid CDN/P2P video streaming
Due to the complementary advantages of CDN being reliable, and
P2P being cheap and scalable, a system which combines both tech-
nologies can be highly beneficial [31] [30]. Such a system includes
three main components: (1) the actual media server who distributes
the video content to the clients. (2) A set of clients who are watch-
ing the same video content, and (3) a tracker who finds the best
peers by matching the clients who are watching the same video
content, on the same quality level, if possible, and in adjacent time
windows. Authors in [9] propose such a hybrid system for live
video streaming over the Web, to reduce the CDN usage as much
as possible. In short, the video segments are portioned further into
small chunks of roughly equal size. Besides the video player module,
which consecutively requests video segments to fill the playout
buffer, clients also have an additional P2P module which pre-fetches
the video chunks ahead of time. However, the pre-fetching process
of one segment may be incomplete due to the peers’ heterogeneity,
and thus, a cost-effective solution is to download the missing data
from CDN only. A similar architecture will be used in this work, as
provided later in Section 3.

55



Enabling adaptive bitrate algorithms in hybrid CDN/P2P networks MMSys’20, June 8–11, 2020, Istanbul, Turkey

P2P Cache

Peer-Agent

P2P

Downloader

Throughput

Estimator

Playout

Buffer

ABR

Manager

Video Player

Module

P2P

Module

Figure 1: Hybrid CDN/P2P HTTP adaptive streaming

2.4 QoE and P2P efficiency evaluation
The quality of experience (QoE) is reported in [22] and [26] to be
high influenced by the perceived video quality, the frequency of
quality switches and the video playback interruptions. To meet the
QoE specifications, many metrics were proposed in different related
works, to assess the performance of the ABR algorithms, not only
in CDN networks [17][4][16], but also in P2P [25] networks.

Furthermore, it should be noted that ABR streaming in hybrid
CDN/P2P may induce an inefficient usage of the resources and, as
a result, data overhead. Some of this overhead comes from the ABR
policy switching the quality of the next segments, while having
these segments already pre-fetched but in different quality, hence
not used by the player. Another form of the overhead happens
when a partial P2P segment is completed by a CDN request but
P2P chunks for this segment are still received (no or late canceling
of scheduled chunks). Finally, a third form of overhead may also
happen in partial P2P segment case if the CDN replies to the com-
pletion byte-range request with a larger byte-range, as can be seen
in the real world; we, however, ignore this last form of overhead in
our simulations.

The overhead is evaluated as an important metric in different
prior works. Authors in [6] address the overhead resulting from the
multiple-source adaptive streaming. However, their main concern
is the overhead coming from multiple description coding (MDC)
compression scheme, which we do not cover in this work. In [24]
authors use cache hit and cachemiss ratios to measure the overhead.
Their main metric, traffic savings, reports the amount of P2P data
from the total data consumed by the peers. However, they do not
measure the overhead per peer, which is the amount of P2P data
not used by the peer itself, or not used by other peers in the peer-
pool. Our work focuses on these measures of ABR-related overhead,
through two proposed metrics in Section 6.2.

3 SYSTEM MODEL
In this section, we describe the hybrid CDN/P2P model. Table 1
summarizes the notations used in this paper.

In this system, as shown in Figure 1, peers have two main mod-
ules: the video player and the P2P modules. This work deliberately
isolates both modules, to be able to test any player logic over P2P
network, but without modifying the ABR or player logic.

Table 1: Notation

Notation Explanation
N Total number of the player requested segments
K Total number of the P2P pre-fetched segments
Qn Buffer level after adding segment n (s)

tdw [n] Video segment download time
bw[n] the player measured bandwidth of segment n
bwcdn CDN measured bandwidth
bwp2p P2P measured bandwidth
r [n] Bitrate of segment n (Mbps)
τ Video segment duration (s)

trqst ABR scheduling segment time
δ Segment fetching time from P2P cache

S[n] Size of segment = s[n]p2p + s[n]cdn
s[n]cdn Downloaded data from CDN
s[n]p2p Downloaded data from P2P
tcdn Download time from CDN
tp2p Download time from P2P
dn Segment Response delay
st[n] Cached segment state

Algorithm 1 video player logic

1: initialize(Qn, tdw [n]) ← 0 for n =1
2: for n in [1, N ] do
3: (r [n] , trqst ) = ABR(Qn−1, tdw [n − 1], bw[n − 1])
4: t = t + trqst
5: Qn = Qn−1 − trqst
6: S[n] = PeerAдent(n, r [n])
7: bw[n] = S[n]/tdw [n]
8: t = t + tdw [n]
9: Qn = Qn + τ − tdw [n]
10: end for

The video player requests the video segments in their playback
order and fills the playout buffer. A simple pseudo-code of the used
player logic is shown in Algorithm 1. It runs an ABR algorithm to
decide on the bitrate r [n] and the request scheduling time trqst of
the next segment to download (line 3 of Algorithm 1). The request
is then forwarded to the peer-agent which delivers back the seg-
ment S[n] after the download time tdw [n] (line 6 of Algorithm 1).
Simply, the bandwidth is measured as the downloaded data over its
download time and the simulation time t increases by this down-
load time (lines 7 and 8 of Algorithm 1). The playout buffer Qn
consumes some data while downloading the segment, then grows
by one segment duration once the segment is buffered (line 9 of
Algorithm 1).

The segment requests are forwarded to the P2P module, which
is composed of three main sub-modules: peer-agent, P2P down-
loader and P2P cache. The peer-agent, as indicated in Algorithm
2, receives the requests for the video segments at specific qualities.

56



MMSys’20, June 8–11, 2020, Istanbul, Turkey Yousef, et al.

Algorithm 2 peer-agent logic
1: n ← the player requested segment
2: st[n] ∈ S : S = {AC,AC,A} ← cached segment state
3: if st[n] = AC then
4: if time needed before delivering the segment then
5: tdw = dn ▷ Section 5: Response-Delay
6: else
7: tdw = δ
8: end if
9: else if st[n] = AC then
10: dataRanдe = S[n] − downloadedData[n]
11: sendCdnRequest(dataRanдe)
12: if time needed before delivering the segment then
13: tdw = tcdn + dn ▷ Section 5: Response-Delay
14: else
15: tdw = δ + tcdn
16: end if
17: else if st[n] = A then
18: sendCdnRequest(S[n])
19: tdw = tcdn
20: end if
21: wait for tdw to get and deliver the segment
22: return S[n]

It then checks the segment availability in the P2P cache. These
segments have three possible states: available and completed (AC),
available but not completed (AC) or not available (A). If the re-
quested segment is available and completed, the peer-agent delivers
it back in a very short time δ (line 7 of Algorithm 2), which is the
time needed to fetch the segment from the P2P cache. Otherwise,
peer agent sends CDN requests either to download only the miss-
ing range of data if the segment is not completed yet (lines 10 and
11 of Algorithm 2), or to download the whole segment if it is not
available in the P2P cache (line 18 of Algorithm 2). It then delivers
the segment to the video player right after time tcdn which is the
time it took to download the segment (or parts of) from CDN (lines
15 and 19 of Algorithm 2).

The P2P downloader keeps downloading data from peers and
filling the P2P cache. This work is divided into two processes: sched-
uling and fetching. In the scheduling process, for every time win-
dow w , the P2P downloader handles three main tasks: choosing
segments to schedule first, selecting seeders for these segments,
and assigning chunks of data to each seeder.
To handle the first task, line 1 of algorithm 3, the P2P downloader
schedules a list of (AC) or (A) consecutive segments of the same
quality level as the last requested segment by the video player. The
second task, which is peers selection (line 2 of algorithm 3), is han-
dled first by checking the peers who have already downloaded the
required segments and whose estimated upload capacity is high
enough to download the segments. The last step in the scheduling
phase, line 3 of algorithm 3, is assigning the chunks of the segments
to be played first to the peers who are selected as best seeders. The
received chunks are stored in the P2P cache which can store up to
200 MB of data in our model. The maximum cache size is chosen to
be similar to web browsers maximum cache sizes, and the cached

segments are organised and manipulated using a FIFO (first in first
out) list.

Algorithm 3 P2P downloader logic
1: segmentsToFetch = updateSegmentsFetchingList(n,r[n]).
2: seeders = updateSeeders(segmentsToFetch).
3: chunks = assignDataToSeeders(seeders, segmentsToFetch)
4: sendP2PChunksRequests(chunks, seeders)
5: saveFetchedDataInP2PCache(FetchedData)

4 CHALLENGES OF ABR ALGORITHMS IN
P2P NETWORKS

When deployed over a hybrid CDN/P2P network, classic ABR algo-
rithms face the following problems:
• In throughput-based ABR algorithms, the next download
decisions are taken based on the most recent bandwidth es-
timation. However, the P2P network conditions vary a lot
during the streaming session due to the high dynamics and
heterogeneity of the peers. Also, cached (pre-fetched) P2P
segments are delivered almost instantaneously, resulting in
a very high bandwidth estimation by the ABR algorithm.
As a result, such algorithms will end up selecting the high-
est bitrate for the next segments, which in turn makes the
ABR more fragile to any upcoming bandwidth fluctuation,
resulting in well-known quality oscillations.
• The buffer-based ABR algorithms, as mentioned, rely on the
buffer occupancy to decide on the next bitrate to download.
In P2P, the buffer fill rate will vary a lot, depending on the
segment source (pre-fetched, from peers only, from CDN
only or from peers and CDN); this induces more frequent
changes in buffer level estimation, therefore leading to more
quality switching.
• Finally, the pre-fetching model downloads the next segments
on the same quality as the last requested one. With an ABR
algorithm changing the current quality too often, the pre-
fetched segments are more likely to be unused because not in
the desired quality, thereby diminishing the P2P efficiency.

5 PROPOSED SOLUTION: RESPONSE-DELAY
The main issue of the various ABR algorithms being confused by
the presence of P2P cached segments can be addressed by making
the ABR believe that such segments were downloaded from CDN.
Unfortunately, tracking the CDN bandwidth variation can only be
done when the segments are requested and downloaded from CDN,
which is not the case when the P2P network is active. In this paper,
we show that this issue, regardless of the type of ABR algorithm,
can be solved by adding the right delay to the responses.

5.1 Principle
Since our design goal is to keep the ABR and video player logic
unmodified and agnostic of the P2P network, it is not possible to
directly control the ABR algorithm; we therefore only influence the
algorithm by adding a delay before returning the requested segment.
This additional delay will be interpreted as a longer download time

57



Enabling adaptive bitrate algorithms in hybrid CDN/P2P networks MMSys’20, June 8–11, 2020, Istanbul, Turkey

Dmax

Dmin

dn

Qmin QmaxQn
Buffer Level (s)

Delay (s)

d =
f(Q

)

Figure 2: The buffer-delay map used for response delay

for the segment and by modulating it, we change the effective
download time as seen by the ABR logic. Acting as a replacement
for the HTTP stack of the player, Response-Delay has the advantage
of being generic and works with any video player and most ABR
algorithms.

Response-Delay is designed to prevent the undesired network
variation feedback, which results in uncontrolled ABR decisions.
Our goal then is to add a good delay that should: (1) Eliminate
the re-buffering events that occur due to the wrong P2P speed
estimation. (2) Reduce the number and the amplitude of the quality
switches when P2P is applied. (3) Keep a reasonably high average
quality. (4) Increase the P2P percentage. (5) Reduce the number of
unused P2P downloads due to pre-fetching.

However, choosing the appropriate response delay is a question
of compromise. Too long, on one hand, can starve the player buffer
and lead to undesirable rebuffering events. It also makes the ABR
falsely believe the available bandwidth is low and switch to lower
content qualities. Too short, on the other hand, leads the ABR switch
to excessive qualities that the available bandwidth cannot support,
leading to further rebuffering events.

5.2 Response-Delay proposals
Inspired from the two main classes of ABR algorithms, we propose
a buffer-based and a network-based approach.

5.2.1 Buffer-delay map (BufDel). Inspired from the buffer-based
ABR, where the bitrate is selected from lowest to highest as the
buffer increases from low level to the maximum level, we propose to
use a continuous function that increases the delay as a function of
the buffer occupancy. We introduce BufDel, a buffer-based response
delay, that computes a delay d = f (Q) as shown in Figure 2. This
delay speeds up the filling of the buffer with segments when the
buffer level is low, whereas it slows it down when the buffer level
is evolving to reach the maximum target. As discussed, the delay
should be bounded, therefore dn = f (Qn ) ∋ Dmin < dn < Dmax
andQmin < Qn < Qmax . The boundaries are chosen to beDmin >

0 andDmax =
s[n]p2p
r [n] ≤ τ . BufDel requiresmonitoring of the buffer

level of the player, which inWeb environment is done bymonitoring
the <video> element without modifying the video player.

5.2.2 Network delay (NetDel). In this approach, the delay is used
to modify the current segment download as seen by the ABR and

video player logic, and the response delay is computed based on the
available bandwidth measurements. However, these measurements
mix the contributions of CDN and P2P links; summing them is not
appropriated as CDN and P2P traffic are generally not simultane-
ous. In our model, CDN is only used when P2P cannot support
the bitrate. The most appropriate way to determine the available
bandwidth in this context is therefore to take the highest bandwidth
between CDN and P2P. This approach has the advantage to be more
resilient to obsolete measurements of CDN bandwidth. Note that
measurements of CDN bandwidth are not taken into account in
cases of small byte-range requests, as they are usually unstable and
inaccurate in that situation. This approach works as a CDN/P2P
link switcher targeting the highest measured bandwidth (1), and
thus driving the ABR to pick a higher quality that can be sustained
via the highest bandwidth.

tarдetBw = max(bwcdn,bwp2p ). (1)
The delay is calculated as shown in (2), such that the segments with
different sizes will be delivered with different delays; this ensures
that the ABR detects that bigger segments need more time to be
downloaded than shorter ones for the same quality. Additionally,
the segment delay is upper bounded to the segment duration, oth-
erwise, undesired playback pausing may occur while waiting for
the segment to be delivered.

dn =
s[n]p2p

tarдetBw
≤ τ (2)

Moreover, in a scenario where the last P2P and CDN throughput
measurements are lower than the bitrate of the next pre-fetched
segment, the ABR may estimate a lower bandwidth according to
(1), and may down switch the current quality. If the next segment is
pre-fetched in higher quality, it is preferable to prevent the quality
down switch and try to stay at the same quality by controlling the
response delay to (3).

dn =
s[n]p2p

max(tarдetBw, r [n])
(3)

5.3 Applying Response-Delay

In this section, we discuss when to use the Response-Delay, or
more precisely which segments should be delayed. Obviously, all
the AC P2P segments (completed in P2P cache at the time of the
request by the ABR) should be delayed before being sent to the
player (line 5 in Algorithm 2). Similarly, CDN segments (nothing
pre-fetched) are already delayed by the speed of CDN connection
andwill be delivered immediately once they are downloaded (line 19
in Algorithm 2). But hybrid segments, which are downloaded from
both CDN and P2P, are handled differently (line 13 in Algorithm
2). Peer-Agent will wait for a time tcdn to have these segments
completed before delaying the P2P part with the time dn .

6 EXPERIMENTAL EVALUATION
6.1 Experimental Setup
In this work, we used MATLAB for building the model described in
Section 3. We simulate one peer pool of 10 peers, which is a good
representative of the actual peer pool size for mesh-based systems.

58



MMSys’20, June 8–11, 2020, Istanbul, Turkey Yousef, et al.

Table 2: Parameters used for the ABR algorithms

Algorithm Parameter Value

BBA
r 11.25
cu 15.75

BOLA
γp 5
V 2.012

PANDA

α 0.2
ϵ 0.15
κ 0.14
ω 0.3
β 0.2

Bmin 26

CONV
α 0.2
ϵ 0.15

They share the same video content of 10-min long, segmented in 299
segments of 2 seconds length, and encoded in 6 different bitrates:
0.59, 1.032, 1.54, 2.13, 3.078, and 4.219 (Mbps). For the video player
parameters, we set the maximum buffer size of 30 seconds, and
the playback rate is set to one (nominal playback speed). We set
both of the play-back startup and the re-buffering thresholds to
one video segment. Every 15 seconds, a new peer joins the session.
The first peer starts the session by connecting to the CDN, while
other participating peers are connected on both CDN and P2P links.
For a fair comparison, all peers experience the same upload and
download bandwidth conditions, and they all initiate the session
from the same starting point (identical network throughput at first
segment request). To evaluate our proposal, we use in Section 7.5
some publicly-available 3G sets of real bandwidth traces [23]. We
used these traces since they have been used a lot in the literature to
study and compare the used ABR algorithms. As shown in Figure
3, we chose the traces that show the normal bandwidth variations
and fewer outages duration, corresponding to direct throughput
measurements from a bus, a train, and a car. Also, to shed the
light on some different ABR challenges, we use some controlled
bandwidth traces, as later shown in sections 7.1 to 7.4.

6.2 Evaluation Metrics
We first investigate the impact of our methodology on QoE using
the suggested QoE metrics in [16]. The average quality is the av-
erage selected bitrate of the video segments. The stability and the
smoothness metrics show how often the ABR switches between
different qualities and the amplitude of these switches. The stream-
ing continuity and consistency metrics report the number and the
duration of the video playback interruptions.

Beside QoE metrics, we evaluated the overall P2P system per-
formance in terms of the efficient usage of the P2P and CDN re-
sources. A good P2P system would be able to reduce the CDN
requests and the P2P overhead as much as possible. We first intro-
duce the metric P2P Offload, as calculated in (4), which indicates
the cost-effectiveness in terms of the CDN usage; i.e. the less data

Figure 3: Example of the selected bandwidth profiles

downloaded from CDN, the better P2P offload.

P2PO f f load = 1 −
1
N

N∑
n=1

s[n]cdn
S[n]

(4)

As previously mentioned, the inaccurate pre-fetching process
results in inefficient usage of P2P resources. P2P segments, denoted
as K , may be pre-fetched inm different qualities. However, only
one quality will be useful and will be requested by the player, while
the other m − 1 qualities are overhead and useless for the peer.
Nevertheless, some of these unused segments might be requested
by other peers, and the rest is not used by any of the peers. We note
s[k]p2p the P2P data of the useful quality, s[k]p2p the P2P data of all
the useless qualities for one peer that are used by peers and s[k]

p2p
the P2P data of all the useless qualities of one peer that are unused
by any of the peers. Therefore, the total P2P data per segment k is
measured as it is shown in (5).

P2P[k] = s[k]p2p + s[k]p2p + s[k]p2p (5)

The Peer Efficiency, as calculated in (6), reports the average
useful P2P data over the total P2P data of K segments. And the last
P2P metric, Peer-Pool-Efficiency, is the average of the reused P2P
data over the total P2P data, for K P2P segments as shown in (7).

PeerE f f iciency =
1
K

K∑
k=1

s[k]p2p

P2P[k]
(6)

PeerPoolE f f iciency =
1
K

K∑
k=1

s[k]p2p

P2P[k]
(7)

7 RESULTS AND DISCUSSIONS
In this section, we evaluate the performance of four state of the
art ABR algorithms: BBA, BOLA, PANDA and CONVENTIONAL
(denoted as CONV ). For each algorithm we used the default sug-
gested parameters as shown in Table 2. The used scenarios are:
CDN-only is the normal CDN-based streaming with no P2P stream-
ing,NoDel is a normal hybrid CDN/P2P streaming without applying
any of the Response-Delay methods. BufDel is a hybrid CDN/P2P
scenario using the BufDel approach described in part 5.2.1 and the

59



Enabling adaptive bitrate algorithms in hybrid CDN/P2P networks MMSys’20, June 8–11, 2020, Istanbul, Turkey

last scenario NetDel is a hybrid CDN/P2P scenario using the NetDel
method described in part 5.2.2.

7.1 Non-conservative throughput-based
algorithms

The non-conservative throughput-based ABR algorithms, e.g. CON-
VENTIONAL, choose the bitrates aggressively by following the
measured bandwidth closely.

0 100 200 300 400 500

Time (s)

Downloaded from CDN

Downloaded from P2P

CDN Bandwidth

Encoded Bitrates

Buffer Levels

0 200 400 600 800 1000

Time (s)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

B
it

ra
te

 (
M

b
p

s
)

(a) Bitrate selection for NoDel

0 200 400 600 800 1000

Time (s)

5

10

15

20

25

30

B
u

ff
e
r 

L
e
v
e
l 
(s

)

(b) Buffer level for NoDel

0 200 400 600 800 1000

Time (s)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

B
it

ra
te

 (
M

b
p

s
)

(c) Bitrate selection for BufDel

0 200 400 600 800 1000

Time (s)

0

5

10

15

20

25

30

B
u

ff
e
r 

L
e
v
e
l 
(s

)

(d) Buffer level for BufDel

0 100 200 300 400 500 600

Time (s)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

B
it

ra
te

 (
M

b
p

s
)

(e) Bitrate selection for NetDel

0 100 200 300 400 500 600

Time (s)

0

5

10

15

20

25

30

B
u

ff
e
r 

L
e
v
e
l 
(s

)

(f) Buffer level for NetDel

Figure 4: Conventional’s bitrate selection and buffer level
for NoDel, BufDel, NetDel scenarios

Looking at Figure 4 which compares the bitrate selection and
the buffer levels of CONVENTIONAL for the NoDel, BufDel and
NetDel scenarios, we see that for NoDel scenario, whenever a P2P
segment is fetched from P2P cache, the ABR overestimates the
bandwidth. Therefore, it stays on the highest quality for some time
before re-adapting again. Meanwhile, if the current bandwidth can
not sustain this quality, as shown in Figure 4a, the playout buffer
depletes to a low level causing re-buffering, as clearly shown in
Figure 4b. Unfortunately, for BufDel, the same problem repeats,
but only when the buffer level is low, and some P2P segments are
fetched from the P2P cache (looking at 10s, 270s in Figure 4c and
Figure 4d): these segments are still delivered fast, causing the same
problem as previously discussed with NoDel. Interestingly, NetDel
avoids this issue by adapting to the actual bandwidth, as shown
in Figure 4e. NetDel is also more efficient in terms of P2P usage

by giving the system more time to pre-fetch data and complete
segments from P2P, which is not the case for BufDel when the
buffer level is low (fast response time hence less time to complete
pre-fetch of next segment).

Also, it should be noticed that when the rebuffering occurs more
often, it causes longer playout time, as it is seen when looking at
the x-axis of figures 4a, 4b, 4c and 4d (1000s nearly) compared to
the one from figures 4e and 4f (600s).

7.2 Conservative throughput-based algorithms
The conservative throughput-based algorithms, such as PANDA,
adapt to the estimated bandwidth gradually, i.e. wait for some time
before switching the video quality.

0 100 200 300 400 500

Time (s)

Downloaded from CDN

Downloaded from P2P

CDN Bandwidth

Encoded Bitrates

Buffer Levels

0 100 200 300 400 500 600

Time (s)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

B
it

ra
te

 (
M

b
p

s
)

(a) Bitrate selection for NoDel

0 100 200 300 400 500 600

Time (s)

0

5

10

15

20

25

30

35

B
u

ff
e
r 

L
e
v
e
l 
(s

)

(b) Buffer level for NoDel

0 100 200 300 400 500 600

Time (s)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

B
it

ra
te

 (
M

b
p

s
)

(c) Bitrate selection for BufDel

0 100 200 300 400 500 600

Time (s)

0

5

10

15

20

25

30

B
u

ff
e
r 

L
e
v
e
l 
(s

)

(d) Buffer level for BufDel

0 100 200 300 400 500 600

Time (s)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

B
it

ra
te

 (
M

b
p

s
)

(e) Bitrate selection for NetDel

0 100 200 300 400 500 600

Time (s)

0

5

10

15

20

25

30

B
u

ff
e
r 

L
e
v
e
l 
(s

)

(f) Buffer level for NetDel

Figure 5: PANDA’s bitrate selection and buffer level for
NoDel, BufDel, NetDel scenarios

When it comes to NoDel, PANDA shows to be resilient even
when P2P segments are delivered fast. It gradually smooths the
bandwidth estimation and adapts accordingly (see Figure 5a, 5b).
However, BufDel brings a different problem in terms of bandwidth
underestimation. The quality is clearly lower when looking at Fig-
ure 5c, in particular when many consecutive P2P segments are
delivered nearly at the same average bitrate: PANDA loses tracking
of the actual bandwidth and requests the same quality for a long
time, until receiving some CDN segments. This problem may also
happen with the non-conservative throughput algorithms, however,

60



MMSys’20, June 8–11, 2020, Istanbul, Turkey Yousef, et al.

they recover faster whenever a new CDN segment is downloaded.
This problem has less influence when applying NetDel. The only
drawback of this technique is its relying on the last CDN measure-
ments using (1). In a scenario (as the one shown in Figure 5e) where
the measured P2P bandwidth and the last measured CDN band-
width are both low, NetDel will target a low bandwidth, making
the ABR lowers the quality as well. This behavior persists as long
as the current P2P bandwidth is low, and the requested segments
are delivered from P2P cache.

7.3 Buffer-based algorithms
We extend our evaluation to buffer based algorithms, illustrated
with BBA in this section.

44

B
u

ff
er

 L
ev

el
 (

s)

Downloaded from CDN

Downloaded from P2P

CDN Bandwidth

Encoded Bitrates

Buffer Levels

Buffer thresholds

0 100 200 300 400 500 600

Time (s)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

B
it

ra
te

 (
M

b
p

s
)

(a) Bitrate selection for NoDel

0 100 200 300 400 500 600

Time (s)

0

5

10

15

20

25

30

B
u

ff
e
r 

L
e
v
e
l 
(s

)

(b) Buffer level for NoDel

0 100 200 300 400 500 600

Time (s)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

B
it

ra
te

 (
M

b
p

s
)

(c) Bitrate selection for BufDel

0 100 200 300 400 500 600

Time (s)

0

5

10

15

20

25

30

B
u

ff
e
r 

L
e
v
e
l 
(s

)

(d) Buffer level for BufDel

0 100 200 300 400 500 600

Time (s)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

B
it

ra
te

 (
M

b
p

s
)

(e) Bitrate selection for NetDel

0 100 200 300 400 500 600

Time (s)

0

5

10

15

20

25

30

B
u

ff
e
r 

L
e
v
e
l 
(s

)

(f) Buffer level for NetDel

Figure 6: BBA’s bitrate selection and buffer level for NoDel,
BufDel, NetDel scenarios

With NoDel, BBA is shown to be less influenced by the rebuffer-
ing (see Figure 6b) since it adapts to the buffer occupancy directly.
But when looking at Figure 6a, another interesting issue of frequent
quality switches appears. In that scenario, the BBA buffer thresh-
olds are 13.4, 15.38, 17.93, 22.04 and 26.99 seconds. At time 23.1s
the buffer level is 10.8s, the player receives 4 seconds of two con-
secutive P2P segments of 0.59Mbps. The buffer then grows to 14.8s,
crossing the threshold at which the player switches to 1.032 Mbps.
The next segment of 1.032 Mbps is not available in P2P cache, so it
is requested from CDN, and it takes almost 3.9s to be downloaded.

Meanwhile, the buffer depletes to 10.9s, crossing the threshold and
switching back to 0.59Mbps. Then at 27s, it again receives another
two P2P segments and switches up to 1.032 Mbps. Thus, the cycle
repeats whenever P2P segments are received fast while the actual
bandwidth can not sustain the up switches. Unfortunately, BufDel
does not help in avoiding these oscillations, as shown in Figure
6c. Indeed, when BufDel detects a low buffer level, it accelerates
the delivery of P2P segments, making the buffer level cross the
switching thresholds back and forth again. Contrary to NoDel and
BufDel, NetDel copes with this problem by adjusting the delivery
speed of P2P segments to the current bandwidth measurements,
but at the cost of a lower bitrate (see Figure 6e and 6f).

7.4 Results with normal high network profiles
To gain more insightful results, we also evaluate the behavior of our
proposals with a normal high network profile where the bandwidth
conditions are not so extreme and high enough to sustain at least
the highest two qualities.

0 100 200 300 400 500

Time (s)

Downloaded from CDN

Downloaded from P2P

CDN Bandwidth

Encoded Bitrates

Buffer Levels

0 100 200 300 400 500 600

Time (s)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

B
it

ra
te

 (
M

b
p

s
)

(a) Bitrate selection for NoDel

0 100 200 300 400 500 600

Time (s)

0

5

10

15

20

25

30

B
u

ff
e
r 

L
e
v
e
l 
(s

)

(b) Buffer level for NoDel

0 100 200 300 400 500 600

Time (s)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

B
it

ra
te

 (
M

b
p

s
)

(c) Bitrate selection for BufDel

0 100 200 300 400 500 600

Time (s)

0

5

10

15

20

25

30

B
u

ff
e
r 

L
e
v
e
l 
(s

)

(d) Buffer level for BufDel

0 100 200 300 400 500 600

Time (s)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

B
it

ra
te

 (
M

b
p

s
)

(e) Bitrate selection for NetDel

0 100 200 300 400 500 600

Time (s)

0

5

10

15

20

25

30

B
u

ff
e
r 

L
e
v
e
l 
(s

)

(f) Buffer level for NetDel

Figure 7: CONV’s bitrate selection and buffer level forNoDel,
BufDel, NetDel scenarios with a normal high trace

Starting with CONV algorithm, the fast delivery of P2P segments
does not seem to be a problem with the high bandwidth, see Figure
7a and Figure 7b, it rather improves both of the QoE and the P2P
efficient usage. The problem of BufDel leading the ABR to select
the same quality for long time, reappears obviously in Figure 7c

61



Enabling adaptive bitrate algorithms in hybrid CDN/P2P networks MMSys’20, June 8–11, 2020, Istanbul, Turkey

again as long as the P2P segments are pre-fetched and delivered
at nearly the same average bitrate. With NetDel, looking at Figure
7e, we can see that the bitrate selection follows the bandwidth
variations closely, sacrificing the QoE in terms of less average rate
and a higher track switches comparing to NoDel scenario.

0 100 200 300 400 500

Time (s)

Downloaded from CDN

Downloaded from P2P

CDN Bandwidth

Encoded Bitrates

Buffer Levels

0 100 200 300 400 500 600

Time (s)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

B
it

ra
te

 (
M

b
p

s
)

(a) Bitrate selection for NoDel

0 100 200 300 400 500 600

Time (s)

0

5

10

15

20

25

30

B
u

ff
e
r 

L
e
v
e
l 
(s

)

(b) Buffer level for NoDel

0 100 200 300 400 500 600

Time (s)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

B
it

ra
te

 (
M

b
p

s
)

(c) Bitrate selection for BufDel

0 100 200 300 400 500 600

Time (s)

0

5

10

15

20

25

30

B
u

ff
e
r 

L
e
v
e
l 
(s

)

(d) Buffer level for BufDel

0 100 200 300 400 500 600

Time (s)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

B
it

ra
te

 (
M

b
p

s
)

(e) Bitrate selection for NetDel

0 100 200 300 400 500 600

Time (s)

0

5

10

15

20

25

30

B
u

ff
e
r 

L
e
v
e
l 
(s

)

(f) Buffer level for NetDel

Figure 8: PANDA’s bitrate selection and buffer level for
NoDel, BufDel, NetDel scenarios with a normal high trace

For PANDA, the bitrate selection (Figure 8c and 8e) shows that
the response delay does not affect the conservative adaptation of
PANDA, whereas with NoDel, the bandwidth overestimation breaks
this conservative approach. Finally, we can see that BBAwith NoDel
manages to keep the maximum buffer level by receiving the P2P
segments fast, and therefore stays at the highest quality for a longer
duration compared to BufDel and NetDel, for which the delayed
delivery of P2P segments results in consuming more buffer and
therefore switching to lower qualities.

7.5 All metrics evaluation
We further evaluate the performance of the two proposed approaches
over the combination of QoE and P2P metrics introduced in Section
6.2. All the results are averaged over all peers and all different 3G
traces except for P2P metrics, for which the first peer, which is
connected to CDN link only, was excluded.

44

B
u

ff
er

 L
ev

el
 (

s)

Downloaded from CDN

Downloaded from P2P

CDN Bandwidth

Encoded Bitrates

Buffer Levels

Buffer thresholds

0 100 200 300 400 500 600

Time (s)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

B
it

ra
te

 (
M

b
p

s
)

(a) Bitrate selection for NoDel

0 100 200 300 400 500 600

Time (s)

0

5

10

15

20

25

30

B
u

ff
e
r 

L
e
v
e
l 
(s

)

(b) Buffer level for NoDel

0 100 200 300 400 500 600

Time (s)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

B
it

ra
te

 (
M

b
p

s
)

(c) Bitrate selection for BufDel

0 100 200 300 400 500 600

Time (s)

0

5

10

15

20

25

30

B
u

ff
e
r 

L
e
v
e
l 
(s

)

(d) Buffer level for BufDel

0 100 200 300 400 500 600

Time (s)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

B
it

ra
te

 (
M

b
p

s
)

(e) Bitrate selection for NetDel

0 100 200 300 400 500 600

Time (s)

0

5

10

15

20

25

30

B
u

ff
e
r 

L
e
v
e
l 
(s

)

(f) Buffer level for NetDel

Figure 9: BBA’s bitrate selection and buffer level for NoDel,
BufDel, NetDel scenarios with a normal high trace

7.5.1 QoE metrics. Starting with the average rate metric, shown
in Figure 10a, both approaches improve the average quality com-
pared to the CDN-only scenario. As expected, BufDel gains more
average quality compared to NetDel for buffer-based algorithms
(BBA and BOLA) and non-conservative throughput algorithms
(CONVENTIONAL) because of its effects on the responsiveness of
these algorithms (as documented in sections 7.1 and 7.3). Regarding
the stability (the number of quality switches), Figure 10b, NetDel
achieves the same stability as the one achieved by CDN-only for all
algorithms but CONVENTIONAL, which is more sensitive to the
bandwidth changes. The same result is observed for smoothness,
as shown in Figure 10c: the transitions between the video qualities
are almost as smooth as those using CDN-only, whereas NetDel is
slightly better than BufDel since the latter still faces the fast deliv-
ery and the bandwidth over-estimation issue, in particular when
the buffer level is low. For consistency, Figure 10d, all algorithms
for all scenarios gain the same score except for CONVENTIONAL,
where NetDel registers a significant improvement (up to 55%) to
the normal P2P scenario; this is mostly gained from resolving the
bandwidth overestimation issue. The same results are observed for
continuity (number of the re-buffering events), Figure 10e, with up
to 30% improvement for CONVENTIONAL when applying NetDel
compared to NoDel.

62



MMSys’20, June 8–11, 2020, Istanbul, Turkey Yousef, et al.

BBA BOLA PANDA CONV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
ve

ra
g

e 
ra

te

(a) Average rate

BBA BOLA PANDA CONV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
ta

b
ili

ty

(b) Stability

BBA BOLA PANDA CONV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
m

o
o

th
n

es
s

(c) Smoothness

BBA BOLA PANDA CONV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o

n
si

st
en

cy

(d) Consistency

BBA BOLA PANDA CONV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o

n
ti

n
u

it
y

(e) Continuity

BBA BOLA PANDA CONV
0

0.1

0.2

0.3

0.4

0.5

0.6

P
2P

 O
ff

lo
ad

(f) P2P offload

BBA BOLA PANDA CONV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ee

r 
E

ff
ic

ie
n

cy

(g) Peer efficiency

BBA BOLA PANDA CONV
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ee

r 
P

o
o

l E
ff

ic
ie

n
cy

(h) Peer Pool efficiency

0.5

CDN-only NoDel BufDel NetDel

Figure 10: Results for QoE and P2P metrics with 95% confidence intervals using the 3G network profiles

63



Enabling adaptive bitrate algorithms in hybrid CDN/P2P networks MMSys’20, June 8–11, 2020, Istanbul, Turkey

7.5.2 P2Pmetrics. Regarding the P2Pmetrics, NetDel shows higher
improvement on the P2P Offload, as shown in Figure 10f, compared
to NoDel and BufDel. Looking at Figure 10g, we can see that both
BufDel and NetDel have better results on the peer efficiency com-
pared to NoDel for BBA, BOLA and PANDA, with NetDel being the
best. However, for CONVENTIONAL this metric is lower compared
to NoDel; this is expected for NoDel since CONVENTIONAL does
not switch often between qualities but it rather stays longer at the
highest quality, leading to less quality switches-related overhead,
which in turn means a higher peer efficiency. The same result is
observed for peer pool efficiency, Figure 10h, where NetDel shows
a better sharing of the overhead segments to other peers for all the
ABRs except CONVENTIONAL (again, for the same reason of less
overhead due to quality switches).

7.6 Commercial Service Trials
To verify our work with unknown ABR algorithms, we tested the
two proposed methodologies in existing commercial streaming
services, thanks to STREAMROOT technology providing the P2P
backend. The trials were conducted with various HTML5 video
players implementing their own, different ABR algorithms. The
scenarios CDN-only and NoDel were omitted in these trials because
of their bad P2P efficiency and QoE drawbacks on the users and the
customers, they are not suited for commercial services.We therefore
only compare the BufDel and NetDel with what we observed in our
simulations. We launched the test for one day, with an overall range
of 5k to 15k concurrent peers participating. The service provider
used 3 different live streams, segmented into 10-second segments,
and encoded in a different set of bitrates: [2.2, 1.2, 0.94, 0.446], [1,
0.796, 0.446] and [1.248, 0.698, 0.348] (Mbps). In this comparison,
and to ease the data collection, we used some common production
metrics, collected per 2 minutes intervals, and averaged over the
whole session. These metrics are: the average rate in Mbps, the
average number of quality switches per minute (CPM), the average
number of experienced re-buffering events per minute (CPM), the
average re-buffering duration, the ratio of the time spent on the
maximum quality over the whole session (TRmax) and the ratio of
the useful P2P data over the total downloaded data. Table 3 shows
the comparison of BufDel and NetDel regarding these metrics. The
overall results show that NetDel is slightly better in terms of quality
switches and P2P efficiency. It also has a lower re-buffering duration
but with a slightly higher number of re-buffering events. On the
other hand, BufDel increases the average bitrate (per minute), and
it stays longer on the highest quality. This is consistent with our
simulation results.

8 CONCLUSION
In this work, we discussed the main problems related to the usage
of existing ABR algorithms in hybrid CDN/P2P networks. We also
proposed Response-Delay, a novel algorithm ensuring the compati-
bility of existing ABR algorithms with P2P networks. We evaluated
the performance of two methods, BufDel and NetDel, using four
state-of-the-art ABR algorithms, over a set of network profiles. We
also introduced two new metrics to quantify the P2P efficiency of
our proposal. Finally, we tested our proposal on unknown ABR al-
gorithms in a realistic scenario. Our results show that our proposal

Table 3: Commercial Service Trials

Metric
Method

BufDel NetDel

Avg rate (Mbps) 1.183 1.173

Avg track switches (CPM) 0.117 0.115

Avg rebuffering events (CPM) 0.088 0.094

Rebuffering Duration (s) 6.75 6.43

TRmax % 88.90 87.29

P2P offload % 46.50 46.55

enables the work of these different ABR algorithms in P2P networks
while keeping a good QoE and P2P efficiency. Both simulation and
realistic tests show that choosing between the two approaches of
Response-Delay is a trade-off: NetDel is recommended for a cost-
efficient (more P2P), stable and smooth streaming, whereas BufDel
is recommended when the average quality is more important than
the cost-efficiency and the stability of the streaming. We plan to
expand this work to further test Response-Delay with other ABR
algorithms and under low latency conditions.

REFERENCES
[1] [n. d.]. Adobe HTTP Dynamic Streaming. http://www.adobe.com/products/hds-

dynamic-streaming.html
[2] [n. d.]. Apple HTTP Live Streaming. https://developer.apple.com/resources/http-

streaming
[3] [n. d.]. Microsoft Smooth Streaming. http://www.iis.net/downloads/microsoft/

smooth-streaming
[4] A.Beben1, P.Wiśniewski, J. Mongay Batalla, and P.Krawiec. [n. d.]. ABMA+ :

lightweight and efficient algorithm for HTTP adaptive streaming. In Proceedings
Int. ACM Conference on Multimedia Systems (MMSys).

[5] Stephanos Androutsellis-Theotokis and Diomidis Spinellis. 2004. A survey of
peer-to-peer content distribution technologies. ACM Computing Surveys (CSUR)
36 (December 2004), 335–371. Issue 4.

[6] Joachim Bruneau-Queyreix, Mathias Lacaud, Daniel Négru, Jordi Mongay Batalla,
and Eugen Borcoci. 2018. Adding a New Dimension to HTTP Adaptive Streaming
Through Multiple-Source Capabilities. IEEE MultiMedia 25 (2018), 65–78. Issue 3.

[7] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Animesh Nandi, Antony
Rowstron, and Atul Singh. 2003. SplitStream: High-Bandwidth Content Distribu-
tion in Cooperative Environments. In Peer-to-Peer Systems II, M. Frans Kaashoek
and Ion Stoica (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 292–303.

[8] Cisco. 2019. Cisco Visual Networking Index: Forecast and Methodology, 2017
-2022. White Paper (February 2019).

[9] Tran Thi Thu Ha, Jinsul Kim, and Jiseung Nam. 2017. Design and Deployment of
Low-Delay Hybrid CDN–P2P Architecture for Live Video Streaming Over the
Web. Wireless Personal Communications 94, 3 (01 Jun 2017), 513–525.

[10] Yang hua Chu, S.G. Rao, S. Seshan, and Hui Zhang. 2002. A case for end system
multicast. IEEE Journal on Selected Areas in Communications 20 (October 2002),
1456 – 1471.

[11] Qi Huang, Hai Jin, and Xiaofei Liao. 2007. P2P Live Streaming with Tree-Mesh
based Hybrid Overlay. 2007 International Conference on Parallel Processing Work-
shops (ICPPW 2007) (September 2007).

[12] Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell, and Mark
Watson. 2014. A buffer-based approach to rate adaptation: evidence from a large
video streaming service. In Proceedings of the 2014 ACM conference on SIGCOMM.
Chicago, Illinois, USA.

[13] Kyung-Wook Hwang, Vijay Gopalakrishnan, Rittwik Jana, Seungjoon Lee, Vishal
Misra, Kadangode K Ramakrishnan, and Dan Stuart Rubenstein. 2016. Joint-
family: Adaptive bitrate video-on-demand streaming over peer-to-peer networks
with realistic abandonment patterns. Computer Networks: The International
Journal of Computer and Telecommunications Networking archive 106 (2016), 226–
244.

[14] Junchen Jiang, Vyas Sekar, and Hui Zhang. [n. d.]. Improving Fairness, Eff-
ciency and Stability in HTTP-based Adaptive Video Streaming with FESTIVE. In

64

http://www.adobe.com/products/hds-dynamic-streaming.html
http://www.adobe.com/products/hds-dynamic-streaming.html
https://developer.apple.com/resources/http-streaming
https://developer.apple.com/resources/http-streaming
http://www.iis.net/downloads/microsoft/smooth-streaming
http://www.iis.net/downloads/microsoft/smooth-streaming


MMSys’20, June 8–11, 2020, Istanbul, Turkey Yousef, et al.

IEEE/ACM Transactions on Networking (TON). 326–340.
[15] Theodoros Karagkioules, Cyril Concolato, Dimitrios Tsilimantos, and stefan

Valentin. 2017. A Comparative Case Study of HTTP Adaptive Streaming Algo-
rithms in Mobile Networks, Proceedings of the 27th Workshop on Network and
Operating Systems Support for Digital Audio and Video. In Proceedings of the
27th Workshop on Network and Operating Systems Support for Digital Audio and
Video. Taipei, Taiwan, 1–6.

[16] Theodoros Karagkioules, Georgios S. Paschos, Nikolaos Liakopoulos aand Atil-
lio Fiandrotti, Dimitrios Tsilimantos, and Marco Cagnazzo. [n. d.]. Opti-
mizing Adaptive Video Streaming in Mobile Networks via Online Learning.
arXiv:1905.11705 ([n. d.]).

[17] Zhi Li, Xiaoqing Zhu, Josh Gahm, Rong Pan, Hao Hu, Ali C. Begen, and Dave
Oran. 2014. Probe and Adapt: Rate Adaptation for HTTP Video Streaming At
Scale. IEEE Journal on Selected Areas in Communications 32 (April 2014). Issue 4.

[18] ZhiHui Lu, You Li, Jie Wu, ShiYong Zhang, and YiPing Zhong. 2008. Multi-
PeerCast: A Tree-Mesh-Hybrid P2P Live Streaming Scheme Design and Imple-
mentation Based on PeerCast. 2008 10th IEEE International Conference on High
Performance Computing and Communications (September 2008).

[19] NazaninMagharei and Reza Rejaie. 2006. Understandingmesh-based peer-to-peer
streaming. ACM NOSSDAV ’06.

[20] Maria Luisa Merani and Laura Natali. 2016. Adaptive Streaming in P2P Live
Video Systems: A Distributed Rate Control Approach. ACM Transactions on
Multimedia Computing, Communications, and Applications (TOMM) 12 (2016).
Issue 3.

[21] Masoud Moshref, Reza Motamedi, Hamid R. Rabiee, and Mohammad Khansari.
2008. LayeredCast - a hybrid Peer-to-Peer live layered video streaming protocol.
2008 10th IEEE International Conference on High Performance Computing and
Communications (September 2008).

[22] Ozgur Oyman and Sarabjot Singh. 2012. Quality of experience for HTTP adaptive
streaming services. IEEE Communications Magazine 50 (April 2012), 20–27. Issue
4.

[23] Haakon Riiser, Paul Vigmostad, Carsten Griwodz, and Pål Halvorsen. 2013. Com-
mute path bandwidth traces from 3G networks: analysis and applications. In

ACM MMsys.
[24] Roberto Roverso, Sameh El-Ansary, and Seif Haridi. 2012. SmoothCache: HTTP-

Live Streaming Goes Peer-to-Peer. In NETWORKING 2012, Robert Bestak, Lukas
Kencl, Li Erran Li, Joerg Widmer, and Hao Yin (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 29–43.

[25] Julius Rückert, Osama Abboud, Thomas Zinner, Ralf Steinmetz, and David
Hausheer. 2012. Quality Adaptation in P2P Video Streaming Based on Objective
QoE Metrics. In NETWORKING 2012, Robert Bestak, Lukas Kencl, Li Erran Li,
Joerg Widmer, and Hao Yin (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
1–14.

[26] Michael Seufert, Sebastian Egger, Martin Slanina, Thomas Zinner, Tobias Hoßfeld,
and Phuoc Tran-Gia. 2015. A Survey on Quality of Experience of HTTP Adaptive
Streaming. IEEE Communications Surveys Tutorials 17 (2015), 469–492.

[27] Kevin Spiteri1, Rahul Urgaonkar, and Ramesh K. Sitaraman. 2016. BOLA: Near-
optimal bitrate daptation for online videos. IEEE INFOCOM (April 2016).

[28] Thomas Stockhammer. 2011. Dynamic Adaptive Streaming over HTTP –: Stan-
dards and Design Principles. In Proceedings of the Second Annual ACM Conference
on Multimedia Systems (MMSys ’11). Association for Computing Machinery, New
York, NY, USA, 133–144. https://doi.org/10.1145/1943552.1943572

[29] Truong Cong Thang, Hung Thai Le, and Anh T. Pham. 2014. An Evaluation of
Bitrate Adaptation Methods for HTTP Live Streaming. IEEE Journal on Selected
Areas in Communications (April 2014), 693–705.

[30] Hao Yin Tsinghua, Xuening Liu, Tongyu Zhan, Vyas Sekar, Feng Qiu, Chuang
Lin, Hui Zhang, and Bo Li. 2009. Design and deployment of a hybrid CDN-P2P
system for live video streaming: experiences with LiveSky. MM ’09 Proceedings
of the 17th ACM international conference on Multimedia, 25–34.

[31] Dongyan XuEmail, authorSunil Suresh Kulkarni, Catherine Rosenberg, and
Heung-Keung Chai. 2006. Analysis of a CDN-P2P hybrid architecture for cost
effective streaming media distribution. Multimedia Systems 11 (2006), 383–399.

[32] Xinyan Zhang, Jiangchuan Liu, Bo Li, and Y.-S.P. Yum. 2005. CoolStream-
ing/DONet: a data-driven overlay network for peer-to-peer live media streaming.
IEEE INFOCOM 3 (March 2005), 2102–2111.

65

https://doi.org/10.1145/1943552.1943572

	Abstract
	1 Introduction
	2 Related Work
	2.1 HTTP adaptive streaming algorithms
	2.2 P2P System Architecture
	2.3 Hybrid CDN/P2P video streaming
	2.4 QoE and P2P efficiency evaluation

	3 system model
	4 Challenges of ABR algorithms in P2P networks
	5 Proposed solution: Response-Delay
	5.1 Principle
	5.2  Response-Delay proposals
	5.3  Applying Response-Delay

	6  EXPERIMENTAL EVALUATION
	6.1 Experimental Setup
	6.2 Evaluation Metrics

	7 Results and discussions
	7.1 Non-conservative throughput-based algorithms
	7.2 Conservative throughput-based algorithms
	7.3 Buffer-based algorithms
	7.4 Results with normal high network profiles
	7.5 All metrics evaluation
	7.6 Commercial Service Trials

	8 Conclusion
	References

