
Exploring the Role of Large Centralised Caches in Thermal
Efficient Chip Design

SHOUNAK CHAKRABORTY, NTNU, Norway

HEMANGEE K. KAPOOR, IIT Guwahati, India

In the era of short channel length, Dynamic Thermal Management (DTM) has become a challenging
task for the architects and designers while engineering modern Chip Multi-Processors (CMPs). Ever
increasing demand of processing power along with the developed integration technology produces
CMPs with high power density, which in turn increases effective chip temperature. This increased
temperature leads to increase in the reliability issues for the chip-circuitry with significant increment
in leakage power consumption. Recent DTM techniques apply DVFS or Task Migration to reduce
temperature at the cores, the hottest on-chip components, but often ignore the on-chip hot caches.
To commensurate the high data demand of these cores, most of the modern CMPs are equipped with
large multi-level on-chip caches, out of which on-chip Last Level Caches (LLCs) occupy the largest
on-chip area. These LLCs are accounted for their significantly high leakage power consumption
which can also potentially generate on-chip hotspots at the LLCs similar to the cores. As power
consumption constructs the backbone of heat dissipation, hence, this work dynamically shrinks cache
size while maintaining performance constraint to reduce LLC leakage, primarily. These turned off
cache portions further work as on-chip thermal buffers for reducing average and peak temperature of
the CMP without affecting the computation. Simulation results claim that, at a minimal penalty on
the performance, proposed cache based thermal management having 8MB centralised multi-banked
shared LLC gives around 5∘C reduction in peak and average chip temperature, which are comparable
with a Greedy DVFS policy.

CCS Concepts: � Computer systems organization�Multicore architectures; �Hardware
� Temperature optimization; Power estimation and optimization.

Additional Key Words and Phrases: Cache Memory, Last Level Cache(LLC), Temperature, Thermal

Buffer, Chip Multi-Processors(CMPs), Hotspot, Leakage Power, Dynamic Power, IPC, Reconfigura-

tion Time

ACM Reference Format:
Shounak Chakraborty and Hemangee K. Kapoor. 2019. Exploring the Role of Large Centralised
Caches in Thermal Efficient Chip Design. ACM Trans. Des. Autom. Electron. Syst. 00, 0, Article 00
(May 2019), 29 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

Gradual decrements in Channel Length of modern transistors over the last decade with
ever increasing demand of processing power motivate the chip designers to integrate more

Authors’ addresses: Shounak Chakraborty, Department of Computer Science, NTNU, Trondheim, NO-

7491, Norway, shounak.chakraborty@ntnu.no; Hemangee K. Kapoor, Department of Computer Science and
Engineering, IIT Guwahati, Guwahati, Assam, 781039, India, hemangee@iitg.ac.in.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

1084-4309/2019/5-ART00 $15.00
https://doi.org/10.1145/1122445.1122456

ACM Trans. Des. Autom. Electron. Syst., Vol. 00, No. 0, Article 00. Publication date: May 2019.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

00:2 Chakraborty and Kapoor

CPU cores in a single chip, called as Chip Multi-Processors (CMPs). To commensurate the
high data demand of this set of cores, larger multi-level on-chip caches are integrated in the
same chip, out of which, Last Level Caches (LLCs) occupy the maximum area on the wafer
real estate. In addition, with due increment in circuit complexity, this heavy integration
increases on-chip power density with enough spatial variations. This elevated power density
with spatial variations introduces severe local hotspot problems raising the reliability issues
of the on-chip circuitry, higher cooling costs and significant degradation in performance.
Finding out the most optimal thermal management solution while maintaining performance
is still a challenging task for the researchers and architects [19].

Most of the classical Dynamic Thermal Management (DTM) methods evaluate cores as the
hottest on-chip elements and handle the thermal issues in recent CMPs by considering runtime
system performance [19]. Usually, the recent DTM techniques find out the hottest CPU cores
on-the-fly and reduce their temperature either by (I) DVFS (Dynamic Voltage and Frequency
Scaling), or by (II) migration of task to colder cores [9, 19]. DVFS dynamically scales down
a core’s voltage and frequency settings (V/F settings) to reduce the heat dissipation of
the on-chip circuitry and achieves significant savings in the energy consumption. However,
slowing down a processor core through DVFS degrades computational performance. In recent
past, a plethora of DVFS based works attempted to balance the performance and energy
consumption optimally [5, 15, 18, 27]. Task migration, on the other hand, gathers thermal
sensors’ outputs before migrating tasks from a hotter zone to a relatively colder region.
Depending upon the task’s vitae, migration overheads are taken care while reducing ample
amount of chip temperature [12, 36].

Micro-processors Cache Power

ARM 920T 44%
Strong ARM SA-110 27%
21164 DEC Alpha 25− 30%

Niagra 12%
Niagra2 21%

Alpha 21364 13%
Xeon (Tulsa) 13%

Table 1. Power consumed by on-chip caches with respect to total power consumed by the CMP [44].

On-chip LLCs are often neglected in most of the DTM techniques as they are comparatively
colder on-chip elements [19]; but, larger LLCs can be used to enhance thermal efficiency of
the chip without much aggravation in performance penalty. A recent survey [16] mentioned 30
Kelvin of spatial variations in on-chip cache temperature, which strongly claims the prominent
existence of cache hotspots. Moreover, a significant portion of total power consumption of
modern chips comes from the high leakage power consumed by the LLCs (as given in Table
1), which in turn increases chip temperature. Later in Figure 2 and 3, we report the static
and dynamic power values obtained by running benchmarks on our experimental setup.
As observed, leakage component is very significant compared to dynamic and hence the
temperature of area occupied by cache varies at places. Moreover, temperature increment is
significantly observed in the vicinity of the cores (ref. Figure 1). However, the LLC leakage
consumption can be reduced either by putting some cache portions in turned off mode (called
as Decay Cache), or by putting the cache portion in a low power drowsy state [29, 44]. As
turned off cache portions create on-chip thermal buffers, hence, in this regard, Decay Cache

ACM Trans. Des. Autom. Electron. Syst., Vol. 00, No. 0, Article 00. Publication date: May 2019.

Large Centralised Caches in Thermal Efficient Chip Design 00:3

will be the more promising option to reduce chip temperature. In particular, we attempt to
reduce temperature by targeting turned-off cache banks closer to the cores.
This paper analyses the role of a centralised multi-banked SNUCA LLC (as shown in

Figure 1) in thermal management while maintaining performance. We dynamically resize
LLC to optimally balance performance and chip temperature by offering two levels of thermal
management-(i) controlling cache temperature, and (ii) reducing temperature of the global
hotspots by governing on-chip conductive heat transfer. The turned off cache banks are
eventually cooled down, and create on-chip thermal buffers that reduce temperature of the
adjacent on-chip components (other banks and/or cores). The major contributions of this
paper can be summarised as follows:

(1) Considering performance as a system-wide constraint, we have developed an analytical
model for our architecture to determine the optimal cache size.

(2) The analytically determined optimal cache size is used for resizing LLC by following
the three thermal efficient patterns-
∙ AltRow. Shuts down alternate rows of cache banks.
∙ Chess. Generates a chessboard or checkerboard like pattern in LLC, with two colours.
One of the colour will represent prospective shutdown candidates.

∙ OptTar. Cache banks closer to cores are assigned highest shutdown priority. Ad-
ditionally, future requests of the turned off cache banks are optimally handled, as
more cache portions are turned off than earlier methods.

In case of caches, heavily used blocks can generate cache hotspots, whereas least used
cache portions unnecessarily increase the leakage consumption contributing to the chip
temperature. Furthermore, in case of some modern applications, cache access patterns do not
conform to the classical cache access property, (the Locality of Reference), in the long run.
These existing diversities in cache access behaviour across the applications shows necessity
for dynamic cache resizing.

56 57 58 59

48 49 50 51

40 41 42 43

32 33 34 35

60 61 62 63

52 53 54 55

44 45 46 47

36 37 38 39

24 25 26 27

16 17 18 19

8 9 10 11

0 1 2 3

28 29 30 31

20 21 22 23

12 13 14 15

4 5 6 7

11 10 9 8

0 1 2 3

7
6

5
4

12
13

14
15

L2 bank

Core with L1
(D & I) caches
 and registers

Fig. 1. Baseline CMP architecture with multi-
banked centralised NUCA L2 as LLC.

sub-title

Core L2_Cache NoC

sub-title

Core L2_Cache NoC

B
la

c
k
1
6

F
lu

id
1
6

Fig. 2. Percentage contributions of the major
on-chip components to the total on-chip power
consumption. All values include both Dynamic
& Static power (for Black16 & Fluid16).

The rest of the paper is organised as follows. Motivation for our work is given in Section
2. We discuss the preliminaries along with analytical formulation of our proposed work
in Section 3. Section 4 states the proposed algorithm with brief elaboration on the issues
towards implementation of dynamic cache resizing. Simulation setup and Analysis of Results
are discussed in Section 5. Before concluding the article in Section 7, available literature are
described in Section 6.

ACM Trans. Des. Autom. Electron. Syst., Vol. 00, No. 0, Article 00. Publication date: May 2019.

00:4 Chakraborty and Kapoor

Fig. 3. L2 Power Values: Dynamic and Static. Fig. 4. Size vs LLC’s Peak Temperature (in ∘C).

2 MOTIVATION

In this section, we discuss the role of LLCs towards the chip temperature. The observations
shown here motivate us to target the LLCs and its reconfiguration to control the chip
temperature.

2.1 Baseline Architecture

The baseline architecture, used in this work (shown in Figure 1), contains 16 homogeneous
CPU cores, which are placed along the periphery of the chip. Each circle in the figure,
numbered from 0 to 15, represents a single core along with its private Data and Instruction
L1 caches. The centrally located shared L2 cache [1] (on-chip LLC in our case) is sliced
set-wise into identical 64 banks, numbered from 0 to 63, called as centralised shared cache.
This set-wise division implies that, all ways of a set are present in the same bank. Note that,
we are using Static NUCA (SNUCA) architecture, where a block is always placed at a fixed
cache set on its every allocation. A 2D mesh Network on Chip (NoC) connects all the L2
banks and the Cores.

2.2 Leakage Hungry LLCs

For our baseline architecture (Figure 1), the total power consumption of the chip can be
divided into three major components: (I) power consumed by the individual cores that
includes processing power along with power consumed by L1 (data & instruction) caches;
(II) power consumed by NoC; and (III) power consumed by the LLC (L2 in our case). Figure
2 depicts power consumption of these major three on-chip components. The power values
include both dynamic as well as static components. However, L2 contributes a significant
portion to the total power consumed by the CMP, for both the applications- Black16
(compute intensive) and Fluid16 (memory intensive). In case of Fluid16, L2 consumes more
(dynamic) power than Black16, but a small increment is noticed, because majority of L2
power is coming from its static (leakage) component 1 (as shown in Figure 3). It can now
be concluded that, leakage power of L2 (as LLC in our case) has become a significant
contributor to the total on-chip power consumption. Note that, these power values are
derived by running a set of PARSEC benchmark applications [4]. Furthermore, independent
to the cache accesses, leakage power that has a circular dependency on temperature can
be reduced by gating the cache banks. So, reducing LLC leakage power by dynamically
resizing it, can be a promising option to reduce chip temperature without affecting the
computational units.

1Breaking up of Core Power by exposing L1 and Computational power consumption individually can show

significant changes across various workloads [37].

ACM Trans. Des. Autom. Electron. Syst., Vol. 00, No. 0, Article 00. Publication date: May 2019.

Large Centralised Caches in Thermal Efficient Chip Design 00:5

2.3 Thermal Potential of the LLCs

Figure 4 shows the changes in peak temperature of LLCs for 4 different sizes. The values are
derived (for a set of PARSEC applications) from our simulation setup discussed later. Peak
temperature of LLC gradually increases with its size and even reaches around 80∘C for a
number of cases. Also observe that, for each of these benchmarks temperature increases with
the cache size indicating the effect of leakage. As larger caches accumulate more transistors,
these in turn increase both leakage as well temperature. These values strongly indicate the
existence of cache hotspots in larger LLCs having size 8MB or more. This phenomenon
motivates us to explore the on-chip thermal efficiency while dynamically resizing larger
LLCs. Also note that, in case of memory intensive applications, cache temperature is higher
than the others, as seen from Figure 4.

Fig. 5. Change in (Normalised) MPKI with re-
spect to Size of LLC.

Fig. 6. Change in (Normalised) IPC with respect
to Size of LLC.

2.4 LLC size vs. Performance

Dynamic cache resizing, on the other hand, can severely retard system performance if the
application’s Working Set Size (WSS) does not fit in the resized cache. We performed a set
of experiments with the same three applications mentioned above for different cache sizes.
The capacity and conflict misses increase with the reduction in cache size, which reduces
system IPC (Instructions Per Cycle) by incurring more memory stall cycles. Figure 5 shows
the change in MPKI (Misses Per Kilo Instructions) while changing cache size from 16MB to
2MB and the corresponding system-wide IPCs are shown in Figure 6. IPC degradation is
7% (for fluid16) while reducing the cache size to 2MB, and this degradation is 5% for 4MB.
However, if the cache is dynamically resized we can have the possibility of using the size as
per application’s requirement. In particular, required cache sizes can be used at different
time slices by keeping an appropriate performance degradation constraint.

(a) black16 (b) body16 (c) fluid16

Fig. 7. Non uniform distribution of cache bank accesses.

ACM Trans. Des. Autom. Electron. Syst., Vol. 00, No. 0, Article 00. Publication date: May 2019.

00:6 Chakraborty and Kapoor

(a) black16 (b) body16 (c) fluid16

Fig. 8. Change in cache bank access behaviour over time.

Runtime Cache Behaviour. The run-time cache accesses across the banks are unevenly
distributed in our multi-banked baseline architecture (Figure 1). Figure 7 shows the distribu-
tion of cache accesses for all 64 banks. The results are shown for three long run applications-
black16, body16 and fluid16, after running them upto consecutive 100 millions of instructions
in our simulation setup. Although cache accesses exploit Locality of Reference, but, in the
case of long running applications, this property violates with respect to bank mappings.
The change in access patterns over long time-span for Black16, Body16 and Fluid16 are
shown in Figure 8. The access patterns are shown along y-axis of the cache banks over the
epochs for Black16, Body16 and Fluid16, respectively. We have taken 5 banks (along the
x-axis) from each of the benchmarks, to show heavily used, moderately used and least used
banks in each epoch. Epochs are implying a time-span of last 10 million cycles, just after
the warmup (Epoch-1), at the middle of execution (Epoch-2), and at the end (Epoch-3).
The figures show that, for all the applications, accesses for a bank are changing for the three
different epochs. A heavily used bank can become a lightly used one later or vice versa.

Finally, from above discussions, following observations can be listed:

(1) Diversity exists in cache access behaviour across the applications with significant
changes during execution.

(2) Locality of Reference with respect to bank id may not be exploited over a long-run.
(3) Access behaviour for the banks are diverse in nature and also changes during execution.

From a performance perspective, these observations indicate cache bank turn-off during less
utility and turn-on when in greater demand.

2.5 Core based vs Cache based Thermal Management

According to the survey [19], both DVFS and Task Migration techniques are promising
options to reduce peak and average temperature but may suffer from performance degradation.
Migrating tasks from a hot core to a colder one incurs idle clock cycles, whereas, slowing
down by DVFS increases the execution time which can violate the overall EDP (Energy
Delay Product) budget. Cache based policies, on the other hand, may increase memory
stalls. But modern CMPs are equipped with the larger caches, hence, reduction in cache size
may not be always performance degradation prone. Thus, cache based methods can assist
in thermal management. They can be used either in isolation or in conjunction with core
based methods. Note that, cache based methods are more effective in case of large LLCs.

ACM Trans. Des. Autom. Electron. Syst., Vol. 00, No. 0, Article 00. Publication date: May 2019.

Large Centralised Caches in Thermal Efficient Chip Design 00:7

3 PRELIMINARIES AND ANALYTICAL PROBLEM FORMULATION

3.1 SRAM: from a Power/Thermal Perspective

Energy consumption of the SRAM cells can be divided as follows:

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝐷𝑦𝑛𝑎𝑚𝑖𝑐 + 𝐸𝑆𝑡𝑎𝑡𝑖𝑐 (1)

𝐸𝐷𝑦𝑛𝑎𝑚𝑖𝑐, the Dynamic energy, is consumed during read or write accesses of the cache
blocks. As writing energy is computed by the similar set of equations like read energy, hence,
only the equations for read accesses are provided here to avoid redundancy. 𝐸𝐷𝑦𝑛𝑎𝑚𝑖𝑐 [24, 31]
for a read access is computed as follows:

𝐸𝑑𝑦𝑛−𝑟𝑒𝑎𝑑 = 𝐸𝑑𝑦𝑛−𝑟𝑒𝑎𝑑−𝑟𝑒𝑞−𝑛𝑒𝑡 + 𝐸𝑑𝑦𝑛−𝑟𝑒𝑎𝑑−𝑑𝑎𝑡𝑎 + 𝐸𝑑𝑦𝑛−𝑟𝑒𝑝−𝑛𝑒𝑡 (2)

Here, 𝐸𝑑𝑦𝑛−𝑟𝑒𝑎𝑑−𝑟𝑒𝑞−𝑛𝑒𝑡 denotes the energy consumption per read request and 𝐸𝑑𝑦𝑛−𝑟𝑒𝑝−𝑛𝑒𝑡

represents the energy consumption for replying a read request. Energy consumption during
accessing data array, i.e. 𝐸𝑑𝑦𝑛−𝑟𝑒𝑎𝑑−𝑑𝑎𝑡𝑎, can be written as follows:

𝐸𝑑𝑦𝑛−𝑟𝑒𝑎𝑑−𝑑𝑎𝑡𝑎 = 𝐸𝑑𝑦𝑛−𝑝𝑟𝑒𝑑𝑒𝑐−𝑏𝑙𝑘𝑠 + 𝐸𝑑𝑦𝑛−𝑑𝑒𝑐−𝑑𝑟𝑖𝑣𝑒𝑟𝑠 + 𝐸𝑑𝑦𝑛−𝑟𝑒𝑎𝑑−𝑏𝑖𝑡𝑙𝑖𝑛𝑒𝑠 + 𝐸𝑑𝑦𝑛−𝑠𝑒𝑛𝑠𝑒𝑎𝑚𝑝𝑠 (3)

The components 𝐸𝑑𝑦𝑛−𝑝𝑟𝑒𝑑𝑒𝑐−𝑏𝑙𝑘𝑠 and 𝐸𝑑𝑦𝑛−𝑑𝑒𝑐−𝑑𝑟𝑖𝑣𝑒𝑟𝑠 imply dynamic energy consump-
tion of predecoder and decoder drivers, respectively. Sense amplifiers’ dynamic energy is
𝐸𝑠𝑒𝑛𝑠𝑒𝑎𝑚𝑝𝑠 whereas dynamic energy for reading bitlines is 𝐸𝑑𝑦𝑛−𝑟𝑒𝑎𝑑−𝑏𝑖𝑡𝑙𝑖𝑛𝑒𝑠.

𝐸𝑆𝑡𝑎𝑡𝑖𝑐, on the other hand, represents static/leakage energy of the SRAM cell, having
direct dependency both upon the running temperature and supply voltage. Modern CMPs
with 32nm or lesser technology are equipped with larger LLCs, which increases on-chip
transistor counts with shorter channel length, inherently increasing the power density and
in turn higher leakage energy consumption. The total leakage energy consumption 𝐸𝑆𝑡𝑎𝑡𝑖𝑐

can be written as follows:

𝐸𝑙𝑒𝑎𝑘−𝑟𝑒𝑎𝑑 = 𝐸𝑙𝑒𝑎𝑘−𝑟𝑒𝑞−𝑛𝑒𝑡 + 𝐸𝑙𝑒𝑎𝑘−𝑑𝑎𝑡𝑎−𝑎𝑟𝑟𝑎𝑦 + 𝐸𝑙𝑒𝑎𝑘−𝑟𝑒𝑝−𝑛𝑒𝑡 (4)

𝐸𝑙𝑒𝑎𝑘−𝑟𝑒𝑞−𝑛𝑒𝑡 and 𝐸𝑙𝑒𝑎𝑘−𝑟𝑒𝑝−𝑛𝑒𝑡 represent leakage energy consumptions for the request
and the reply networks, respectively. Leakage for data array is denoted by 𝐸𝑙𝑒𝑎𝑘−𝑑𝑎𝑡𝑎−𝑎𝑟𝑟𝑎𝑦

which is further divided into predecoder’s leakage, decoder driver’s leakage, sense-amplifier’s
leakage and leakage of memory cells:

𝐸𝑑𝑎𝑡𝑎−𝑎𝑟𝑟𝑎𝑦 = 𝐸𝑙𝑒𝑎𝑘−𝑝𝑟𝑒𝑑𝑒𝑐−𝑏𝑙𝑘𝑠 + 𝐸𝑙𝑒𝑎𝑘−𝑑𝑒𝑐−𝑑𝑟𝑖𝑣𝑒𝑟𝑠 + 𝐸𝑙𝑒𝑎𝑘−𝑚𝑒𝑚−𝑐𝑒𝑙𝑙𝑠 + 𝐸𝑙𝑒𝑎𝑘−𝑠𝑒𝑛𝑠𝑒𝑎𝑚𝑝𝑠 (5)

Increment in cache temperature increases its leakage consumption which can even dominate
the other energy components of the chip [24] (Figure 2). Following equation shows the direct
dependency of leakage upon the running temperature and supply voltage [14]:

𝑃𝑠(𝑡) = 𝐾1𝑉𝐷𝐷(𝑡)𝑇 2(𝑡)𝑒(𝛼𝑉𝐷𝐷(𝑡)+𝛽)/𝑇 (𝑡)) +𝐾2𝑒
(𝛾𝑉𝐷𝐷(𝑡)+𝛿) (6)

𝑃𝑠(𝑡) denotes the static power consumption at time 𝑡 for a CMOS circuit. 𝑉𝐷𝐷 is the
supply voltage and 𝑇 (𝑡) implies the current temperature. 𝐾1,𝐾2, 𝛼, 𝛽, 𝛾 and 𝛿 are empirical
constants which represent different circuit parameters.
The conductive heat transfer from the hotter core part of our baseline architecture will

increase temperature of the nearby LLC banks which in turn increases the cache leakage
consumption. This increased leakage further increases chip temperature and forms a circular
dependency between leakage power and temperature.

ACM Trans. Des. Autom. Electron. Syst., Vol. 00, No. 0, Article 00. Publication date: May 2019.

00:8 Chakraborty and Kapoor

3.2 Core Temperature Modeling

Cores, the hottest on-chip elements, also consume dynamic and static (leakage) powers,
but, unlike caches, core’s dynamic power is higher than its leakage. The dynamic power
consumption of a core 𝐶𝑖, denoted by 𝑃𝐶𝑖

𝑑 (𝑡), at time 𝑡 is directly proportional to its
frequency and supply voltage-

𝑃𝐶𝑖
𝑑 (𝑡) = 𝛼.𝐶𝐶𝑖.𝑉

2
𝐶𝑖(𝑡).𝑓𝐶𝑖(𝑡) (7)

where 𝛼, 𝐶𝐶𝑖, 𝑉𝐶𝑖(𝑡) and 𝑓𝐶𝑖(𝑡) denote activity factor, capacitance, supply voltage and
running frequency of core 𝐶𝑖 at time 𝑡, respectively. The static/leakage power at time 𝑡 has
the similar formula like Equation 6, which shows that, leakage power has direct dependency
on temperature. Again, the temperature of a circuit also increases with the heavy leakage
power consumption. This phenomenon of leakage is called as circular dependency of leakage
on temperature. Authors in [14], have decoupled this circular dependency with the help of
Piece-Wise Linear Approximation of a curve. We adopt this in our thermal model as follows:

𝑃𝐶𝑖
𝑠 (𝑡) = 𝑃𝐶𝑖

𝑠−𝑚𝑖𝑛 + 𝑘𝐶𝑖
𝑇 .𝑇𝐶𝑖(𝑡) + 𝑘𝐶𝑖

𝑣 .𝑉𝐶𝑖(𝑡) (8)

And the core-temperature is modeled as,

𝑇𝐶𝑖(𝑡) = (𝑃 ′𝐶𝑖
𝑑 .𝑉 2

𝐶𝑖(𝑡).𝑓𝐶𝑖(𝑡) + 𝜁𝐶𝑖
𝑣 + 𝑃 ′𝐶𝑖

𝑠).𝑅 (9)

where, 𝑃 ′𝐶𝑖
𝑑 ≜ 𝜁𝐶𝑖

𝑇 .𝑃𝐶𝑖
𝑑 , 𝑃 ′𝐶𝑖

𝑠 ≜ 𝜁𝐶𝑖
𝑇 .𝑃𝐶𝑖

𝑠 and 𝑅 is a system’s constant. 𝜁𝐶𝑖
𝑇 and 𝜁𝐶𝑖

𝑣 are
temperature-leakage coefficient and voltage-leakage coefficient, respectively [14].

3.3 Problem Formulation

This paper basically focuses on reducing chip temperature by decaying/reconfiguring its
on-chip LLC dynamically. Figure 9 shows the internal architectures of our target CMP [1].
The inner grey blocks numbered from 0 to 63 are indicating L2 banks. Power supply is
separated to each bank. Initially, the system starts running and chip temperature increases
as the execution proceeds, until it reaches at its steady state, where dissipation of generated
heat is same with the heat absorption by attached cooling mechanism.

Analytically our problem can be defined as follows. Given the number of (homogeneous)
cores, 𝑁 , and the number of cache banks (of same size), 𝐵. Our problem is to find out the
optimal number of turned on banks (𝑏) for a given performance constraint (𝐶) which can
minimise the running average chip temperature (𝑇𝑚𝑒𝑎𝑛).

Find optimal value for 𝑏(≤ 𝐵), the number of powered on banks, such that,

𝑇𝑚𝑒𝑎𝑛 = 𝑀𝑒𝑎𝑛(𝑇 𝑐
1 , 𝑇

𝑐
2 , ..., 𝑇

𝑐
𝑁 , 𝑇 𝑏

1 , 𝑇
𝑏
2 , ..., 𝑇

𝑏
𝐵) (10)

is minimised, where 𝑇 𝑐
𝑖 is the temperature of core 𝑖 and 𝑇 𝑏

𝑗 is the temperature of L2 bank 𝑗.
Now, our problem is to find out the optimal value of 𝑏 for which our performance constraint
𝐼𝑃𝐶𝑖 ≥ 𝐶 is not violated. Keeping 𝑏 as system wide shared parameter, we formulate another
performance maximisation problem as given below. Maximise

𝐼𝑃𝐶 =
1

𝑁

𝑁∑︁
𝑖=1

𝐼𝑃𝐶𝑖, (11)

subject to,

𝐼𝑃𝐶𝑖 =
𝐼𝐶𝑖

𝐶𝐶𝑖 +𝑀𝐶𝑖(𝑏)
≥ 𝐶. (12)

𝐼𝑃𝐶 is the system wide average 𝐼𝑃𝐶 across the cores with 𝑏 number of L2 banks to
satisfy the above defined constraints. 𝐼𝑃𝐶 at core 𝑖 is represented by 𝐼𝑃𝐶𝑖, which depends

ACM Trans. Des. Autom. Electron. Syst., Vol. 00, No. 0, Article 00. Publication date: May 2019.

Large Centralised Caches in Thermal Efficient Chip Design 00:9

upon the total instruction counts (𝐼𝐶𝑖) of itself, the number of cycles required to perform
computation (𝐶𝐶𝑖) at core 𝑖 and number of memory cycles (𝑀𝐶𝑖) (a function of 𝑏), required
to access L2 (includes both hit and miss cycles). Dynamic cache resizing modifies 𝑏 and in
turn 𝑀𝐶𝑖. The modification details are given in Appendix A, where it is shown how IPC
depends on 𝑏 (ref. Equation 24). We will use this analysis to obtain the optimal number of
cache banks needed to get the desired performance.

3.4 Performance Modeling with Cache Size

Each core’s IPC (𝐼𝑃𝐶𝑖) is directly proportional with its own instruction count (𝐼𝐶𝑖) and
inversely proportional with the total clock cycles required to execute 𝐼𝐶𝑖 at core 𝑖. The total
number of clock cycles is summation of its CPU cycles (𝐶𝐶𝑖) and memory latency (𝑀𝐶𝑖(𝑏)).
Keeping 𝐼𝐶𝑖 and 𝐶𝐶𝑖 as constants, we can say that, 𝐼𝑃𝐶 is a function of 𝐼𝑃𝐶𝑖(𝑏). Equation
11 can be a concave function now, if we vary 𝑏 in the 𝑀𝐶𝑖(𝑏). So, performance improvement
at core 𝑖 can then be written as-

𝑃𝐼𝑖 =
𝜕𝐼𝑃𝐶𝑖(𝑏)

𝜕𝑏
(13)

Values of 𝑃𝐼𝑖 varies with the applications. The estimation of 𝑃𝐼𝑖 at 𝑡 is basically derived
from its value at 𝑡− 1. Performance degradation sets value of 𝑃𝐼𝑖 as negative. As L2 is a
shared resource to all the cores, we can assume a uniform change in 𝑃𝐼𝑖 for all 𝑖.

𝑃𝐼1 = 𝑃𝐼2 = 𝑃𝐼3 = ... = 𝑃𝐼𝑁 (14)

By using Lagrange Multiplier [8], above equation can be proved as:

𝐿𝐹 =
1

𝑁

𝑁∑︁
𝑖=1

𝐼𝑃𝐶𝑖(𝑏) +

𝑁∑︁
𝑖=1

𝜆𝑖(𝐼𝑃𝐶𝑖 − 𝐶) (15)

The first term in the RHS of above equation implies the objective whereas second term
implies the constraints to be satisfied. Equation 15 is maximised when (𝑏, 𝜆1, 𝜆2, ...𝜆𝑁) is
a stationary point, and first order derivative is zero [8]. Note that, 𝜆𝑖 is the 𝑖-th Lagrange
Multiplier for 𝑖-th core and 𝐿𝐹 denotes the Lagrange Function.

𝜕𝐿𝐹 (𝑏, 𝜆1, 𝜆2, ..., 𝜆𝑁)

𝜕(𝑏, 𝜆1, 𝜆2, ..., 𝜆𝑁)
= 0 (16)

This has now formed 𝑁 + 1 equations with 𝑁 + 1 unknowns, and 𝐼𝑃𝐶 maximises when
Equation 14 satisfies and optimal value of 𝑏 can be derived.

3.5 Thermal Model

The temperature of on-chip components are driven by the following factors: (a) the compo-
nent’s own power consumption, (b) heat abduction by the ambient and (c) heat exchange
among the peer components. The temperature of a component 𝑇𝑐𝑜𝑚(𝑡) at time 𝑡 can be
modeled as [38]:

𝑇𝑐𝑜𝑚(𝑡) = 𝑇𝑐𝑜𝑚(𝑡−1)+𝑓𝑔𝑒𝑛(𝑃𝑑𝑦𝑛(𝑡)+𝑃𝑠𝑡(𝑡))−𝑓𝑟𝑒𝑚(𝑇𝑏(𝑡−1)−𝑇𝑎)+

𝑝𝑐𝑜𝑚∑︁
𝑚=1

𝑓𝑡𝑟(𝑇𝑐𝑜𝑚(𝑡−1)−𝑇𝑚(𝑡−1)) (17)

where, 𝑇𝑐𝑜𝑚(𝑡−1) is the temperature of the component 𝑐𝑜𝑚 at time 𝑡−1. 𝑓𝑔𝑒𝑛(𝑃𝑑𝑦𝑛(𝑡)+𝑃𝑠𝑡(𝑡))
denotes the generated temperature due to its power consumption, whereas 𝑓𝑟𝑒𝑚(𝑇𝑏(𝑡−1)−𝑇𝑎)
is the change in temperature due to heat abduction or removal by the ambient, the effective
way of cooling. The last component 𝑓𝑡𝑟(𝑇𝑐𝑜𝑚(𝑡− 1)− 𝑇𝑚(𝑡− 1)) implies the temperature
change due to heat transfer among the peers (𝑝𝑐𝑜𝑚), which obeys the principle of superposition
and reciprocity [38].

ACM Trans. Des. Autom. Electron. Syst., Vol. 00, No. 0, Article 00. Publication date: May 2019.

00:10 Chakraborty and Kapoor

0
0

1

1

2

3

3

2

2 4

4

15

15

14

14

13

13

12

12

5

5 6

6

7

7

11
11

10

10

9

9

8

8

16 17 18 19 20 21 22 23

313024 25 26 27 28 29

32 33 34 35 36 37 38 39

4746454443424140

48 49 50 51 52 53 54 55

6362616059585756

Data
Cache

Inst.
Cache

Reg.

Router

Core
8

Cache Ways

C
ac

h
e

S
et

s

Router

Power
Supply

Bank 23

Fig. 9. Internals of our baseline CMP.

Fig. 10. Relationship between IPC and Cache Size.

Before modeling temperature for our CMP (ref. Figure 9), we divided the whole CMP
into three zones - (i) the core area, for which the thermal status depends on other adjacent
core blocks and the neighbouring cache banks; (ii) the cache banks adjacent to the cores,
where heat exchanges between the core blocks and the peer cache banks; and (iii) other
cache banks, where heat flows only among the cache banks. Therefore, the temperature of
a core block (𝐶), the bank (𝑀) adjacent to core and a inner bank (𝐼) at time 𝑡 can be
modeled respectively, as-

𝑇𝐶(𝑡) = 𝑇𝐶(𝑡−1)+𝑓𝑔𝑒𝑛(𝑃𝑑𝑦𝑛(𝑡)+𝑃𝑠𝑡(𝑡))−𝑓𝑟𝑒𝑚(𝑇𝐶(𝑡−1)−𝑇𝑎)+

𝑝𝐶+𝑝𝐵∑︁
𝑚=1

𝑓𝑡𝑟(𝑇𝐶(𝑡−1)−𝑇𝑚(𝑡−1)) (18)

𝑇𝑀 (𝑡) = 𝑇𝑀 (𝑡−1)+𝑓𝑔𝑒𝑛(𝑃𝑑𝑦𝑛(𝑡)+𝑃𝑠𝑡(𝑡))−𝑓𝑟𝑒𝑚(𝑇𝑀 (𝑡−1)−𝑇𝑎)+

𝑝𝐶+𝑝𝐵∑︁
𝑚=1

𝑓𝑡𝑟(𝑇𝑀 (𝑡−1)−𝑇𝑚(𝑡−1)) (19)

ACM Trans. Des. Autom. Electron. Syst., Vol. 00, No. 0, Article 00. Publication date: May 2019.

Large Centralised Caches in Thermal Efficient Chip Design 00:11

𝑇𝐼(𝑡) = 𝑇𝐼(𝑡− 1) + 𝑓𝑔𝑒𝑛(𝑃𝑑𝑦𝑛(𝑡) + 𝑃𝑠𝑡(𝑡))− 𝑓𝑟𝑒𝑚(𝑇𝐼(𝑡− 1)− 𝑇𝑎) +

𝑝𝐵∑︁
𝑚=1

𝑓𝑡𝑟(𝑇𝐼(𝑡− 1)− 𝑇𝑚(𝑡− 1)) (20)

The notations have their usual meaning as given in equation 17. 𝑝𝐶 denotes the number
of peer core blocks and 𝑝𝐵 is the number of adjacent cache banks for the corresponding
element whose temperature is being modeled. We further modify equation 18 by replacing
𝑓𝑝 with the power consumption parameters for a core of Equation 9 as follows:

𝑇𝐶(𝑡) = 𝑇𝐶(𝑡−1)+(𝑃 ′
𝑑
𝐶
.𝑉𝐶

2(𝑡).𝑓𝐶(𝑡)+𝜁𝐶𝑣 +𝑃 ′
𝑠
𝐶
).𝑅−𝑓𝑎(𝑇𝐶(𝑡−1)−𝑇𝑎)+

𝑝𝐶+𝑝𝐵∑︁
𝑚=1

𝑓𝑐(𝑇𝐶(𝑡−1)−𝑇𝑚(𝑡−1))

(21)

We use the insight gained from these zone based temperature variations to decide locations
of cache banks as candidates for shutting down. In particular, we propose and analyse three
different patterns (given in Section 4.2).

3.6 Combined Analytics

Shutting down of a cache bank will make 𝑓𝑔𝑒𝑛(𝑃𝑑𝑦𝑛(𝑡) + 𝑃𝑠𝑡(𝑡)) = 0 in Equations 20 and
19. When power consumption for a block is zero, its temperature will only depend upon
the ambient temperature (𝑇𝑎) and the temperature of its peers. Zero power consumption
over a long time-span will retard the temperature increment rate and gradually the block
will cool down. More temperature difference with colder (power gated) peers will increase
conductive heat transfer from the hotter powered-on block to the colder peers, and eventually
temperature of the powered-on block will also reduce. Therefore, output of 𝑓𝑡𝑟 in Equations
18, 19 and 20 will produce smaller values and will reduce temperatures of cores along with
the cache area. Hence, it can be concluded that, the mean temperature of the chip will be
reduced more by gating more number of cache banks at appropriate locations.

On the other hand, drastic reduction in the cache size curtails the performance by incurring
more number of cache misses. According to section 3.4, performance has been maximised
based on the available number of cache banks for a given performance constraint. To show
the effectiveness of our theoretical model we assume a CMP having a uniform execution
pattern, i.e., same number of instructions are executed by each of the cores and all cache
banks are assigned with uniform workload. Now, while dynamically reducing cache size our
model must satisfy the Equation 14 for maximising performance with the available cache
size. Moreover, cache size reduction through power gating increases both the miss rate and
the NoC latency while accessing the target banks.

3.7 Finding out Optimal 𝑏

According to the equations 12 and 13, IPC of a core will be affected if the cache capacity
changes. This is reflected in the component 𝑀𝐶𝑖(𝑏) in the equations that represents the
memory access latency. As derived in Appendix A, this latency depends on the number of
cache misses, the available number of cache banks, off chip access delay and delay incurred
for redirected requests to target banks.

Benchmarks Body Fluid Freq Vips Black16 Body16 Fluid16 Swap16

%-age fluctuation 2.14 1.12 1.92 2.46 1.58 1.09 2.36 1.92

Table 2. Maximum %-age of IPC fluctuation over the intervals for baseline architecture.

ACM Trans. Des. Autom. Electron. Syst., Vol. 00, No. 0, Article 00. Publication date: May 2019.

00:12 Chakraborty and Kapoor

(a) AltRow (b) Chess

1 2 3

4

0

5 6 7

8 9 10 11

12 13 14 15

(c) OptTar

Fig. 11. L2 bank Shutdown patterns.

Our aim is to shutdown cache banks to control temperature while keeping IPC under a
given constraint. In other words, we have to put a limit on the banks that can be shutdown
in order to remain under the given IPC constraint. The number of banks required by an
application to maintain its performance is dependent on its WSS. As WSS varies across
the applications, hence, it is difficult to arrive at an optimal number of banks to be kept
powered-on. We therefore obtain the value of IPC for different number of cache banks for
all benchmark programs (ref. Sec. 5). Then by applying linear regression on the obtained
values we plot the trend of IPC w.r.t. the number of cache banks, as shown in Figure
10. In this Figure, for memory intensive processes like freq, fluid and fluid16, the slope is
higher, and for compute intensive processes like swap16, vips, values are above the derived
line. For mixed load like body, body16 it is almost with the average line derived from the
regression. But, for black16, a compute intensive large workload, it is also close to the line,
due to higher NoC overhead after shutting down some banks. Practically, in case of black16,
turning off more banks has increased the distances between some heavily used cores and
their frequently accessed LLC blocks. Note that, for this experiment, we decided 8 fixed
target banks (with static remapping) at the central location of the chip. However, using this
plot, we further fixed up the value of 𝑏 (#banks to be kept ON) for a given value of IPC
degradation. Additionally, IPC fluctuates for a set of multi-threaded applications as the
execution proceeds. But, it is evident from our experiments that, for PARSEC applications,
this fluctuation is lesser than 2.5% for our set of applications in baseline architecture. Hence,
reflected IPC degradation that is more than 2.5% clearly indicates that it is caused due to
cache resizing. Table 2 shows the temporal fluctuations of IPC for Black16, Body16 and
Fluid16. Therefore, for our experiments, we have put a limit of 4% on IPC degradation and
hence using results of Figure 10 we derive the value of 𝑏 as 16 for our setup. Thus we can
shutdown maximum of (𝐵 − 𝑏) number of L2 banks.

4 DYNAMIC CACHE RESIZING FOR THERMAL EFFICIENCY

4.1 Implementing Dynamic Cache Resizing

Dynamic cache resizing follows the classical state destroying cache decay approach, where
cache blocks need to be moved to some other location before turning off [29] through power
gating [34]. The cache bank which is going to be turned off is termed as victim bank in our
paper. Blocks at victim are evacuated by either of the two ways- (a) write them back to the
lower level memory (may be off chip), or (b) transfer them to some other location/bank,
called as target bank. We have chosen the latter one as it retains the blocks on-chip and

ACM Trans. Des. Autom. Electron. Syst., Vol. 00, No. 0, Article 00. Publication date: May 2019.

Large Centralised Caches in Thermal Efficient Chip Design 00:13

avoids immediate costly off-chip accesses. These blocks are migrated to its target bank before
turning off the bank and all of its future requests are redirected to the target bank. The
victim stalls its incoming requests during migration and establishes remapping at victim’s
controller on completion of the migration. At this point, the victim is gated and all of its
stalled and subsequent requests are redirected to the target bank.

Selection of Target. Target banks are selected based upon-(a) its usage (number of accesses
to the bank), (b) distance from the victim, and (c) on-chip location. If the usage is very
high, then selecting this bank as a target may increase its conflict and capacity misses. The
distance implies number of NoC hops that has to be traversed by the future requests to
reach the target. Hence, more distance increases both access delay (ref. Appendix A) and
NoC power. Lastly, the targets have to be assigned a bit far from the local hotspots or power
dense on-chip locations, as it will handle extra load which can make it a hotspot leading to
increased heat dissipation.
Unlike some prior works [29, 44], we implement request remapping in L2 controller (by

keeping L1 transparent). While placing victim’s data at target bank, we use Reuse Counter
like [7] for LRU selection in replacement. Our policy does not allow shutting down of target
banks to avoid multiple or transitive redirection. However, a bank can become a target of
many banks, but, each victim/turned-off bank has a unique target.

4.2 Patterns for Cache Resizing

The thermal model in Section 3.5 discussed that temperature of any on-chip component
depends on 3 prime factors: (a) power consumption of the component, (b) heat abduction
by the ambient and (c) heat exchange among the peers. The insight gained from here is used
to decide which cache banks can be turned-off to control the temperature. (For example,
if cache banks near the hot processing cores are turned off, they can assist in temperature
reduction by effectively applying (a) & (c) mentioned above.) Banks along the periphery are
the ones closest to the cores. As the cores are one of the hottest on-chip elements, if the
nearby cache banks are turned off it can create thermal buffers helping in reducing overall
temperature. In particular, we design three patterns for cache resizing that indicate which
banks are to be shutdown and their corresponding target locations. Figure 11 shows three
patterns, named as AltRow, Chess and OptTar, respectively.

∙ AltRow (Figure 11(a)), the first pattern, turns off cache banks located on alternate rows.
The target banks for a shutdown bank is the powered-on bank in the neighbouring
row, having NoC hop-distance 1. During execution, the powered-off and target banks
switch roles.

∙ Chess follows a pattern like a chess board (ref. Figure 11(b)) where black coloured
banks are turned off and others are kept powered-on becoming targets of their gated
peers. This pattern is also altered like the earlier one during execution.

∙ OptTar shuts down banks adjacent to the cores (shown in black in Figure 11(c)) for
creating more thermal buffers near the chip’s hotspots. The banks are clustered into a
size of 4. Each cluster along the periphery has one powered-on and three gated banks.
The inner clusters can have 2-ON and 2-OFF banks as per requirements. The ON/OFF
banks change roles during execution. However, banks along periphery, i.e. near the
cores are kept turned off. The bank which is ON in a cluster becomes the target for
the OFF banks in that cluster.

ACM Trans. Des. Autom. Electron. Syst., Vol. 00, No. 0, Article 00. Publication date: May 2019.

00:14 Chakraborty and Kapoor

ALGORITHM 1: Performance Constrained and Thermal Efficient Dynamic Cache Resizing.

Input: 𝑖, 𝑟, 𝑡, 𝑏𝑜𝑝𝑡, 𝛿, 𝑀𝑐, 𝑀𝑝

1 Initialize 𝑚𝑐 = 0, 𝑚𝑏 = 0 and add 𝐵𝑎𝑛𝑘 𝐼𝐷s to 𝑀𝑐

and 𝑀𝑏 according to the selected pattern;

2 Run with the baseline system for initial duration 𝑖 ;

3 repeat

4 Call Reconf();

5 Call Trans();

6 until end of execution;

7

8 Function Reconf()

9 repeat
10 Call Turn-off();

11 Call Turn-on();

12 until end of r ;

13 Return;

14

15 Function Trans()

16 Turn on all the turned off banks;

17 𝑚𝑐 = 𝑚𝑝 = 𝑚 = 0;

18 repeat
19 Run the application;

20 until end of t ;

21 Modify the selected pattern by updating 𝑀𝑐 & 𝑀𝑝,

such that the roles of ON/OFF banks swap;

22 Return;

23

24 Function Turn-off()

25 if 𝐼𝑃𝐶𝑑𝑒𝑔 < 𝛿 & 𝑚 < 𝑏𝑜𝑝𝑡 then

26 if 𝑚𝑝 < |𝑀𝑝| then
27 Select hottest bank 𝑚ℎ𝑜𝑡 from 𝑀𝑝, make

Target 𝑚𝑡𝑎𝑟 ;

28 𝑚𝑝 = 𝑚𝑝 + 1 ;

29 end

30 else if 𝑚𝑐 < |𝑀𝑐| then
31 Select hottest bank 𝑚ℎ𝑜𝑡 from 𝑀𝑐, make

Target 𝑚𝑡𝑎𝑟 ;

32 𝑚𝑐 = 𝑚𝑐 + 1 ;

33 end

34 Migrate blocks from 𝑚ℎ𝑜𝑡 to 𝑚𝑡𝑎𝑟;

35 Turn Off 𝑚ℎ𝑜𝑡 and enable remapping to target

at 𝑚𝑡𝑎𝑟 ;

36 𝑚 = 𝑚𝑐 +𝑚𝑝 ;

37 end

38

39 Function Turn-on()

40 if 𝐼𝑃𝐶𝑑𝑒𝑔 ≥ 𝛿 & 𝑚 ≥ 1 then
41 Turn on coldest bank 𝑚𝑐𝑜𝑙𝑑 from the list of

shutdown banks;

42 if 𝑚𝑐𝑜𝑙𝑑 ∈ 𝑀𝑐 then

43 𝑚𝑐 = 𝑚𝑐 − 1 ;

44 end

45 if 𝑚𝑐𝑜𝑙𝑑 ∈ 𝑀𝑝 then
46 𝑚𝑝 = 𝑚𝑝 − 1 ;

47 end

48 𝑚 = 𝑚𝑐 +𝑚𝑝 ;

49 end

4.3 Algorithms and Discussions

The implementation of the proposed policy needs to track core-wise IPCs dynamically, with
the current temperature (monitored by the on-chip thermal sensors [19] located across the
chip wafer).

The practical implementation of our algorithm divides the whole execution time into several
big intervals. The intervals are used either for the reconfigurations or for the transitions, as
shown in Figure 12. The reconfiguration intervals allow cache resizing while maintaining

i r t r rt

i = initial duration, r = reconfiguration interval, t = transition interval

t r

Execution Time

Fig. 12. The division of Execution time while implementing Algorithm 1.

ACM Trans. Des. Autom. Electron. Syst., Vol. 00, No. 0, Article 00. Publication date: May 2019.

Large Centralised Caches in Thermal Efficient Chip Design 00:15

Param. Descriptions Param. Descriptions
𝑖 Length of initial duration 𝑡 Length of transition interval
𝑟 Length of reconfig. interval 𝛿 Maximum percentage of IPC degradation

𝑀𝑐 Set of central Bank IDs to be gated 𝑀𝑝 Set of peripheral Bank IDs to be gated
𝑚𝑐 Counts no. of turned-off banks from 𝑀𝑐 𝑚𝑝 Counts no. of turned-off banks from 𝑀𝑝

𝑏𝑜𝑝𝑡 Maximum no. of banks can be turned-off 𝑚 Counts total no. of turned-off banks

Table 3. Description of Parameters used in Algorithm 1. (Param. implies Parameters)

performance constraint, whereas transition intervals do not allow any cache resizing and runs
the whole system by turning on all shutdown components. After running the application
for some initial duration we collect bank usage-statistics for all the banks along with the
thermal profile of the chip. The list of banks along the periphery and in the central part
of the chip that can be shutdown are maintained by two sets, 𝑀𝑝 and 𝑀𝑐, respectively.
Using the temperature values, if the number of turned-off banks has not reached its limit,
we select a bank from either of the lists as a candidate for shutdown. The target bank for
this candidate bank is chosen as per the selected pattern (discussed in Section 4.2). The
data blocks of the candidate are transferred to the target banks and on completion of this
process the candidate is powered off. All subsequent future requests are forwarded to the
target. The successive bank shutdown process continues until we reach at the maximum
limit of turned off banks or the performance degrades beyond the predefined limit. In case
the performance constraint is violated, the coldest among the turned off banks is selected for
turning on. The remapped data belonging to this bank is relocated from its target before
resuming its normal operations. This whole process continues for a long enough interval.

The target banks during the reconfiguration interval are overloaded with the workloads of
the turned off banks, resulting in increment in their power density hence, their temperature
increases. Even for some memory intensive applications, hotspots can get generated at the
target banks if they are being accessed heavily for a certain time quantum. Hence, in order
to reduce the power density (or hotspot) we need to switch their roles with the colder turned
off banks. This procedure goes through a transition interval where all the powered off banks
are turned on, and cache size remains unchanged until the end of the interval. With the
onset of the next reconfiguration interval, the selected pattern is updated by switching the
roles of banks and starts the cache resizing process. This process continues until the end of
the application execution.
Detailed steps of the whole process are given in Algorithm 1 which divides the whole

process into three parts. The parameters used in this algorithm are described in Table 3.

∙ The master part (line no. 1 to 5)- With the beginning of the execution, it initialises all
the required parameters (listed in Table 3) and run the system for an initial duration
of 𝑖 clock cycles. While the process is running, system alternatively calls Reconf() and
Trans() functions which represent two intervals 𝑟 and 𝑡 respectively as shown in Figure
12.

∙ Function Reconf() (line no. 8 to 13)- This function checks whether to power on (Turn-
on() sub-routine) or off (Turn-off() sub-routine) the cache banks while maintaining
performance constraint 𝛿. The number of shutdown cache banks are also kept within
optimal limit 𝑏𝑜𝑝𝑡. The algorithm tries to turn off banks from the peripheral parts
(line no. 26 to 28). Once this list is exhausted it then attempts to turn off the inner
central banks (line no. 30 to 32). On violation of performance degradation constraint,
the coldest among the turned off banks is turned on (line no. 40 to 48). The whole

ACM Trans. Des. Autom. Electron. Syst., Vol. 00, No. 0, Article 00. Publication date: May 2019.

00:16 Chakraborty and Kapoor

process runs in each reconfiguration interval 𝑟. The cache resizing follows a particular
selected pattern from the three discussed earlier.

∙ Function Trans() (line no. 15 to 22)- The gated banks are turned on at the beginning
of the function. During the transitive interval 𝑡, no cache resizing is allowed. On
completion of 𝑡, roles are exchanged among the candidates for ON and OFF banks of
the last 𝑟 interval while following the selected pattern.

Components Parameters

No. of Banks 64
Processor UltraSPARCIII+
Flit Size 16 bytes
Buffer Size 4
#Virtual Networks 5
L1 I/D Cache 64KB, 4-way
L2 Cache bank 128KB, 8-way
Memory bank 1GB, 4KB/page
Pipeline Stage 5-stage
VCs per Virtual Network 4

Table 4. System and Network Parameters

Name Details Input, Intensity

blackscholes (Black) multithreaded appl (16 threads) Medium, Comp.
Swaptions (Swap) multithreaded appl (16 threads) Medium, Comp
Vips (Vips) multithreaded appl (16 threads) Medium, Comp.
Black16 16 copies of blackscholes Large, Comp.
Swap16 16 copies of swaptions Medium, Comp.

Body16 16 copies of bodytrack Large, Mix.

Fluidanimate (Fluid) multithreaded appl (16 threads) Large, Mem.
Freqmine (Freq) multithreaded appl (16 threads) Large, Mem
Fluid16 16 copies of freqmine Large, Mem.

Table 5. PARSEC [4] details. Comp. is CPU intensive, Mem. is memory intensive, and Mix. implies
Mixed loads.

5 EXPERIMENTAL EVALUATION

5.1 Experimental Setup

For our hardware platform, we use the floorplan as shown in Figure 9. The whole chip is
divided into 80 tiles, which are of two types-(a) the 16 core tiles, located along the periphery,
and (b) 64 central cache tiles. Each of the core tiles consists of an UltraSPARCIII in-order
core, in 32nm technology. The core tiles are homogeneous in nature and composed by several

Cache Parameters Values Core Parameters Values

Cache Level L2 Clock rate 3000MHz
Technology used 32nm MUL per core 1
Size of a L2 Bank 128KB ALU per core 2
Associativity 8 FPU per core 1
Block Size 64 Bytes Ambient temperature 47∘C
Cache Model SNUCA

Table 6. McPAT and HotSpot Configurations

ACM Trans. Des. Autom. Electron. Syst., Vol. 00, No. 0, Article 00. Publication date: May 2019.

Large Centralised Caches in Thermal Efficient Chip Design 00:17

units- an Instruction Fetch Unit (IFU), a Load Store Unit (LSU), a private L1 Data and
Instruction cache. The shared L2 as on-chip LLC, is divided into 64 homogeneous banks and
are distributed uniformly across the 64 cache tiles (ref. Figure 9). These on-chip components
are connected through a 2D mesh, for which a router is equipped to each of the cache tiles
as well as with the cores. Table 4 contains configuration details of processor cores, memory
and NoC which are used in our simulation. Using analysis of Section 3.7, we use the value
obtained there for optimal 𝑏 (i.e. number of banks to be kept ON) in our experimental
evaluation. Also note that, IPC degradation constraint is kept to 4%.

The whole system is simulated in a multi-core timed-based simulator GEMS [26] runs on
top of a full system simulator, SIMICS [25]. Ruby, the memory module of GEMS, handles
coherency issues of CMP cache, with its own SLICC based cache controller. The cache
resizing overheads of proposed policies are also implemented in this memory module. GEMS
uses Garnet [2] to simulate the on-chip interconnects. Garnet further includes Orion [42]
power model to simulate the NoC power consumption. We use McPAT [24] and HotSpot 6.0
[46] to simulate power and thermal profile of our proposed architecture, respectively. The
trace based thermal simulator HotSpot 6.0 generates temperature traces from the power
values derived by McPAT. Performance traces are collected from GEMS at each 0.1 million
Ruby cycles and are fed into McPAT for power evaluation from which HotSpot derives
the thermal profile of the system. Table 6 contains the configuration details used by the
McPAT and HotSpot 6.0. This closed looped evaluation involving GEMS [26], McPAT [24]
and Hotspot 6.0 [46] uses the multithreaded PARSEC benchmark suite [4] to validate the
proposed architecture (Table 5). PARSEC is composed of a set of multi-threaded emerging
real-life applications (both memory and compute intensive) that include several multi-media
processing and mathematical tasks. Multiple copies of a single application are further clubbed
and run together by using Solaris commands to get the multiprogrammed workloads.

5.2 Leakage Energy and EDP Savings

As power reduction constructs the backbone of any thermal management policy, hence,
we first show the leakage energy reduction while implementing the three above mentioned
patterns in our closed loop simulation environment. The mix of 8 applications from PARSEC
[4] are executed, and their corresponding leakage energy savings are shown in Figure 13. The
x-axis represents the benchmarks whereas y-axis shows the leakage energy consumptions
normalised to the baseline’s leakage consumption. The maximum leakage savings of 40.3%
are achieved for OptTar. On an average, a static energy savings of 26% and 26.5% have
been achieved for AltRow and Chess, respectively.

The effect in static energy savings has sound reflection on total energy consumption of the
chip, with an effect on IPC (ref. equation 12). Figure 14 shows the savings in EDP, which is
derived from total energy consumption of chip (including both cores’ and cache-energy) and
IPC. The average EDP savings for three patterns are 11%, 11.5% and 18.7%, respectively.
The more static energy saving in the OptTar gives more EDP gains than the others.

Policy Body Fluid Freq Vips Black16 Body16 Fluid16 Swap16 Average

AltRow 5.35 4.29 3.90 4.19 5.80 4.50 3.78 3.43 4.40

Chess 4.82 4.69 5.67 5.26 4.99 4.17 4.62 3.52 4.72
OptTar 5.96 3.54 6.04 9.62 8.23 7.26 3.19 5.60 5.82

Table 7. Increment in NoC Energy over baseline (in %-age)

ACM Trans. Des. Autom. Electron. Syst., Vol. 00, No. 0, Article 00. Publication date: May 2019.

00:18 Chakraborty and Kapoor

Fig. 13. Static Energy savings at L2 Cache. Fig. 14. EDP Savings of the chip.

Fig. 15. Migration Overhead. Fig. 16. Increment in NoC Traffic.

5.3 Dynamic Cache Resizing Overhead in NoC

Dynamic cache resizing increases NoC overhead due to two major operations-(a) block
migration during turn-off process, and (b) remapping of requests after bank shutdown.
Figure 15 shows the extra clock cycles required for migration. For most of the applications,
this average increment is around 3% for AltRow and Chess, whereas for OptTar, it is close
to 5%. However, this extra time-span keeps idle only the victim banks, those are going to
be turned-off just after completion of migration process. Whereas, the operations at the
non-victims are executed normally during this period. On the other hand, the remapped
blocks to the target locations increase NoC traffic. The maximum average increment in
NoC traffic (for OpTar) is 4.86%, which is shown in Figure 16. Migration and remapping
altogether further increase NoC energy consumption (ref. Table 7) by 5.82%, (on an average
across the applications), for OptTar than our baseline architecture. The distance cognizant
target selection for all of our patterns incorporate a maximum hop distance of 2 in OptTar,
and 1 for the rest. Hence, OptTar experiences maximum energy overhead than AltRow
and Chess, however, this overhead has been compensated by the gained leakage and EDP
savings.

(a) Fluid16 (b) Body16

Fig. 17. Snapshot of temporal changes in average temperature of L2 during execution.

ACM Trans. Des. Autom. Electron. Syst., Vol. 00, No. 0, Article 00. Publication date: May 2019.

Large Centralised Caches in Thermal Efficient Chip Design 00:19

5.4 On-Chip Thermal Profile

The turned off banks consume zero power and eventually cooled down due to the heat
abduction by the ambient (equation 17). Additionally, the on-chip components at vicinity
of these shutdown banks will transfer heat towards this cold zone and temperature of the
adjacent components will also decrease gradually. To show the effect of our proposal, we
compare all three patterns for the best case (for Fluid16) and for the worst case (for Body16)
scenarios. We show the reduction in average temperature of cache area and core blocks,
separately. Figure 17 and 18 show the reduction in average temperatures for cache and core
area, respectively. The x-axes in these figures represent a portion of the execution interval
which includes two consecutive reconfiguration (r) intervals with a transition (t) in between.
The temporal changes in both caches’ and cores’ temperatures are noticed due to bank
shutdown in both r intervals as well as in t. The y-axis denotes the temperature values in
∘C.
For all the cases, OptTar reduces more temperature than the others due to gating of

more and optimally located cache area. The reduction in average temperature for OptTar
is around 8.3∘C in case of Fluid16. For Body16, OptTar reduces the cache temperature
by 5.7∘C, during the same interval. Due to their adjacency to the turned off cache banks,
average temperature for the core area is reduced by 4.3∘C for Fluid16, whereas for Body16
the value is around 3.8∘C. The core temperature for Body shows fluctuation due to temporal
variation in processing loads across the cores. Furthermore, at the beginning of t, the banks
are turned-on, hence, the average cache temperature escalates. With the beginning of the
next r after t, again the temperature decreases for both L2 cache as well as for cores as the
cache banks are gradually shutdown.
Furthermore, we also show the thermal status for individual L2 banks along with their

adjacent cores at an instance during r. Instead of showing 64 banks with 16 cores, we have
taken the bottom left part of the chip (Core id 0, 1, 14 and 15, with 4 consecutive banks
from each row starting with bank id 0, 8, 16 and 24 in Figure 9). Figure 19 shows the
temperatures for these 16 banks with 4 adjacent cores while running Fluid16. The grey
blocks in the figure represents shutdown banks. Trivially, remarkable temperature reductions
are noticed for the turned off cache area. At the cores, for all of our policies, temperature
reduction are in a range of 3− 4∘C, with maximum reduction of 4.1∘C for OptTar. All these
results conform to the analytical model set in Section 3. In particular, shutting down the
banks helps in removal of heat by creating thermal buffers. At the same time, using the
optimal value of 𝑏, we are able to maintain the performance constraint. The suggested three
patterns for thermal balancing are also seen to be effective.

(a) Fluid16 (b) Body16

Fig. 18. Snapshot of temporal changes in average temperature of the cores during execution.

ACM Trans. Des. Autom. Electron. Syst., Vol. 00, No. 0, Article 00. Publication date: May 2019.

00:20 Chakraborty and Kapoor

71.878.170.176.1

77.268.178.970.1

71.477.269.973.9

77.270.577.464.8

72.170.170.468.1

76.170.277.869.9

71.776.970.066.7

76.772.176.865.4

80.179.278.277.6

78.977.080.179.1

80.978.479.075.5

78.480.878.774.3

72.170.969.570.0

76.175.578.577.2

71.270.671.266.6

77.179.377.172.1

Baseline AltRow

Chess OptTar

95.4

95.9

95.2 94.1

92.8

93.4

93.1 92.2

92.2

92.0

93.4

93.6

92.0 92.1 91.9 90.5

Fig. 19. Temperatures (in ∘C) of the individual banks during r, for Fluid16.

5.5 Comparison with Greedy DVFS [28]

We have implemented a per-core DVFS based thermal optimisation technique (in our
simulation framework), called as Greedy DVFS [28] for comparing our cache based thermal
efficient policies. Greedy DVFS uses a predefined threshold temperature value, on violation
of which V/F setting is scaled down by one step dynamically. Conversely, when temperature
of a core is below the threshold, V/F setting will be stepped up for better performance. The
change in V/F setting is done periodically per-core at the end of a fixed interval during
execution. The detailed V/F settings used in our implementation are given in Table 8. We

(a) Fluid16 (b) Body16

Fig. 20. Snapshot of temporal changes in peak chip temperature during a r.

ACM Trans. Des. Autom. Electron. Syst., Vol. 00, No. 0, Article 00. Publication date: May 2019.

Large Centralised Caches in Thermal Efficient Chip Design 00:21

Voltage, Frequency 1.8v, 3.0GHz 1.65v, 2.4GHz 1.5v, 1.8GHz 1.35v, 1.2GHz

Table 8. V/F Settings for UltraSPARCIII (used in our simulation)

use two threshold values of 95∘C and 90∘C which are termed as DVFS 95 and DVFS 90,
respectively.

Figure 20 shows the temporal changes in peak temperature of entire chip for both Greedy
DVFS and our policies during the reconfiguration interval. For both Fluid16 and Body16, our
policy shows lesser peak temperature reduction than DVFS 90. As DVFS directly reduces
the core’s energy consumption, hence, core temperature reduces more than the cache based
method. However, in order to compensate the system performance, DVFS shortly scales up
the V/F setting resulting into further increment in temperature within a short time-span.
This frequent temperature change can affect the on-chip circuitry due to unstable thermal
profile. On the other hand, cache based method ensures stability in reduced temperature
range. We achieve around 5.5∘C and 4.6∘C reduction in peak temperature for Fluid16 and
Body16, respectively. Thus, we can further claim that, the proposed cache based policy
can be a supplementary approach to the core-based policies that use DVFS. Additionally,
applying both core and cache based policies together will also be more effective in improving
on-chip thermal efficiency.

Scaling V/F settings in DVFS generates huge temporal fluctuation in core’s temperature
incorporating an adverse effect in circuit reliability [6]; whereas cache based techniques
offer stable thermal status of the chip. Figure 21 shows the temporal change in average
chip temperature while using DVFS and our cache based methods. The frequent change
in cores’ temperature due to Greedy DVFS incurs fluctuation in average chip temperature
for both Fluid16 and Body16. The detailed maximum reduction in peak and average chip
temperature are given in Table 9 and 10, respectively. On an average, DVFS 90 and OptTar
reduces peak temperature by 6.6∘C and 5.5∘C, respectively, but cache based policy offers
more thermal stability which may help for better durability for the on-chip circuitry. Due to
shutting down of larger on-chip area, cache based policy shows more decrements in average
chip temperature which is around 4.9∘C, whereas DVFS 90 reduces the same by 4.2∘C on
an average.
A stable thermal profile ensures better reliability for on-chip circuitry. Tables 11 and 12

show the standard deviations for the temporal changes in peak and average temperature of
the chip for different applications. The maximum standard deviation for peak and average
temperature are 0.58 and 0.64, respectively, almost for all of our cache based techniques.

(a) Fluid16 (b) Body16

Fig. 21. Snapshot of temporal changes in average chip temperature during a r.

ACM Trans. Des. Autom. Electron. Syst., Vol. 00, No. 0, Article 00. Publication date: May 2019.

00:22 Chakraborty and Kapoor

Benchmarks DVFS 95 DVFS 90 AltRow Chess OptTar

Body 3.1 6.1 3.5 3.7 4.9
Fluid 4.4 5.9 3.9 3.6 5.1
Freq 4.2 5.4 4.3 4.5 5.4
Vips 5.7 5.8 4.0 3.9 4.8
Black16 5.5 6.1 3.9 4.5 5.2
Body16 3.8 6.3 4.6 3.9 4.6
Fluid16 4.2 6.6 3.9 4.1 5.5
Swap16 3.2 5.9 3.6 3.8 4.9
Gmean 4.2 6.0 3.9 4.0 5.1

Table 9. Maximum Reduction in Peak Temperature (∘C) of the Chip w.r.t. baseline.

Benchmarks DVFS 95 DVFS 90 AltRow Chess OptTar

Body 2.2 4.0 4.2 3.9 4.8
Fluid 2.1 4.4 4.3 4.2 4.6
Freq 2.8 4.2 4.1 4.0 4.6
Vips 2.4 4.3 4.3 4.4 5.0
Black16 3.2 4.8 4.2 4.1 4.7
Body16 2.7 3.9 3.9 3.8 4.4
Fluid16 3.4 4.8 4.3 4.0 5.8
Swap16 2.0 4.6 4.0 4.2 5.4
Gmean 2.6 4.2 4.2 4.1 4.9

Table 10. Maximum Reduction in Average Temperature (∘C) of the Chip w.r.t. baseline.

Whereas, in case of DVFS based policies, least values for standard deviation is 1.01 and 0.67
for peak and average chip temperature, respectively. These values represent better thermal
stability of our cache based policies over greedy DVFS.

Benchmarks DVFS 95 DVFS 90 AltRow Chess OptTar

Body 2.68 2.19 0.46 0.42 0.58
Fluid 1.32 1.01 0.05 0.09 0.21
Freq 1.78 2.13 0.08 0.19 0.34
Vips 1.31 2.67 0.14 0.16 0.42
Black16 1.10 1.95 0.17 0.24 0.28
Body16 2.71 2.51 0.11 0.21 0.32
Fluid16 2.56 2.20 0.16 0.14 0.26
Swap16 2.83 1.36 0.13 0.21 0.23
Gmean 1.91 1.93 0.13 0.19 0.31

Table 11. Standard Deviation: Peak Temperature of the Chip.

5.5.1 Spatial Thermal Status. Diversities in power consumption across the on-chip area
define the spatial thermal status of the chip. Figure 22 shows the thermal status of the
chip for baseline, DVFS 90 and OptTar during some r , generated from Hotspot 6.0 [46]

Benchmarks DVFS 95 DVFS 90 AltRow Chess OptTar

Fluid 0.73 0.81 0.36 0.12 0.61
Body 1.21 0.79 0.51 0.61 0.90
Freq 1.41 0.72 0.23 0.41 0.63
Vips 0.67 0.71 0.55 0.44 0.64
Black16 1.20 1.02 0.51 0.43 0.61
Body16 1.21 1.32 0.71 0.52 0.60
Fluid16 1.11 0.80 0.41 0.17 0.61
Swap16 1.14 0.98 0.34 0.35 0.60
Gmean 1.05 0.85 0.43 0.34 0.64

Table 12. Standard Deviation: Average Temperature of the Chip.

ACM Trans. Des. Autom. Electron. Syst., Vol. 00, No. 0, Article 00. Publication date: May 2019.

Large Centralised Caches in Thermal Efficient Chip Design 00:23

tool while running Fluid16 application. The corresponding temperature ranges are given
in the figures. The peak temperatures have been reduced by 4K for DVFS 90 and 6K for
OptTar, respectively. In case of OptTar, cache temperature is reduced more as expected
and for which average chip temperature shows better reduction than DVFS 90. Moreover,
created thermal buffers reduce the peak temperature values of the core area by generating
more conductive heat flow towards the cache area from the core. DVFS 90 reduces the core
temperature which hardly reduces the cache temperature as reduced cores’ temperatures
are still a bit higher than the cache temperature. Note that, all the temperature values in
Figure 22 are in Kelvin (K).

(a) Baseline (b) DVFS 90 (c) OptTar

Fig. 22. On-chip spatial thermal behaviour generated by Hotspot 6.0 [46] for Fluid16 at some certain
instance during r. Temperature Ranges for three configurations-(a) Baseline: 336𝐾 to 364𝐾, (b)
DVFS 90: 334𝐾 to 360𝐾, (c) OptTar: 332𝐾 to 358𝐾. Red colour represents peak value where Blue
represents the lowest temperature.

Benchmarks DVFS 95 DVFS 90 AltRow Chess OptTar

IPS values (normalised w.r.t. baseline)

Body 0.97 0.86 0.98 0.95 0.95
Fluid 0.93 0.90 0.97 0.98 0.97
Freq 0.95 0.85 0.98 0.97 0.97
Vips 0.96 0.87 0.98 0.98 0.97
Black16 0.97 0.88 0.97 0.96 0.96
Body16 0.95 0.86 0.96 0.93 0.96
Fluid16 0.96 0.90 0.96 0.97 0.95
Swap16 0.96 0.88 0.97 0.98 0.98

Average degradation in IPS (w.r.t. baseline)

4.38% 12.51% 2.87% 3.51% 3.62%

Table 13. Change in IPS w.r.t. baseline.

5.5.2 Effect on Performance. The block migration during shutting down of the cache banks
increases NoC workloads. Once this process is initiated at victim bank, the incoming requests
at the victim are only stalled, while other cache banks work normally. After commencing of
migration process, remapping is established and eventually the stalled requests are forwarded
to the target. Moreover while handling additional load, target banks also experience slight
increment in its capacity and conflict misses. The integrated effect of these factors stated
above aggravates IPC by a maximum of 4.7% in case of OptTar. However, our policy puts a
limit on this degradation as a performance constraint.
Table 13 presents the performance (IPS) degradation for all the benchmarks with both

DVFS policies. DVFS 95, for all the applications, uses maximum frequency and steps it

ACM Trans. Des. Autom. Electron. Syst., Vol. 00, No. 0, Article 00. Publication date: May 2019.

00:24 Chakraborty and Kapoor

Parameters DVFS 95 DVFS 90 AltRow Chess OptTar

Max Peak 5.7∘C 6.6∘C 4.6∘C 4.5∘C 5.5∘C
Temp Reduction
Max Avg 3.4∘C 4.8∘C 4.3∘C 4.4∘C 5.8∘C
Temp Reduction
Std Dev of Peak 1.91 1.93 0.13 0.19 0.31
Temp Change
Std Dev of Avg 1.05 0.85 0.43 0.34 0.64
Temp change
IPS Degradation 4.38% 12.51% 2.87% 3.51% 3.62%

Table 14. Summary

down by one step whereas DVFS 90 uses three levels of frequencies for more reduction in
temperature. Hence, overall execution time increases (i.e. the IPS reduces) for the applications
in DVFS 90 than DVFS 95. The cache based policies does not modify the running frequencies
of the cores, hence performance (IPS) degradation is much lesser than the DVFS policies,
although dynamic cache resizing incurs an extra memory latency, which has been taken care
of in our simulation. However, on an average, DVFS 95 and DVFS 90 degrade performance
by 4.38% and 12.51%, respectively. The average performance degradation for all the cache
based policies is lesser than 4%.

5.5.3 Summary. Table 14 summarises results for all the policies. DVFS 90 reduces both peak
and average temperature at most by 6.6∘C and 4.8∘C, respectively, whereas OptTar (the
best of our proposed policies) reduces peak temperature by 5.5∘C and average temperature
by 5.8∘C. Although, OptTar reduces lesser peak but more average chip temperature than
DVFS 90, but, DVFS 90 degrades performance by 12.51% which is 3.62% for OptTar.

5.6 Evaluating the Scalability

To show the scalability, we used OptTar and ran the same set of applications with 4MB
and 16MB L2 cache having 64 banks. Figure 23 shows the reduction in peak and average
chip temperature over various cache sizes across the applications. We could shutdown 48
banks in the case of 16MB cache and this reduced the peak and average temperatures by
6.1∘C and 5.8∘C on an average, respectively. Larger turned off banks create larger thermal
buffers, so, more reduction in temperatures. Gating 48 banks in 16MB cache, also maintains
the cache size at 4MB which provides lesser cache space to the applications, hence, the IPC
degrades around 2%, on an average. Conversely, for 4MB L2 cache, powered off banks create
smaller thermal buffers than larger ones, hence, lesser temperature reduction is obtained.
The average reduction in peak temperature for 4MB is around 3.5∘C, which is around
5.1∘C in case of 8MB cache. Moreover, 4MB cache does not allow much resizing while
maintaining performance, hence, the thermal benefit is lesser. Our performance cognizant
dynamic resizing maintains the cache size according to the WSS of the applications. Thus,
implementing our policy in larger caches gives more opportunity for reconfiguration and
temperature control.

5.7 Effects on diverse application-set

To show the effectiveness of our proposal on a diverse application-set, we run Body16 &
Swap16 together. Here, Swap16 is computational load, whereas Body16 is the memory
intensive. Hence, it has been seen that, Body16 takes the upper-hand in case of cache access
whereas, Swap16 plays major role in cores’ thermal behaviour. In this scenario, when OptTar
is applied the cache resizing is sensitive mostly towards Body16, but, loads of Swap16 also

ACM Trans. Des. Autom. Electron. Syst., Vol. 00, No. 0, Article 00. Publication date: May 2019.

Large Centralised Caches in Thermal Efficient Chip Design 00:25

(a) Peak Temperature of the Chip (b) Average Chip Temperature

Fig. 23. Comparing temperature reduction (in ∘C) with different cache sizes.

however has minimal effects on cache temperature. But, core temperature is increased due
to combined effects of both. Therefore, temperature reductions (both peak & average) are
lesser than their individual execution. The average and peak temperature reductions for this
workload are 4.3∘C and 3.9∘C, respectively. For combined workloads of Black16 (compute
intensive) & Fluid16 (memory intensive), the average and peak temperature reductions are
5.1∘C and 4.9∘C, respectively.

6 RELATED WORK

In recent years, architects and designers are much more concentrating on DTM techniques
while designing modern CMPs. A plethora of such recent techniques are discussed in
[19]. These mitigations can either (a) minimise chip temperature for a given performance
constraint, or (b) maximise performance for a predefined power budget and/or thermal
constraint.

6.1 DVFS and Task Migration

DVFS and task migration are two most promising techniques to mitigate on-chip hotspots,
by controlling dynamic power consumption of the cores. Leakage power, on the other hand,
having a circular dependency with temperature, is efficiently modeled in [18]. Additionally,
an exponential algorithm has been proposed to estimate upper bound on energy savings [43].
Even for a given thermal constraint, researchers have attempted to maximise throughput of
the processors [35] by employing DVFS as backbone. Apart from DVFS, a latter exploration
[15] proposes an efficient thread migration method for thermal efficiency. In another work
[14], DVFS and thread migration are merged to achieve active scalable cooling of cores.
Through integration of optimal control mechanism [45] or Model Predictive Controller [41],
DVFS can also be achieved at circuit level.
Global thermal management suffers from scalability for modern CMPs having hundreds

of cores. Hence, authors in [18] tried to reduce energy consumption in diverse runtime
characteristics of the threads. Even DVFS and PCPG (Per Core Power Gating) together
[21] can improve processors’ throughput and reduce temperature in large CMPs. Moreover,
insertion of idle time slice to a core with a thermal aware task scheduling can further reduce
peak temperature of the chip [5]. The proactive dynamic task migration from hotter cores to
colder area can reduce the chance for thermal imbalance [12, 13]. But frequent task shifting
towards thermal efficiency leads to a costly on-chip ping-pong effect, which is addressed by
Mizunuma in [30].

ACM Trans. Des. Autom. Electron. Syst., Vol. 00, No. 0, Article 00. Publication date: May 2019.

00:26 Chakraborty and Kapoor

6.2 Cache in Thermal Management

The large LLCs of modern CMPs are accounted for their significant leakage power consump-
tion [11, 19, 29, 44]. Reduction in LLC leakage can be done either by (a) cache resizing or
by (b) reducing cache hotspots. The classical techniques for cache leakage reduction exploit
both state preserving and state destroying policies [17, 23].

A Power density-Minimized Architecture (PMA) with a Block Permutation Scheme (BPS)
[20] decreases cache temperature by exploiting Gated-Vdd [34]. Leakage also plays the
pivotal role of thermal control for a performance aware thermal efficient technique, shadow
tag [39, 40]. Noori et al. further analysed the increment in cache energy and temperature
along with their inter-dependency for a 100nm technology [32]. In [33], Temperature Aware
Cache Configuration (TACC) has been proposed to optimally reconfigure caches at different
execution phases through both offline and online analyses of cache-usage. Sentry tags, in
another work [10], eliminate unnecessary cache accesses to minimize power and temperature.
Moreover, prediction based cache block migration also reduces cache temperature where
migration is triggered due to overheating [3].

Modern 3D CMPs suffer from high power density, hence, the increased effective tempera-
ture [47]. A runtime thermal management is proposed for 3-D chip at way level granularity in
[22] which combines DVFS with a novel thermal aware technique for hybrid (MRAM/SRAM)
cache.

7 CONCLUSION

The paper explores the possibility of using dynamic cache resizing towards temperature
control in CMPs. We provide a cache based thermal management technique for modern
large centralised LLC based CMPs. The cores are placed along the periphery of the chip.
Processor based techniques like DVFS are effective in temperature control, however have
considerable performance impact.

Considering performance as a system wide constraint, we dynamically resize the LLC to
create on-chip thermal buffer which reduces chip temperature. Three different patterns are
proposed to get maximum reduction in average as well as peak temperature while maintaining
performance within a limit. The simulation results, prepared by running PARSEC workloads,
are further compared with the Greedy DVFS, a core based thermal management technique.
Both Greedy DVFS and OptTar show maximum reduction in peak temperature by 6.6∘C and
5.5∘C, respectively, for an 8𝑀𝐵 LLC. The temperature reduction is more with larger LLCs,
due to more chances to create larger thermal buffers. Dynamic cache resizing overheads
are taken into account in our simulation, which can be further overlapped with context
switching for enhancing performance. Cache based policy shows better thermal stability
than DVFS based ones, hence offers more circuit reliability.

In recent CMPs, the cache capacity and area is considerable, and hence, one can use cache
reconfiguration to lower overall chip temperature with minimal impact on the performance.
The results from the paper also show that LLCs can contribute to safeguard against thermal
breakdown.

A CHANGE IN MEMORY CYCLES WHILE RESIZING CACHE

In Equation 12, as 𝐶𝐶𝑖 includes L1 access latency, hence, 𝑀𝐶𝑖 only represents L2 accesses
as follows:

𝑀𝐶𝑖(𝑏) =
𝑏∑︁

𝑗=1

(ℎ𝑖
𝑗 .𝑑

𝑖
𝑗 + 𝑎𝑖𝑗𝑜 .𝑑𝑜), 𝑏 ≤ 𝐵. (22)

ACM Trans. Des. Autom. Electron. Syst., Vol. 00, No. 0, Article 00. Publication date: May 2019.

Large Centralised Caches in Thermal Efficient Chip Design 00:27

𝑏 represents number of banks currently ON, and 𝐵 is the total number of available L2
banks. ℎ𝑖

𝑗 is the number of hits at bank 𝑗, whose requests have been generated at core 𝑖.

The 𝑑𝑖𝑗 is the delay at bank 𝑗 to send block to core 𝑖. 𝑎𝑖𝑗𝑜 implies the number of off-chip
accesses due to misses at bank 𝑗 which have been requested by core 𝑖, and (uniform) off-chip
access latency is represented by 𝑑𝑜.
Initially, in Equation 22, if all banks are turned on, then 𝑏 = 𝐵. Shutting down of cache

banks introduces target banks, which incurs a few extra cycles for the remapped requests to
reach at target. So, Equation 22 can be rewritten as follows.

𝑀𝐶𝑖(𝑏) =

𝑏∑︁
𝑗=1

(ℎ𝑖
𝑗 .𝑑

𝑖
𝑗 + 𝑎𝑖𝑗𝑜 .𝑑𝑜) +

𝐵−𝑏∑︁
𝑘=1

𝑟𝑖𝑘.𝑛
𝑖𝑘
𝑡 , 𝑏 ≤ 𝐵. (23)

𝑟𝑖𝑘 is the number of remapped requests at (𝐵 − 𝑏) number of turned off banks, generated
by core 𝑖. Number of NoC cycles required to reach at target 𝑡 (from 𝑘) is represented by 𝑛𝑖𝑘

𝑡 .
During reconfiguration, system also needs a few clock cycles to move data from victim to

target or vice versa, which is negligible if it is done limited number of times. Experimental
results of the paper claim the proof of our statement. Finally, Equation 11 can be rewritten
as:

𝐼𝑃𝐶(𝑏) =
1

𝑁

𝑁∑︁
𝑖=1

𝐼𝑃𝐶𝑖(𝑏) =
1

𝑁

𝑁∑︁
𝑖=1

(
𝐼𝐶𝑖

𝐶𝐶𝑖 + 𝑀𝐶𝑖(𝑏)
) =

1

𝑁

𝑁∑︁
𝑖=1

(
𝐼𝐶𝑖

𝐶𝐶𝑖 +
∑︀𝑏

𝑗=1(ℎ
𝑖
𝑗 .𝑑

𝑖
𝑗 + 𝑎𝑖𝑗

𝑜 .𝑑𝑜) +
∑︀𝐵−𝑏

𝑘=1 𝑟𝑖𝑘.𝑛
𝑖𝑘
𝑡

) ≥ 𝐶

(24)

Reduction in 𝑏 reduces cache capacity, hence, the number of misses i.e. 𝑎𝑖𝑗𝑜 increases, so,
decrement in ℎ𝑖

𝑗 (Equation 24). As, 𝑑𝑜 > 𝑑𝑗 , so, increment in 𝑎𝑖𝑗𝑜 curtails performance by

increasing 𝑀𝐶𝑖. Moreover, 𝑟𝑖𝑘 also increases for more reduction in 𝑏. So, Equation 24 clearly
shows how performance is related to the number of cache banks (𝑏).

REFERENCES

[1] 2011. Oracle’s SPARC T3-1, SPARC T3-2, SPARC T3-4 and SPARC T3-1B Server Architecture.
http://www.oracle.com/. [Online; accessed 19-Jan-2017].

[2] N. Agarwal, T. Krishna, L. S. Peh, and N. K. Jha. 2009. GARNET: A detailed on-chip network model
inside a full-system simulator. In 2009 IEEE International Symposium on Performance Analysis of

Systems and Software. 33–42.

[3] R. Ayoub and A. Orailoglu. 2010. Performance and Energy Efficient Cache Migration approach for
Thermal Management in Embedded Systems. In Proceedings of the 20th Symposium on Great Lakes

Symposium on VLSI. 365–368.
[4] C. Bienia, S. Kumar, J. P. Singh, and K. Li. 2008. The PARSEC Benchmark Suite: Characterization and

Architectural Implications. In Proceedings of the 17th International Conference on Parallel Architectures

and Compilation Techniques (PACT ’08). 72–81.
[5] T. Chantem, R. P. Dick, and X. S. Hu. 2008. Temperature-aware Scheduling and Assignment for Hard

Real-time Applications on MPSoCs. In Proceedings of the Conference on Design, Automation and Test

in Europe. 288–293.
[6] A. K. Coskun, T. Simunic Rosing, and K. Whisnant. 2007. Temperature Aware Task Scheduling in

MPSoCs. In Proceedings of the Conference on Design, Automation and Test in Europe. 1659–1664.

[7] S. Das and H. K. Kapoor. 2016. A Framework for Block Placement, Migration, and Fast Searching in
Tiled-DNUCA Architecture. ACM Trans. Des. Autom. Electron. Syst. 22, 1 (May 2016), 4:1–4:26.

[8] H. Everett. 1963. Generalized Lagrange Multiplier Method for Solving Problems of Optimum Allocation
of Resources. Oper. Res. 11, 3 (June 1963), 399–417.

[9] S. Eyerman and L. Eeckhout. 2011. Fine-grained DVFS Using On-chip Regulators. ACM Trans. Archit.

Code Optim. 8, 1 (Feb. 2011), 1:1–1:24.

ACM Trans. Des. Autom. Electron. Syst., Vol. 00, No. 0, Article 00. Publication date: May 2019.

http://www.oracle.com/

00:28 Chakraborty and Kapoor

[10] M. Farahani and A. Baniasadi. 2009. Temperature Reduction Analysis in Sentry Tag Cache Systems.
In Proceedings of the 10th Workshop on MEmory Performance: DEaling with Applications, Systems
and Architecture. 22–27.

[11] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge. 2002. Drowsy caches: simple techniques for
reducing leakage power. In Proceedings 29th Annual International Symposium on Computer Architecture.
148–157.

[12] Y. Ge, P. Malani, and Q. Qiu. 2010. Distributed task migration for thermal management in many-core
systems. In Design Automation Conference. 579–584.

[13] Y. Ge, Q. Qiu, and Q. Wu. 2012. A Multi-Agent Framework for Thermal Aware Task Migration in

Many-Core Systems. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 20, 10 (2012),
1758–1771.

[14] V. Hanumaiah, S. Vrudhula, and K. S. Chatha. 2009. Maximizing performance of thermally constrained
multi-core processors by dynamic voltage and frequency control. In IEEE/ACM International Conference
on Computer-Aided Design - Digest of Technical Papers. 310–313.

[15] V. Hanumaiah, S. Vrudhula, and K. S. Chatha. 2011. Performance Optimal Online DVFS and Task
Migration Techniques for Thermally Constrained Multi-Core Processors. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 30, 11 (Nov 2011), 1677–1690.

[16] H. Homayoun, M. Rahmatian, V. Kontorinis, S. Golshan, and D. M. Tullsen. 2012. Hot peripheral
thermal management to mitigate cache temperature variation. In Thirteenth International Symposium
on Quality Electronic Design. 755–763.

[17] S. Kaxiras, Z. Hu, and M. Martonosi. 2001. Cache decay: exploiting generational behavior to reduce
cache leakage power. In Proceedings 28th Annual International Symposium on Computer Architecture.
240–251.

[18] W. Kim, M. S. Gupta, G. Y. Wei, and D. Brooks. 2008. System level analysis of fast, per-core DVFS
using on-chip switching regulators. In IEEE 14th International Symposium on High Performance

Computer Architecture. 123–134.

[19] J. Kong, S. W. Chung, and K. Skadron. 2012. Recent Thermal Management Techniques for Micropro-
cessors. ACM Comput. Surv. 44, 3 (June 2012), 13:1–13:42.

[20] J. C. Ku, S. Ozdemir, G. Memik, and Y. Ismail. 2005. Thermal Management of On-Chip Caches

Through Power Density Minimization. In Proceedings of the 38th Annual IEEE/ACM International
Symposium on Microarchitecture.

[21] J. Lee and N. S. Kim. 2012. Analyzing Potential Throughput Improvement of Power- and Thermal-

Constrained Multicore Processors by Exploiting DVFS and PCPG. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 20, 2 (Feb 2012), 225–235.

[22] S. Lee, K. Kang, and C. M. Kyung. 2015. Runtime Thermal Management for 3-D Chip-Multiprocessors
With Hybrid SRAM/MRAM L2 Cache. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 23, 3 (March 2015), 520–533.

[23] L. Li, I. Kadayif, Y. F. Tsai, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, and A. Sivasubramaniam.
2002. Leakage energy management in cache hierarchies. In Proceedings.International Conference on
Parallel Architectures and Compilation Techniques. 131–140.

[24] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi. 2009. McPAT: An
integrated power, area, and timing modeling framework for multicore and manycore architectures. In
42nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 469–480.

[25] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hogberg, F. Larsson, A.
Moestedt, and B. Werner. 2002. Simics: A full system simulation platform. Computer 35, 2 (Feb 2002),

50–58.

[26] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R. Alameldeen, K. E. Moore,
M. D. Hill, and D. A. Wood. 2005. Multifacet’s General Execution-driven Multiprocessor Simulator
(GEMS) Toolset. SIGARCH Comput. Archit. News 33, 4 (2005), 92–99.

[27] M. Martonosi, S. Malik, and F. Xie. 2005. Efficient behavior-driven runtime dynamic voltage scaling

policies. In Third IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and

System Synthesis. 105–110.
[28] A. Mirtar, S. Dey, and A. Raghunathan. 2015. Joint Work and Voltage/Frequency Scaling for Quality-

Optimized Dynamic Thermal Management. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems 23, 6 (June 2015), 1017–1030.
[29] S. Mittal. 2014. A survey of architectural techniques for improving cache power efficiency. Sustainable

Computing: Informatics and Systems 4, 1 (2014), 33 – 43.

ACM Trans. Des. Autom. Electron. Syst., Vol. 00, No. 0, Article 00. Publication date: May 2019.

Large Centralised Caches in Thermal Efficient Chip Design 00:29

[30] H. Mizunuma, Y. C. Lu, and C. L. Yang. 2013. Thermal coupling aware task migration using neighboring
core search for many-core systems. In International Symposium on VLSI Design, Automation, and
Test (VLSI-DAT). 1–4.

[31] R. Balasubramonian N. Muralimanohar and N. P. Jouppi. 2007. CACTI 6.0: A Tool to Model Large
Caches. In Technical Report HPL-2009-85, HP Laboratories.

[32] H. Noori, M. Goudarzi, K. Inoue, and K. Murakami. 2007. The Effect of Temperature on Cache Size

Tuning for Low Energy Embedded Systems. In Proceedings of the 17th ACM Great Lakes Symposium
on VLSI.

[33] H. Noori, M. Goudarzi, K. Inoue, and K. Murakami. 2008. Improving Energy Efficiency of Configurable

Caches via Temperature-Aware Configuration Selection. In IEEE Computer Society Annual Symposium
on VLSI. 363–368.

[34] M. Powell, S. Yang, B. Falsafi, K. Roy, and T. N. Vijaykumar. 2000. Gated-Vdd: A Circuit Technique
to Reduce Leakage in Deep-submicron Cache Memories. In Proceedings of International Symposium on
Low Power Electronics and Design.

[35] R. Rao, S. Vrudhula, C. Chakrabarti, and N. Chang. 2006. An Optimal Analytical Solution for Processor
Speed Control with Thermal Constraints. In Proceedings of the International Symposium on Low Power
Electronics and Design. 292–297.

[36] B. Salami, M. Baharani, and H. Noori. 2014. Proactive Task Migration with a Self-adjusting Migration
Threshold for Dynamic Thermal Management of Multi-core Processors. J. Supercomput. 68, 3 (June
2014), 1068–1087.

[37] A. Sembrant, E. Hagersten, and D. Black-Shaffer. 2013. TLC: A tag-less cache for reducing dynamic first
level cache energy. In 2013 46th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). 49–61.

[38] K Stavrou and P Trancoso. 2005. TSIC: Thermal Scheduling Simulator for Chip Multiprocessors. In
Proceedings of the 10th Panhellenic Conference on Advances in Informatics. Springer-Verlag, 589–599.

[39] G. Sun, X. Wu, and Y. Xie. 2009. Exploration of 3D Stacked L2 Cache Design for High Performance

and Efficient Thermal Control. In Proceedings of International Symposium on Low Power Electronics
and Design.

[40] G. Sun, H. Yang, and Y. Xie. 2012. Performance/Thermal-Aware Design of 3D-Stacked L2 Caches for

CMPs. ACM Trans. Des. Autom. Electron. Syst. 17, 2 (April 2012).
[41] H. Wang, J. Ma, S. X.-D. Tan, C. Zhang, H. Tang, K. Huang, and Z. Zhang. 2016. Hierarchical Dynamic

Thermal Management Method for High-Performance Many-Core Microprocessors. ACM Trans. Des.

Autom. Electron. Syst. 22, 1 (Aug. 2016), 1:1–1:21.
[42] H. Wang, X. Zhu, L. Peh, and S. Malik. 2002. Orion: a power-performance simulator for interconnection

networks. In 35th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
294–305.

[43] Fen Xie, M. Martonosi, and S. Malik. 2005. Bounds on power savings using runtime dynamic voltage

scaling: an exact algorithm and a linear-time heuristic approximation. In Proceedings of the 2005
International Symposium on Low Power Electronics and Design, 2005. 287–292.

[44] W. Zang and A. Gordon-Ross. 2013. A Survey on Cache Tuning from a Power/Energy Perspective.

ACM Comput. Surv. 45, 3 (July 2013), 32:1–32:49.
[45] F. Zanini, D. Atienza, C. N. Jones, L. Benini, and G. De Micheli. 2013. Online Thermal Control

Methods for Multiprocessor Systems. ACM Trans. Des. Autom. Electron. Syst. 18, 1, Article 6 (Jan.

2013), 6:1–6:26 pages.
[46] R. Zhang, M. R. Stan, and K. Skadron. 2015. HotSpot 6.0: Validation, Acceleration and Extension.. In

University of Virginia, Tech. Report CS-2015-04.

[47] Y. Zhang, L. Li, Z. Lu, A. Jantsch, M. Gao, H. Pan, and F. Han. 2014. A Survey of Memory Architecture
for 3D Chip Multi-processors. Microprocess. Microsyst. 38, 5 (July 2014), 415–430.

ACM Trans. Des. Autom. Electron. Syst., Vol. 00, No. 0, Article 00. Publication date: May 2019.

