
Towards Surgically-Precise Technical Debt Estimation: Early
Results and Research Roadmap

Valentina Lenarduzzi
Tampere University
Tampere, Finland

valentina.lenarduzzi@tuni.fi

Antonio Martini
University of Oslo
Oslo, Norway

antonima@ifi.uio.no

Davide Taibi
Tampere University
Tampere, Finland
davide.taibi@tuni.fi

Damian Andrew Tamburri
Technical University of Eindhoven, JADS

’s-Hertogenbosch, Netherlands
d.a.tamburri@tue.nl

ABSTRACT
The concept of technical debt has been explored from many per-
spectives but its precise estimation is still under heavy empirical
and experimental inquiry. We aim to understand whether, by har-
nessing approximate, data-driven, machine-learning approaches
it is possible to improve the current techniques for technical debt
estimation, as represented by a top industry quality analysis tool
such as SonarQube. For the sake of simplicity, we focus on rela-
tively simple regression modelling techniques and apply them to
modelling the additional project cost connected to the sub-optimal
conditions existing in the projects under study. Our results shows
that current techniques can be improved towards a more precise
estimation of technical debt and the case study shows promising
results towards the identification of more accurate estimation of
technical debt.

CCS CONCEPTS
• Software and its engineering→ Software organization and
properties; Correctness; Designing software; Software organiza-
tion and properties; Correctness; Designing software; Software
organization and properties; Correctness; Designing software.

KEYWORDS
Technical Debt, Machine Learning, Empirical Study

ACM Reference Format:
Valentina Lenarduzzi, Antonio Martini, Davide Taibi, and Damian Andrew
Tamburri. 2019. Towards Surgically-Precise Technical Debt Estimation:
Early Results and Research Roadmap. In Proceedings of the 3rd ACM SIGSOFT
International Workshop on Machine Learning Techniques for Software Quality
Evaluation (MaLTeSQuE ’19), August 27, 2019, Tallinn, Estonia. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3340482.3342747

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MaLTeSQuE ’19, August 27, 2019, Tallinn, Estonia
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6855-1/19/08. . . $15.00
https://doi.org/10.1145/3340482.3342747

1 INTRODUCTION
Companies commonly spend time to improve the quality of the
software they develop, investing effort into refactoring activities
aimed at removing technical issues believed to impact software
qualities. Technical issues include any kind of information that
can be derived from the source code and from the software pro-
cess, such as usage of specific patterns, compliance with coding or
documentation conventions, architectural issues, and many others.

Technical Debt (TD) is a metaphor from the economic domain
that ”refers to different software maintenance activities that are
postponed in favor of the development of new features in order
to get short-term payoff” [2]. The growth of TD commonly slows
down the development process [2], [13] and software companies
need to manage it. Many factors related to unpredictable business
or environmental forces internal or external to the company can
lead to TD [14], [1].

The adoption of tools to measure internal software quality is
increasing [11], [12] and SonarQube is one of the most used, since
it has been adopted by more than 100K organizations 1 including
nearly more than 15K public open-source projects 2.

More specifically, SonarQube checks code compliance against a
set of coding rules and calculates an estimated effort (remediation
time) to refactor the violated rule (TD items). The diffuseness of
TD items in software systems was well investigated [5], [4], [19],
[9]. To instrument a proper management of overall software main-
tenance costs, the individual and overarching impact of TD items
on software quality needs further attention, especially considering
that the severity of the impact is still not clear [19], [18]. Precise
understanding of which TD items developers should refactor and
at which costs is paramount for proper just-in-time management
of overall TD. Although developers typically gain a preliminary
overview of the TD considering all estimation rules in tools such
as SonarQube, still there is a clear need for instruments capable of
more precisely estimating the technical debt connected to every
single TD item, over time, and spanning a sufficient longitude to
encompass the inception of the TD item, its resolution, as well
as its eventual refactoring after resolution. For example, imagine
a TD item T1 (a bug or a code smell) being added at moment X,
removed at moment Y, and subsequently re-added/refactored at

1https://www.sonarqube.org
2https://sonarcloud.io/explore/projects

ar
X

iv
:1

90
8.

00
73

7v
1

 [
cs

.S
E

]
 2

 A
ug

 2
01

9

https://doi.org/10.1145/3340482.3342747
https://doi.org/10.1145/3340482.3342747

MaLTeSQuE ’19, August 27, 2019, Tallinn, Estonia Valentina Lenarduzzi, Antonio Martini, Davide Taibi, Damian Andrew Tamburri

moment Z. Current tools would offer a rule-based snapshot of three
distinct scenarios (X, Y, and Z) without properly understanding and
factoring into their estimation techniques the nature, nurture, and
dynamics around item T1.

In this paper, we aim to conceptualize a technical debt estima-
tion approach which is intended as ”Surgically-Precise”, that is,
it enables a more precise and fine-grained lens of analysis over
individual TD items, as well as the evolution of their code-related
history over time. We apply Machine-Learning techniques since
the aforementioned exercise is a predictive modelling exercise, and
start by getting a preliminary model of the actual gap between
the rule-based approach of SonarQube (as represented by its own
estimations using its own atomic metrics) with respect to the actual
timings and costs evident from the history of software projects in
our dataset.

Section 2 describes the tool-based technical debt estimation,
while Section 3 outlines the motivation of this study. Section 4
describes our proposed approach to estimate technical debt. Sec-
tion 6 presents related works. Section 5 identifies the threats to the
validity of our study, and Section 7 draws conclusions and give an
outlook on possible future work.

2 TOOL-BASED TECHNICAL DEBT
ESTIMATION: THE SONARQUBE
APPROACH

SonarQube is one of the most common open-source static code anal-
ysis tools for measuring code technical debt. SonarQube is provided
as a service by the sonarcloud.io platform or can be downloaded
and executed on a private server.

SonarQube calculates several metrics such as number of lines
of code and code complexity, and verifies the code’s compliance
against a specific set of ”coding rules” defined for most common
development languages.

If the analyzed source code violates a coding rule, SonarQube
generates a ”TD issue”. The time needed to remove these issues
(remediation effort) is used to calculate the remediation cost and
the technical debt. SonarQube includes reliability, maintainability,
and security rules.

Reliability rules, also named Bugs, create TD issues that ”repre-
sent something wrong in the code” and that will soon be reflected in
a bug. Code smells are considered ”maintainability-related issues” in
the code that decrease code readability and code modifiability. It is
important to note that the term ”code smells” adopted in SonarQube
does not refer to the commonly known term code smells defined
by Fowler et al. [7], but to a different set of rules.

Moreover, SonarQube calculates three types of technical debt 3:

• Technical debt. SonarQube calculated the technical debt as
sqale index that is ”the Effort to fix all Code Smells” in terms
of in minutes.

• Reliability remediation effort. SonarQube calculated the
Reliability remediation effort as reliability remediation effort
that is ”the Effort to fix all bug issues”.

3https://docs.sonarqube.org/latest/user-guide/metric-definitions/

• Security remediation effort. SonarQube calculated Secu-
rity remediation effort as security remediation effort that is
”the Effort to fix all vulnerability issues”.

3 MOTIVATION
SonarQube is currently adopted by more than 98% of the public
projects 4. SonarQube suggests to customize the out-of-the-box
set of rules (named ”sonar way”). However, customers are reluc-
tant to do it and mostly rely on the standard rule-set (aka ”sonar
way”) [22]. Developers are not completely sure about the rules
usefulness [22], [20], without discriminating among the different
rules categories. Generally, developers remove violations according
to high severity level [22] to reduce risk of faults [20].

Moreover, recent studies confirm developers concerns [9]; such
studies investigate the fault proneness of SonarQube violations, to
understand which violations are actually fault-prone and to assess
the fault-prediction model accuracy. They conducted an empirical
study on 21 well-known mature open-source projects from Apache
Software Foundations (ASF). Each fault-inducing commit was la-
beled applying the SZZ algorithm and analyzed with eight machine
learning techniques (Logistic Regression, Decision Tree, Random
Forest, Extremely Randomized Trees, AdaBoost, Gradient Boosting,
XGBoost).

Results showed that among the 202 SonarQube violations, only
26 are low fault prone and violations classified as ”bugs” hardly
never led to a failure. Moreover, the fault-prediction model accu-
racy is extremely low (AUC 50.94%) compared with the accuracy
considering only the 26 violations correctly labeled as fault prone
(AUC 83%).

The results confirmed that the SonarQube rules should be thor-
oughly investigated in order to understand which ones are really
harmfulness to reduce Technical Debt.

Based on this, we investigated if the SonarQube technical debt
could be derived from the other metrics that SonarQube measured
and not involved in the computation.

For this purpose, we conducted an empirical study as a case
study based on the guidelines defined by Runeson and H’́ost [17].

Goal and Research Questions. The goal of this study is to investi-
gate if Technical Debt could be derived from software metrics. So,
we derived the following Research Question:

RQ: To what extent can basic software metrics allow con-
tinuous prediction of technical debt?

More specifically, we are interested in knowing more about the
intimate nature of technical debt items while allowing for a more
precise, instantaneous, and continuous estimation of technical debt
over time. We aim at understanding (a) what software metrics allow
for a better estimation of the actual added project cost connected to
specific TD items as well as (b) which classifier is most promising
to instrument such prediction. Therefore, we formulate two sub-
research questions:

4SonarQube Quality Profiles: https://docs.sonarqube.org/display/SONAR/
Quality+Profiles Last Access:May 2018

Towards Surgically-Precise Technical Debt Estimation: Early Results and Research Roadmap MaLTeSQuE ’19, August 27, 2019, Tallinn, Estonia

RQ1.1 what software quality metrics from SonarQube better in-
strument a prediction of technical debt?

RQ1.2 what classifier is better fit to instrument a prediction of
technical debt?

Context. For this study, we adopted the projects included in
the Technical Debt Dataset [10]. The projects in the dataset were
selected projects based on ”criterion sampling” [16]. The selected
projects had to fulfill all of the following criteria:

• Developed in Java;
• Older than three years;
• Featuring More than 500 commits;
• Featuring More than 100 classes;
• Using of an issue tracking system with at least 100 issues
reported;

Moreover, as recommended by Nagappan et al. [15], we also
tried to maximize diversity and representativeness by considering
a comparable number of projects with respect to project age, size,
and domain.

Based on these criteria, we selected 33 Java projects from the
Apache Software Foundation (ASF) repository 5. This repository
includes some of the most widely used software solutions. The
available projects can be considered industrial and mature, due
to the strict review and inclusion process required by the ASF.
Moreover, the included projects regularly review their code and
follow a strict quality process 6.

In Table 1, we report the list of the 33 projects we considered
together with the number of analyzed commits, the project sizes
(LOC) of the last analyzed commits, and the number of artifacts in
the commits.

Data Collection. All selected projects were cloned from their Git
repositories. Each commit was analyzed using SonarQube’s default
rule set. We exported results as a csv file using SonarQube APIs7.
The analysis was performed by taking a snapshot of themain branch
of each project every 180 days. Furthermore, we collected the 28
software metricsmeasured by SonarQube as listed in Table 2, and the
two types of technical debt8 defined by SonarQube:Maintainability
remediation effort (also known as ”Squale Index” and reliability
remediation effort.We did not considered security remediation effort,
since SonarQube does not provide software metrics clearly useful
to predict it (Table 2).

Data Analysis. Similarly to previous work [3], we selected 8
Machine Learning techniques, namely, Linear Regression, Random
Forest, Gradient Boost, Extra Trees, Decision Trees, Bagging, AdaBoost,
SVM, to overcome to the limitation of the different techniques. We
performed a second analysis retraining the models using a drop-
column mechanism [21]. This mechanism is a simplified variant
of the exhaustive search [23], which iteratively tests every subset
of features for their regression performance. The full exhaustive
search is very time-consuming requiring 2P train-evaluation steps
for a P-dimensional feature space. Instead, we look only at dropping
individual features one at a time, instead of all possible groups of
5http://apache.org
6https://incubator.apache.org/policy/process.html
7the data is available in the replication package
8https://docs.sonarqube.org/latest/user-guide/metric-definitions/

Table 1: Description of the selected projects

Name Analyzed Commits #LOC #Artifacts# Timeframe
Accumulo 3 2011/10 - 2013/03 307,167 4,137
Ambari 8 2011/08 - 2015/08 774,181 3,047
Atlas 7 2014/11 - 2018/05 206,253 1,443
Aurora 16 2010/04 - 2018/03 103,395 1,028
Batik 3 2000/10 - 2002/04 141,990 1,969
BCEL 32 2001/10 - 2018/02 43,803 522
Beam 3 2014/12 - 2016/06 135,199 2,421
BeanUtils 33 2001/03 - 2018/06 35,769 332
Cocoon 7 2003/02 - 2006/08 398,984 3,120
Codec 30 2003/04 - 2018/02 21,932 147
Collections 35 2001/04 - 2018/07 66,381 750
Commons CLI 29 2002/06 - 2017/09 9,547 58
Commons Configura-
tion

29 2003/12 - 2018/04 87,553 565

Commons Daemon 27 2003/09 - 2017/12 4,613 24
Commons DBCP 33 2001/04 - 2018/01 23,646 139
Commons DbUtils 26 2003/11 - 2018/02 8,441 108
Commons Digester 30 2001/05 - 2017/08 26,637 340
Commons Exec 21 2005/07 - 2017/11 4,815 56
Commons FileUpload 28 2002/03 - 2017/12 6,296 69
Commons HttpClient 25 2005/12 - 2018/04 74,396 779
Commons IO 33 2002/01 - 2018/05 33,040 274 0
Commons Jelly 24 2002/02 - 2017/05 30,100 584
Commons JEXL 31 2002/04 - 2018/02 27,821 333
Commons JXPath 29 2001/08 - 2017/11 28,688 253
Commons Net 32 2002/04 - 2018/01 30,956 276
Commons OGNL 8 2011/05 - 2016/10 22,567 333
Commons Validator 30 2002/01 - 2018/04 19,958 161
Commons VFS 32 2002/07 - 2018/04 32,400 432
Felix 2 2005/07 - 2006/07 55,298 687
HttpCore 21 2005/02 - 2017/06 60,565 739
Santuario 33 2001/09 - 2018/01 124,782 839
SSHD 19 2008/12 - 2018/04 94,442 1,103
ZooKeeper 7 2014/07 - 2018/01 72,223 835
Sum 726 2,528,636 27,903

features. For each regressor, to easily gauge the overall accuracy of
the machine learning algorithm in a model, we calculated R2 and
the Mean Absolute Error (MAE).

MAE is defined as follow:

MAE =
n∑
i=1

|actual valuei − estimated_valuei |
n

Results. We report the results obtained in order to answer to our
RQ in Table 3 and Table 4. As we can see, even if the R2 is good
in many cases, the accuracy (MAE) is very low for all the machine
learning techniques applied in this study.

Table 3: Maintainability remediation effort vs All Metrics

Regressor MAE MAE_std R2 R2_std
Linear Regression 9,382.623 4,372.698 0.952 0.075
Random Forest 6,594.945 1,161.236 0.976 0.019
Gradient Boost 7,717.614 1,150.637 0.974 0.022
Extra Trees 5,789.625 1,404.204 0.981 0.017
Decision Trees 7,626.258 1,689.545 0.967 0.030
Bagging 6,663.218 1,120.130 0.976 0.019
AdaBoost 13,024.412 3,303.271 0.954 0.043
SVM 91,231.180 4,5517.892 -0.521 0.140

MaLTeSQuE ’19, August 27, 2019, Tallinn, Estonia Valentina Lenarduzzi, Antonio Martini, Davide Taibi, Damian Andrew Tamburri

Table 2: The software metrics

Metric Description
Size

Number of classes Number of classes (including nested classes, interfaces, enums and annotations).
Number of files Number of files.
Lines Number of physical lines (number of carriage returns).
Ncloc Also known as Effective Lines of Code (eLOC). Number of physical lines that contain at least one character which is neither a whitespace

nor a tabulation nor part of a comment.
Ncloc language distribution Non Commenting Lines of Code Distributed By Language
Number of classes and interfaces Number of Java classes and Java interfaces
Missing package info Missing package-info.java file (used to generate package-level documentation)
Package Number of packages
Statements Number of statements.
Number of directories Number of directories in the project, also including directories not containing code (e.g., images, other files...).
Number of functions Number of functions. Depending on the language, a function is either a function or a method or a paragraph.
Number of comment lines Number of lines containing either comment or commented-out code. Non-significant comment lines (empty comment lines, comment

lines containing only special characters, etc.) do not increase the number of comment lines.”
Number of comment lines density Density of comment lines = Comment lines / (Lines of code + Comment lines) * 100

Complexity
Complexity It is the Cyclomatic Complexity calculated based on the number of paths through the code. Whenever the control flow of a function

splits, the complexity counter gets incremented by one. Each function has a minimum complexity of 1. This calculation varies slightly by
language because keywords and functionalities do.

Class complexity Complexity average by class
Function complexity Complexity average by method
Function complexity distribution Distribution of method complexity
File complexity distribution Distribution of complexity per class
Cognitive complexity How hard it is to understand the code’s control flow.
Package dependency cycles Number of package dependency cycles

Test coverage
Coverage It is a mix of Line coverage and Condition coverage. Its goal is to provide an even more accurate answer to the following question: How

much of the source code has been covered by the unit tests?
Lines to cover Number of lines of code which could be covered by unit tests (for example, blank lines or full comments lines are not considered as lines

to cover).
Line coverage On a given line of code, Line coverage simply answers the following question: Has this line of code been executed during the execution

of the unit tests?
Uncovered lines Number of lines of code which are not covered by unit tests.

Duplication
Duplicated lines Number of lines involved in duplications
Duplicated blocks Number of duplicated blocks of lines.
Duplicated files Number of files involved in duplications.
Duplicated lines density = (duplicated lines ÷ lines) * 100

Table 4: Reliability remediation effort vs All Metrics

Regressor MAE MAE_std R2 R2_std
Linear Regression 259.860 92.249 0.839 0.237
Random Forest 360.371 146.910 0.324 0.699
Gradient Boost 429.584 142.428 0.210 0.812
Extra Trees 252.508 96.295 0.770 0.222
Decision Trees 359.689 206.836 0.372 0.616
Bagging 362.272 155.184 0.287 0.801
AdaBoost 488.048 101.195 0.348 0.566
SVM 1,583.805 1,571.807 -0.371 0.072

Based on the obtained results, we can notice that technical debt
and reliability remediation effort both are not correlated with the
28 software metrics measured by SonarQube. Moreover, we can
not able to determine which classifier better fits to instrument a
technical debt prediction.

4 SURGICALLY-PRECISE TECHNICAL DEBT
ESTIMATION: CONCEPT AND APPROACH

Our preliminary results, together with additional recent work re-
ported here, highlight how the current instruments for estimating
TD are not mature yet: in particular, current tools and metrics to
estimate Code Debt do not provide agreement regarding what to

refactor with respect to maintainability and reliability. Software
practitioners have a plethora of metrics and recommendations to
improve their code, but, in practice, it is difficult to prioritize the
right ones. This can have the negative effect of creating confusion
and keeping practitioners from using the available instruments to
estimate and refactor TD. There is a need for the development of
techniques that are precise enough for the practitioners to trust
them. We therefore propose two main approaches for future work,
in order to estimate TD in a surgically-precise way. In both cases,
the use of machine learning approaches would provide a great
opportunity to achieve such precision.

1. Estimation precision based on real impact and costs.
First and foremost, current metrics explored here do not take in
consideration real effort and costs incur by practitioners (principal
and interest of technical debt). Does a complex class lead to more
effort for developers? Domore violations highlighted by SonarQube
make the code really more difficult to change and bug prone? Are
these issues hindering developers in continuously deliver value to
the customers? We propose to refine the existing metrics and rec-
ommendations with the use of additional metrics related to project
costs and effort. The integration of such metrics would help in
creating a model where code smells and refactoring suggestions are

Towards Surgically-Precise Technical Debt Estimation: Early Results and Research Roadmap MaLTeSQuE ’19, August 27, 2019, Tallinn, Estonia

ranked higher if they are associated with higher negative impact,
and are therefore more important to refactor for the practition-
ers (in accordance with the technical debt theory). As an example,
code smells that have been associated with the occurrence of more
bugs should be prioritized by developers. Such surgically-precise
approach can make use of the most advanced machine learning
techniques in order to create a reliable cost-impact model to classify
and rank code smells.

2. Estimation precision based on historical data.During the
lifetime of software artefacts in a project, such artifacts undergo
various lifecycle stages. As part of these stages these artifacts are
incepted, refactored, deprecated, and more. To achieve surgically-
precise estimation, in this case we use techniques intended to take
into account the entire history of each TD item, either from a spe-
cific target project under analysis or related projects elsewhere in a
software ecosystem. In line with this assumption, we also assume
that each TD item has its own nature, evolutionary dynamics, as
well as nurture, causes, and effects. As such, we propose the use of
machine-learning approaches to encompass this analysis and pro-
vide for a precise estimation. The fundamental research concept we
propose is that the intimate nature of each TDEBT item should be
connected to the estimation mechanisms behind technical debt; if
debt is set to evolve conjointly with artefacts evolution and complex
mechanisms regulate its precise estimation then effort-estimation
for project success is, in turn, simplified and more precise, to a
point in which automated mechanisms can be used further to plan,
direct, and execute software maintenance and evolution activities.
Our conjecture is that machine-learning approaches can account
for such dynamics and offer a solution. Figure 1 offers an overview
of the intended context of analysis.

A
Artifact A is

created

X Y…

A
Artifact A is affected

by smell “b”

A
Artifact A is affected
by smell “b” and “c”

B
Artifact A is created and
introduces smell “c” in A

A
A and B
are fixed

B

T-DEBT
--- ---

TIMELINE

Figure 1: Approach and conceptual overview: artifacts
evolve over time and TDEBT should be estimated more pre-
cisely in a just-in-time fashion

In the context in question, softwaremetrics are used to keep track
of the nature of software artefacts part of a project, as well as the
variations in their status (e.g., including re-opened bugs, mutated

code-smells, etc.). In addition, project metrics can be used to take
into account costs and efforts. In turn, a predictive model can factor
in the metrics themselves and provide for evolving snapshots of
additional project cost (i.e., technical debt). In line with this concept
and approach, we envision the following challenges:

• TD estimation in conjunction to the lifecycle and evolution
of single TDEBT items. Different TD items might follow
different evolutions, for example the presence of a code smell
might create bugs in the short term but not in the long term.
In this case, a precise model would recognize such smell as
urgent to refactor.

• Continuous estimation of TD over time. Tapping into the
history of related projects or related refactoring scenarios,
TD could be estimated continuously using a comparative
analysis of within- and cross-project estimation.

• Association of TDwith impact metrics. A few impact metrics
have been proposed as proxies for effort and costs, such as
bug and change proneness, but additional project metrics
could help, e.g., bug-fixing times.

• Costs related to the refactoring of TD. TD items should be
weighted also with respect to the cost for their refactoring.
If a TD item has the same impact of another one, but itâĂŹs
known to take more time to refactor, the former should be
prioritized.

5 THREATS TO VALIDITY
In this Section, we will introduce the threats to validity and the
different tactics we adopted to mitigate them.

We selected 33 projects from the Apache Software Foundation,
which incubates only certain systems that follow specific and strict
quality rules. Our case study was not based only on one application
domain. This was avoided since we aimed to find general mathemat-
ical models for the prediction technical debt in a system. Choosing
only one or a very small number of application domains could have
been an indication of the non-generality of our study, as only pre-
diction models from the selected application domain would have
been chosen. The selected projects stem from a very large set of
application domains, ranging from external libraries, frameworks,
and web utilities to large computational infrastructures. The ap-
plication domain was not an important criterion for the selection
of the projects to be analyzed, but in any case we tried to balance
the selection and pick systems from as many contexts as possible.
We are considering only open source projects, and we cannot spec-
ulated on industrial projects. Moreover, we only considered Java
projects due to the limitation of the tools used (SonarQube provides
a different set of TD issues for each language) and results would
have not been comparable.

In our case, this threat could be represented by the analysis
method applied in our study. We reported the results considering
descriptive statistics. Moreover, instead of using only Logistic Re-
gression, we compared the prediction power of different classifier to
reduce the bias of the low prediction power that one single classifier
could have. We do not exclude the possibility that other statistical
or machine learning approaches such as Deep Learning or others
might have yielded similar or even better accuracy than our model-
ing approach. However, considering the extremely low importance

MaLTeSQuE ’19, August 27, 2019, Tallinn, Estonia Valentina Lenarduzzi, Antonio Martini, Davide Taibi, Damian Andrew Tamburri

of each TD Issue and its statistical significance, we do not expect
to find big differences applying other type of classifiers.

6 RELATEDWORK
Saarimaki et al. [18] investigated the accuracy of the remediation
time estimation asking to 65 novice developers to remove TD items
from 15 open source Java projects. They compared the effort needed
by developers to repay TD with the estimation proposed by Sonar-
Qube. Remediation time is generally overestimated by the tool
compared to the actual time for patching TD items. The most accu-
rate estimations are relate to code smells, while the least accurate
concern bugs.

Lenarduzzi et al. [9] investigated the fault proneness of Sonar-
Qube violations, in order to understand which violations are actu-
ally fault-prone and to assess the fault-prediction model accuracy.
They conducted an empirical study on 21 well-known mature open-
source projects from Apache Software Foundations (ASF). Each
fault-inducing commit was labeled applying the SZZ algorithm and
analyzed with eight machine learning techniques (Logistic Regres-
sion, Decision Tree, Random Forest, Extremely Randomized Trees,
AdaBoost, Gradient Boosting, XGBoost) Results showed that among
the 202 SonarQube violations, only 26 are low fault prone and vio-
lations classified as ”bugs” hardly never led to a failure. Moreover,
the fault-prediction model accuracy is extremely low (AUC 50.94%)
compared with the accuracy considering only the 26 violations cor-
rectly labeled as fault prone (AUC 83%). These results confirm that
the SonarQube rules should be thoroughly investigated in order to
understand which ones are really harmfulness to reduce technical
debt.

Falessi et al. [6] analyzed the the distribution of 16 metrics and
106 (out 202) SonarQube violations in an industrial project. More-
over this study also evaluated the fault-proneness of these measures.
They claimed that by removing violations, 20% of faults were pre-
ventable in the code.

Tollin et al. [8] investigated the change-proneness of SonarQube
violations applying machine learning techniques. They found that
the presence of violations increases change-proneness at class level.

7 CONCLUSION
In this work, we conceptualize a technical debt estimation approach
to enables a more precise and fine-grained analysis of technical
debt, based on the evolution of the software over time. We apply
the first steps of the approach to a dataset of 33 Java projects from
the Apache Software Foundation analyzing them with different
Machine-Learning techniques in order to get a preliminary model
of the actual gap between the rule-based approach of SonarQube
(as represented by its own estimations using its own metrics) with
respect to the actual timings and costs evident from the history of
software projects in our dataset.

The main outcome of our preliminary investigation is that the
current instruments for estimating TD are not mature yet. Despite
the big variety of available software metrics for software measure-
ment and improvement, it is very complex to understand which
metric to consider and how to prioritize their importance mainly
because current metrics explored do not take in consideration real
effort and costs incur by practitioners (principal and interest of
technical debt).

Future works include the application of this approach to a larger
data-set and the implementation of the approach on different type
of issues, including code smells, rules detected by SonarQube, but
also rules detected by other tools such as BetterCodeHub, Coverity
Scan and others9.

REFERENCES
[1] T. Besker, A. Martini, R. Edirisooriya Lokuge, K. Blincoe, and J. Bosch. 2018.

Embracing Technical Debt, from a Startup Company Perspective. In Int. Conf. on
Software Maintenance and Evolution (ICSME). 415–425.

[2] W. Cunningham. 1992. TheWyCash Portfolio Management System (OOPSLA-92).
[3] Dario Di Nucci, Fabio Palomba, Damian Tamburri, Alexander Serebrenik, and

Andrea De Lucia. 2018. Detecting Code Smells using Machine Learning Tech-
niques: Are We There Yet?. In Int. Conf. on Software Analysis, Evolution, and
Reengineering.

[4] G. Digkas, M. Lungu, P. Avgeriou, A. Chatzigeorgiou, and A. Ampatzoglou.
2018. How do developers fix issues and pay back technical debt in the Apache
ecosystem?. In SANER 2018. 153–163.

[5] G. Digkas, A. Chatzigeorgiou M. Lungu, and P. Avgeriou. 2017. The Evolution of
Technical Debt in the Apache Ecosystem. ECSA, 51–66.

[6] D. Falessi, B. Russo, and K. Mullen. 2017. What if I Had No Smells? ESEM 2017
(2017).

[7] M. Fowler and K. Beck. 1999. Refactoring: Improving the Design of Existing
Code. Addison-Wesley Longman Publishing Co., Inc. (1999).

[8] F. Arcelli Fontana I. Tollin, M. Zanoni, and R. Roveda. 2017. Change Prediction
Through Coding Rules Violations. Int. Conf. on Evaluation and Assessment in
Software Engineering, 61–64.

[9] Valentina Lenarduzzi, Francesco Lomio, Davide Taibi, and Heikki Huttunen. 2019.
On the Fault Proneness of SonarQube Technical Debt Violations: A comparison
of eight Machine Learning Techniques. arXiv:1907.00376 (2019).

[10] Valentina Lenarduzzi, Nyyti Saarimäki, and Davide Taibi. 2019. The Technical
Debt Dataset. In 15th conference on PREdictive Models and data analycs In Software
Engineering (PROMISE ’19).

[11] Valentina Lenarduzzi, Alberto Sillitti, and Davide Taibi. 2017. Analyzing Forty
Years of Software Maintenance Models. In Proceedings of the 39th International
Conference on Software Engineering Companion (ICSE-C ’17). 146–148.

[12] Valentina Lenarduzzi, Alberto Sillitti, and Davide Taibi. 2019. A Survey on Code
Analysis Tools for Software Maintenance Prediction. In Int. Conf. in Software
Engineering for Defence Applications.

[13] Wei Li and Raed Shatnawi. 2007. An Empirical Study of the Bad Smells and Class
Error Probability in the Post-release Object-oriented System Evolution. J. Syst.
Softw. 80, 7 (July 2007), 1120–1128.

[14] Antonio Martini, Jan Bosch, and Michel Chaudron. 2015. Investigating Architec-
tural Technical Debt accumulation and refactoring over time: A multiple-case
study. Information and Software Technology 67 (2015), 237 – 253.

[15] Meiyappan Nagappan, Thomas Zimmermann, and Christian Bird. 2013. Diversity
in Software Engineering Research. Joint Meeting on Foundations of Software
Engineering, 466–476.

[16] Michael Patton. 2002. Qualitative Evaluation and Research Methods. Sage, New-
bury Park.

[17] P. Runeson and M. Höst. 2009. Guidelines for Conducting and Reporting Case
Study Research in Software Engineering. Empirical Softw. Engg. 14, 2 (2009),
131–164.

[18] N. Saarimaki, M.T. Baldassarre, V. Lenarduzzi, and S. Romano. 2019. On the
Accuracy of SonarQube Technical Debt Remediation Time. SEAA Euromicro 2019
(2019).

[19] Nyyti Saarimäki, Valentina Lenarduzzi, and Davide Taibi. 2019. On the diffuseness
of code technical debt in open source projects. Int. Conf. on Technical Debt
(TechDebt 2019) (2019).

[20] D. Taibi, A. Janes, and V. Lenarduzzi. 2017. How developers perceive smells in
source code: A replicated study. Information and Software Technology 92 (2017),
223 – 235.

[21] Parr Terence, Turgutlu Kerem, Csiszar Christopher, and Howard Jeremy. 2018.
Beware Default Random Forest Importances. http://explained.ai/rf-importance/
index.html. (2018). Accessed: 2019-07-20.

[22] C. Vassallo, S. Panichella, F. Palomba, S. Proksch, A. Zaidman, and H. C. Gall.
2018. Context is king: The developer perspective on the usage of static analysis
tools. SANER 2018 (2018).

[23] Hyunjin Yoon, Kiyoung Yang, and Cyrus Shahabi. 2005. Feature subset selection
and feature ranking for multivariate time series. IEEE transactions on knowledge
and data engineering 17, 9 (2005), 1186–1198.

9Damian’s work is partially supported by the European Commission grants no. 787061
(H2020), ANITA, no. 825040 (H2020), RADON, no. 825480 (H2020), SODALITE.

http://explained.ai/rf-importance/index.html
http://explained.ai/rf-importance/index.html

	Abstract
	1 Introduction
	2 Tool-based Technical Debt Estimation: The SonarQube Approach
	3 Motivation
	4 Surgically-Precise Technical Debt Estimation: Concept and Approach
	5 Threats to Validity
	6 Related Work
	7 Conclusion
	References

