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Abstract
Machine learning models are extensively being
used to make decisions that have a significant im-
pact on human life. These models are trained over
historical data that may contain information about
sensitive attributes such as race, sex, religion, etc.
The presence of such sensitive attributes can im-
pact certain population subgroups unfairly. It is
straightforward to remove sensitive features from
the data; however, a model could pick up prejudice
from latent sensitive attributes that may exist in the
training data. This has led to the growing appre-
hension about the fairness of the employed mod-
els. In this paper, we propose a novel algorithm
that can effectively identify and treat latent discrim-
inating features. The approach is agnostic of the
learning algorithm and generalizes well for classi-
fication as well as regression tasks. It can also be
used as a key aid in proving that the model is free
of discrimination towards regulatory compliance
if the need arises. The approach helps to collect
discrimination-free features that would improve the
model performance while ensuring the fairness of
the model. The experimental results from our eval-
uations on publicly available real-world datasets
show a near-ideal fairness measurement in compar-
ison to other methods.

1 Introduction
Machine learning models are increasingly being employed
to aid decision-makers in all kinds of consequential decision
settings such as healthcare, education, employment, criminal
justice, etc. This amplifying use of model-based decision-
making process has raised concerns from policymakers, legal
experts, philosophers, and civil organizations about the preju-
dice (also called as bias) in the employed decision models that
rely on the statistical patterns learned from the real-world data
[Datta et al., 2015; Sweeney, 2013; Zhang and Ntoutsi, 2019;
Zliobaite, 2015].

A machine learning algorithm learns from historical in-
stances (i.e., training data) to produce decisions for future in-
stances. The learning algorithms are designed to learn statis-
tical patterns in the training data, and since these decision sys-

tems use real-world data, the unintended consequence is that
it can also potentially learn any unfair prejudice that may exist
in the real-world data. For example, credit scoring is often de-
cided based on the past credit data records, and the past credit
data records may contain less sampled minority classes that
could result in random predictions for minority classes. An-
other well-known example is of ProPublica COMPAS’s risk
assessments – COMPAS algorithm was being used to fore-
cast which criminals are most likely to re-offend – where it
was found that the results were displayed differently for black
and white offenders [Angwin et al., 2016].

As the application of machine learning and artificial intel-
ligence is becoming more prevalent, there is an increasing
concern to make the decision process socially and legally fair
i.e. non-discriminatory and fair in sensitive traits such as race,
sex, religion, etc. Several techniques have been proposed to
reduce or eliminate prejudice in machine learning models. A
naı̈ve approach is to avoid using sensitive features such as
race, sex, religion, etc. while learning the model. However,
machine learning algorithms are capable of learning complex
relations present in the data, and there could be certain indi-
rect data points that may serve as the proxy for these sensitive
features. For example, the mention of the phrase “Convener
of Grace Hopper Summit” in the resume may possibly indi-
cate that the candidate is a female though there is no explicit
mention of the sex. Hence, we need a more holistic mech-
anism to ensure that the data is free of such potential unfair
prejudice inducing features.

To address these challenges, we propose an algorithm that
automatically detects and treats the prejudice inducing fea-
tures from the dataset and then learns a fair model. The pro-
cess to detect and treat prejudice inducing features here is
interpretable and easily verifiable. Our approach processes
the dataset in an iterative way and removes information about
the features which are latently related to the known sensi-
tive attributes. The processed prejudice-free features can be
used by the downstream tasks to build fair models. The in-
formation about the detected prejudice inducing features can
also be used to understand the discrimination in the dataset
and the dataset can thus be altered accordingly. By provid-
ing interpretable information about the prejudice inducing
features in the dataset, our technique allows to collect bet-
ter prejudice-free features that are more directly related to
the model target variable than sensitive attributes. To vali-
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date our approach, we do a detailed experimental evaluation
on real-world datasets that show significant improvement in
fairness measures over prevailing methods. We have shown
the comparison of our technique against other well-known
methods [Calders and Verwer, 2010; Feldman et al., 2015;
Kamishima et al., 2012; Zafar et al., 2017].

The remainder of this paper is organized as follows. Sec-
tion 2 defines the basic notations. Section 3 reviews the re-
lated work. Section 4 discusses the proposed approach to
eliminate prejudice inducing features from the dataset and
learn a fair model. The experimental evaluation results are
presented in Section 5. Finally, we conclude the paper in Sec-
tion 6.

2 Basic Notations
Unfair treatment of people based on sensitive attributes such
as race or sex is prohibited by anti-discrimination laws in
many countries. Disparate impact is one of the metrics to
evaluate fairness under these laws. Disparate impact occurs
when decision system outcomes disproportionately impact
certain sub-populations. While there is no mathematical
formula for quantifying disparate impact, we use 80% rule
(or more generally p% rule) advocated by the US Equal
Employment Opportunity Commission (EEOC) [Feldman et
al., 2015]. Disparate impact is calculated as the proportion
of the unprivileged group that received the positive outcome
by the proportion of the privileged group that received the
positive outcome i.e.

Disparate Impact = Pr(Ŷ=1|S=unprivileged)
Pr(Ŷ=1|S=privileged)

where Ŷ represent the predicited variable and S repre-
sent the sensitive attribute class.

For cases with more than two possible values of sensitive
attributes, two variants of disparate impact could be consid-
ered i.e. binary and average. In the binary case, all unprivi-
leged and privileged classes are grouped together into one un-
privileged and privileged class respectively, and then a stan-
dard disparate impact formula is applied. In average case, all
pairwise disparate impact calculations are done for each of
the unprivileged and privileged class combinations, and the
average over all these calculations is reported [Friedler et al.,
2019].

A disparate impact score of near 1.0 would mean that the
model is fair. A lower value would mean that the model is
unfair to the unprivileged population, and a value above 1.0
would mean that the model favors the unprivileged popula-
tion. We use disparate impact as a fairness measure to demon-
strate and validate the performance of our algorithm.

Disparate treatment is another notion used by anti-
discrimination laws to evaluate the fairness of a decision-
making system. This notion occurs when known sensitive in-
formation is used by the model to make decisions. We avoid
disparate treatment by ensuring that known sensitive features
are removed from the dataset before learning the model [Za-
far et al., 2017].

Performance measurement for a binary classification prob-
lem at various thresholds settings is represented by AUC-

ROC (Area Under the Curve - Receiver Operating Charac-
teristics) curve which is the primary metric we use to make
dataset prejudice free. ROC is a probability curve, and AUC
represents the degree of measure of separability. Higher AUC
score conveys that the model is more capable of differentiat-
ing between target (positive and negative) classes. An AUC
score of 0.5 conveys that the model has no capacity to distin-
guish between positive and negative target class. We lever-
age the AUC metric to make the dataset indifferent to target
classes for each of the known sensitive features [Bradley,
1997]. In the case of multi-class classification problems, one
vs. all techniques could be used for calculating the AUC met-
ric.

We show accuracy vs. disparate-impact trade-off for
which accuracy of classification prediction is calculated as:

Accuracy = Number of correct predictions
Total number of predictions

For the purpose of this paper, we restrict the explana-
tion and demonstration scope of our technique to binary
classification tasks, but the technique can be easily extended
to multi-class classification and regression tasks.

3 Related Work
Fairness approaches generally fall into one of the follow-
ing categories: pre-processing, in-processing, and post-
processing. In each of these categories, a number of ap-
proaches have been proposed to address prejudice and learn
fair machine learning models.

Pre-processing approaches try to learn a new representa-
tion by removing correlation to (latent) sensitive attributes
and preserves the training dataset information as much as pos-
sible. These new representations can then be fed to down-
stream tasks to build a model free of prejudice. Some advan-
tages of these are that they don’t modify the existing learn-
ing algorithm implementation, and access to the sensitive at-
tributes is not required during the inference time. The tech-
nique we propose in this paper falls under this category of
fairness approaches. One of the well-known previous work
in this category is by [Zemel et al., 2013] that tries to learn
a new representation of the data that is independent of the
protected attribute by formulating fairness as an optimiza-
tion problem while retaining as much information as possible
about the features to encode the data and simultaneously ob-
fuscating any information about membership in the protected
group. [Kamiran and Calders, 2009] is another well-known
work in this category that selects the data points which are
closer to the decision boundary and ranks them. The label of
the ranked data points are carefully swapped in order to main-
tain the balance between classes and to minimize the loss of
predictive accuracy.

In-processing approaches take algorithms into considera-
tion, contrary to pre-processing approaches which are algo-
rithm agnostic, and modifies the cost function to also account
for fairness objectives. The most common idea leveraged by
these approaches is to add a penalty or a regularization term
to the existing optimization objective. [Calders and Verwer,
2010] proposes three naı̈ve-bayes classifier approaches that



fall under this category. The first approach modifies the prob-
ability of being positive to alter the decision distribution, the
second one trains a model per sensitive attribute and balances
them, and the third one optimizes the latent variable repre-
senting the prejudice free target by using expectation max-
imization methods. Another method is [Kamishima et al.,
2012] that modifies the cost function to add a regularization
term in order to restrict the model learner’s behavior from
sensitive information.

Post-processing approaches, on the other hand, try to cor-
rect trained model predictor in terms of fairness constraints
by adjusting the decision regions. In [Hardt et al., 2016], the
operating threshold of the machine learning model is decided
based on the ROC curves with respect to the targeted groups.
The point of intersection of these ROC signify equalized odds
i.e. both true and false positive rates are equal for targeted
groups. The point where true positives rates are equal for tar-
geted groups represents fairness according to the equality of
opportunity notion.

4 Prejudice Free Representations
As in the case of any supervised learning setting, we assume
that we have access to a labeled dataset (X, S, Y) where X
denotes feature vectors, S denotes known sensitive features,
and Y represents the target variable. We also assume that
the domain of each of the columns in S is limited to discrete
values, which is a common scenario in most of the real-world
tasks, for example, sex, race as sensitive features. We also
assume that known sensitive attributes are already removed
from X, thereby avoiding disparate treatment i.e. features in S
and X are mutually exclusive. The technique we propose here
effectively identify and remove latent discriminating features
present in the dataset (X, S, Y), while learning the model to
predict target variable Y.

4.1 Problem Formulation
For the dataset represented by (X,S, Y ), letM(Y |X,S) be
a prediction model that models the conditional distribution
of Y given X and S. Our objective is to ensure that model
M is free of prejudice from sensitive features S and latent
sensitive features among X . In other words, the conditions
Y ⊥⊥ S | X and S ⊥⊥ X should be satisfied to make the
model prejudice free. The first condition is easy to achieve
by simply eliminating the sensitive features S from prediction
model M, however Y ⊥⊥ S | X doesn’t guarantee Y ⊥⊥
S: for example one or more sensitive features are linear of
combinations of known non-sensitive features: S = X + εs.
Hence, we need a method to remove prejudice by making X
and Y independent from S simultaneously [Kamishima et al.,
2012].

Before defining a general framework, we pick logistic re-
gression as an example classification algorithm to discuss the
approach that ensures Y ⊥⊥ S and S ⊥⊥ X conditions. Let
D = {(x, s, y)} be the dataset comprising of the instances of
random variables X , S and Y . We modelM(Y |X,S; θ) to
predict the conditional probability of target variable Y where
θ represents the set of model parameter that are learnt. In a
typical case, the model parameters θ, are tuned to maximize

the log-likelihood given by equation 1:
θ̂ = argmax

θ

[
lnM

(
Y |X,S; θ

)]
= argmax

θ

[ ∑
(x,y)∈D

(
y ln

1

1 + e−xT θ
+
(
1− y

)
ln

1

1 + exT θ

)] (1)

In our modified setting, we learn the prejudice free model
in a two-step process through equation 2 and 3 where D′ =
{(x, s, y)} be the dataset comprising of the instances of ran-
dom variables X ′, S and Y :

X̂ ′ = arg min
X′⊂X

[
argmax

ω

[ ∑
(x,s)∈D′

(
s ln

1

1 + e−xTω
+
(
1− s

)
ln

1

1 + exTω

)]]
(2)

θ̂′ = argmax
θ′

[ ∑
(x,y)∈D′

(
y ln

1

1 + e−xT θ′
+
(
1− y

)
ln

1

1 + exT θ′

)]
(3)

Equation 2 minimizes the maximum likelihood of the
model that learns ω to predict the sensitive variables S from
X ′ where X ′ is a subset of features from X after eliminating
the most predictive features in an iterative manner. Equation 3
learns the maximum likelihood parameter to predict Y based
on prejudice free features X̂ which is the residual set of X ,
and therefore ensures the condition Y ⊥⊥ S. The Prejudice
Free Representations (PFR) algorithm in the next section pro-
vides a general framework for this approach that is agnostic
of the learning algorithm.

4.2 General Framework
In supervised learning, models evolve over iterations of fea-
ture engineering and hyperparameter tuning to optimize for
one or more key performance metrics such as precision, re-
call, ROC, AUC, etc. In feature engineering, we tend to add
more features to enhance the model’s predictive ability. Our
approach here applies what we call the inverse of feature en-
gineering where we remove features iteratively so that the
AUC of the model that predicts the sensitive variable falls
until the point when the model has no capacity to distinguish
between the classes of the sensitive variable.

Prejudice Free Representations (PFR) algorithm identifies
the latent discriminating features and removes them from the
dataset. To do so, it iteratively trains a classifier for each of
the features in S as target variable and removes the most im-
portant feature from the feature set, X, until the AUC of the
sensitive variable predicting model drops to the acceptable
fairness measure threshold represented by τ . The process is
repeated for each of the features in S. While the underly-
ing learning algorithm attempts to maximize AUC, the PFR
algorithm drives the AUC down by removing most predic-
tive feature in every iteration. In this process, latent features
that have a correlation to the sensitive features are removed
in a thorough manner. The output of the algorithm can be
fed to the learning algorithm to learn prejudice free predic-
tion model for target variable Y. Taking an example Logistic
Regression (LR) classifier, the PFR algorithm outputs a prej-
udice free dataset as per our modified setting in equation 2,
and the output dataset is then used to train a LR classifier as
per equation 3. For the LR classifier, the most important fea-
tures is the one with the maximum absolute weight where the
features are normalised.



(a) Race Sensitive Attribute (b) Sex Sensitive Attribute (c) Race & Sex Sensitive Attributes

Figure 1: Accuracy vs. Disparate Impact evaluation on Adult Income Dataset

Algorithm 1 Prejudice Free Representations
Notations:
ζ - function to train a classifier
ψ - function to get AUC score
η - function to get most important feature
Input:
X - feature vectors
S - known sensitive features
τ - auc thresholds for sensitive features
Initliaze: X ′ = X−min(X)

max(X)−min(X) // min-max scaling X
Output: prejudice free dataset
Process:

1: ∀(si, τi) ∈ (S, τ)
2: M := ζ(X ′, si)
3: auc := ψ(M, X ′, si)
4: while auc > τi do
5: f := η(M, X ′)
6: X ′ := X ′ \ f
7: M := ζ(X ′, si)
8: auc := ψ(M, X ′, si)
9: end while

10: return X ′

Algorithm 1 above provides a pseudocode implementation
of the PFR algorithm. The algorithm provides a (best-first)
greedy feature selection and removal mechanism to eliminate
the prejudice inducing features, but the formulation and ap-
proach could be generalized to other feature selection meth-
ods as well. A few things to take note of are that the feature
vectors ofX are scaled before applying the algorithm as it re-
quires relative feature importance values which can be known
only when the features are normalized. The other thing is
about the AUC threshold value τ . The value τ for a binary
classifier is calculated as a function of target class imbalance.
For example, if the domain of target variable is {0, 1}, then
the τi for a sensitive feature si is calculated as:

τi =
max(|si \ {0}|, |si \ {1}|)

|si|
(4)

It is therefore advisable to set AUC threshold τ as per equa-
tion 4. The parameter τ could be varied to handle Accuracy
vs. Fairness-Measure trade-off as discussed more in the ex-

perimental section below.
The algorithm generalizes well for any classification algo-

rithm where the feature importance score could be known,
such as logistic regression, decision tree-based classifiers,
neural networks, etc. As we use the same algorithm that
is used to train the target model to identify and remove the
prejudice inducing features, the approach provides a verifi-
able guarantee that the target model is free of prejudice. The
dataset processed by the algorithm can also be fed to down-
stream learning tasks such as regression and classification to
build prejudice free models. For example, the prejudice free
datasets created using logistic regression algorithm can be
used to train a linear regression, or an SVM model.

5 Experiments
We evaluate our approach on a couple of publicly available
real-world datasets. The first goal of our experiments is to
show the trade-off between accuracy and fairness measure.
To this end, we evaluate our approach with different τ param-
eter values and with multiple sensitive attributes. We demon-
strate our approach with the Logisitic Regression (LR) clas-
sifier and compare it with the standard LR classifier. The sec-
ond goal is to analyze our approach with multiple sensitive at-
tributes where we show that our approach iteratively removes
prejudiced features for each of the known sensitive attributes.

The final goal of our experiments is to compare the perfor-
mance metrics of our approach to other known fairness meth-
ods. We leverage the fairness-comparison open source library
[Friedler et al., 2019] to access datasets and implementations
of other known methods. The library provides comparative
study of other well-known fairness methods and is meant to
facilitate the benchmarking of fairness aware machine learn-
ing algorithms.

5.1 Datasets
Adult Income This dataset contains information about
individuals from the 1994 U.S. census. It consists of 32,561
instances and 14 attributes, including sensitive attributes
race and sex. The prediction task is determining whether
an individual makes more or less than $50,000 per year
[Friedler et al., 2019].
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Figure 2: Accuracy vs. Disparate Impact evaluation on ProPublica Recidivism Dataset

Attribute Values
marital-status Married-AF-spouse, Separated
native-country Italy, Haiti, Portugal, Tri-

nadad&Tobago, Greece, Yugoslavia,
Laos, Scotland, Cambodia, Hungary,
China, Canada, South, Poland, Viet-
nam, Ireland, El-Salvador, Taiwan,
Guatemala, Philippines, Honduras,
Peru, Hong, Cuba, India, Mexico,
Jamaica,Thailand, France, Nicaragua,
Columbia, Iran,Germany, United-
States

Table 1: PFR Detected Prejudice Inducing Features on Adult In-
come Dataset with Race Sensitive Attribute at τ = 0.70.

ProPublica Recidivism This dataset includes features
such as the number of juvenile felonies and the charge degree
of the current arrest for 6,167 individuals with 15 attributes,
including sensitive attributes race and sex. This dataset was
collected by the use of the COMPAS risk assessment tool
in Broward County, Florida [Angwin et al. 2016]. Each
individual has a binary “recidivism” outcome, that is the
prediction task, indicating whether they were rearrested
within two years after the first arrest [Friedler et al., 2019].

For both the datasets, we do minority target classes
oversampling since the target classes are skewed in terms of
sensitive attributes as target variable. Categorical features in
both the datasets are converted to one-hot encoded vectors
to make them numerical before passing it to the learning
algorithm. We consider White and Male as privileged classes
for Race and Sex sensitive attribute in Adult Income Dataset,
and Caucasian and Male as privileged classes for Race and
Sex sensitive attribute in ProPublica Recidivism Dataset
respectively.

5.2 Accuracy vs. Disparate Impact
Figure 1 and 2 shows accuracy vs. disparate impact trade-off
results on Adult Income Dataset and ProPublica Recidivism
Dataset respectively. The results show this trade-off on three
different set of sensitive attributes i.e. Race, Sex and Race &

Attribute Values
age continous
workclass Self-emp-inc, Without-pay, Local-gov
marital-status Married-civ-spouse, Divorced, Sep-

arated, Widowed, Married-spouse-
absent

hours-per-week continuous
native-country Cambodia, Thailand, Honduras, In-

dia, Hungary, Scotland, Dominican-
Republic, Outlying-US(Guam-USVI-
etc), China

Table 2: PFR Detected Prejudice Inducing Features on Adult In-
come Dataset with Sex Sensitive Attribute at τ = 0.70.

Sex, with different τ parameter values which influences the
degree of prejudice removal. As expected, PFR iteratively
removes prejudice inducing features from the dataset, as we
lower the value of τ , thereby consistently pushing the dis-
parate impact value close to 1.0, which is the ideal value for
a fair model. The figures also show that the trade-off between
accuracy and fairness measure can be decided based on dif-
ferent τ values.

Figure 3 supports this further where we can see that the
probability of predicting a positive class with respect to priv-
ileged and unprivileged classes is pushed more towards an
ideal condition by our approach when compared to the stan-
dard LR classifier where ideal condition is the line satisfying
positive class predicting probability to be same for both priv-
ileged and unprivileged classes.

Since PFR iteratively removes the prejudice inducing fea-
tures, the drop in accuracy of the target model as we lower
the value of τ could be compensated by adding more features
that are non-discriminating in nature. Table 1 and 2 shows the
detected prejudice inducing features at τ = 0.70 for Adult
Income Dataset with race and sex as sensitive attributes. We
can see that with race attribute, the detected prejudice induc-
ing features are mostly about ‘native-country‘ which is as ex-
pected. In the case of the sex attribute, what is interesting is
that ‘hours-per-week‘ is detected as prejudice inducing fea-
ture which would not very obvious for human eyes as it takes
a continous value and would not have been trivially detected



by just looking at the dataset.
With our approach, we advocate that the disparate impact

of near one should be achieved at any cost, and accuracy
should be improved only through non-prejudice inducing fea-
tures.

(a) Race Sensitive Attribute (b) Sex Sensitive Attribute

Figure 3: PFR push the probability of predicting positive class with
respect to privileged and unprivileged classes towards ideal condi-
tion on Adult Income Dataset

5.3 Multiple Sensitive Attributes
For the tasks where prejudice against multiple sensitive at-
tributes, like race, sex, etc., have to be handled, the proposed
approach can be iteratively applied for each of the known
sensitive attributes to eliminate prejudice inducing features.
Figures 1c and 2c show working of the approach on Race &
Sex as sensitive attributes. To further understand the relation
of applying our approach on multiple attributes, we analyze
Accuracy vs. τ and Disparate Impact vs. τ performance met-
rics on Adult Income Dataset. Figure 4 shows the result with
Race, Sex and Race & Sex as sensitive attributes. As one can
see with Race & Sex as multiple attributes, our approach re-
sults lie somewhere in the middle of Race and Sex as separate
sensitive attributes i.e. our approach tries to remove prejudice
inducing features in terms of both sensitive attributes, for Ac-
curacy and Disparate Impact case which is also as expected
by [Friedler et al., 2019].

(a) Accuracy (b) Disparate Impact

Figure 4: Performance metrics for sensitive attributes at different τ
values on Adult Income Dataset

5.4 Algorithms Comparison
We benchmark our algorithm to existing well-known fairness
methods; these implementations are leveraged from [Friedler
et al., 2019].

In Figure 5a and 5b, we have plotted the output of PFR
algorithms at different τ values and connected the dots to ap-
proximately show the trade-off between disparate impact and
accuracy as a continuous function though it is not practical
to measure the disparate impact metric at all accuracy values.
In addition, the output of other well-known algorithms sup-
ported by [Friedler et al., 2019] framework are also plotted
for comparison. In Figure 5a, we see that PFR beats all ex-
cept Feldman in terms of disparate impact while giving com-
parable accuracy. However, in Figure 5b, other algorithms
perform marginally better than PFR in terms of accuracy. In
both the figures, we could see that PFR outperforms other al-
gorithms in terms of disparate impact metric alone as it could
push disparate impact closer to 1.0 at lower τ value. As pre-
viously called out, the accuracy could be improved by adding
more features that are not correlated to the sensitive variables.

(a) Adult Income
Dataset

(b) ProPublica Recidivism
Dataset

Figure 5: Accuracy vs. Disparate Impact comparison of differernt
algorithms with Race Sensitive Attribute

6 Conclusion & Future Work
We proposed an efficient approach that effectively identifies
and treats the latent prejudice inducing features that (may)
exist in training data. The approach provides a verifiable
guarantee that the model is free of prejudice as we use the
same algorithm that is used to train the model also to iden-
tify and eliminate the prejudice inducing features. Since the
approach eliminates prejudice inducing features in an itera-
tive fashion, it provides information about which features are
linked to sensitive attributes. The information about the re-
moved features complements the feature engineering process
to add more features that are free of correlation with the sensi-
tive attributes, therefore improving accuracy while maintain-
ing fairness measure. Our experiments support that the ap-
proach helps to achieve a near-ideal fairness metric.

The approach can be used to identify and remove latent
sensitive features and then train a fair model on the resid-
ual features using other learning algorithms, both supervised
and unsupervised. Also, we could use our approach with in-
processing fairness methods by feeding them with informa-
tion about the detected prejudice inducing features as input.
As an extension to the approach, we plan to devise an al-
gorithm that will detect and penalize the prejudice inducing
features instead of removing them, by dynamically learning
the appropriate penalties for each such feature.
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