
Describing and Predicting Online Items with Reshare Cascades
via Dual Mixture Self-exciting Processes

Quyu Kong
Australian National University &

UTS & Data61, CSIRO
Canberra, Australia

quyu.kong@anu.edu.au

Marian-Andrei Rizoiu
University of Technology Sydney &

Data61, CSIRO
Sydney, Australia

marian-andrei.rizoiu@uts.edu.au

Lexing Xie
Australian National University &

Data61, CSIRO
Canberra, Australia

lexing.xie@anu.edu.au

ABSTRACT
It is well-known that online behavior is long-tailed, with most cas-
caded actions being short and a few being very long. A prominent
drawback in generative models for online events is the inability to
describe unpopular items well. This work addresses these shortcom-
ings by proposing dual mixture self-exciting processes to jointly
learn from groups of cascades. We first start from the observation
that maximum likelihood estimates for content virality and influ-
ence decay are separable in a Hawkes process. Next, our proposed
model, which leverages a Borel mixture model and a kernel mix-
ture model, jointly models the unfolding of a heterogeneous set of
cascades. When applied to cascades of the same online items, the
model directly characterizes their spread dynamics and supplies
interpretable quantities, such as content virality and content in-
fluence decay, as well as methods for predicting the final content
popularities. On two retweet cascade datasets — one relating to
YouTube videos and the second relating to controversial news arti-
cles — we show that our models capture the differences between
online items at the granularity of items, publishers and categories.
In particular, we are able to distinguish between far-right, con-
spiracy, controversial and reputable online news articles based on
how they diffuse through social media, achieving an F1 score of
0.945. On holdout datasets, we show that the dual mixture model
provides, for reshare diffusion cascades especially unpopular ones,
better generalization performance and, for online items, accurate
item popularity predictions.
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1 INTRODUCTION
Online social media platforms disseminate a wide array of content,
such as news articles, photos and videos. For instance, it is common
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for users to tweet about YouTube videos they enjoy, which are in
turn retweeted by their followers, resulting in diffusion cascades
of reshares. The amount of reshares that an item attracts on the
social media platform can consistently influence the total attention
that the item receives, also defined as its popularity. Not all content
is made equal and, intuitively, the capacity to command reshare
cascades in social media and their characteristics are informative of
the content’s type, publisher or even veracity (say for online news).
In this work, we characterize online items based on how they are
shared and diffused through online social media.

When studying what makes diffusion cascades popular, a family
of point process based models, known as the Hawkes processes,
has attracted growing attention [37, 54]. Most modeling efforts
concentrate on learning from popular diffusions, usually discarding
unpopular ones. For instance, Zhao et al. [54] only study cascades
with at least 50 retweets. However, to characterize online items it is
not feasible to apply the same cascade-level filtering, as all online
items generate both “successful” and “unsuccessful” diffusions. In
fact, the latter makes up for a large portion of all cascades, even for
popular items, due to the long-tailed distributions [21].

In this work, we address two open questions relating to charac-
terizing online items using their social media reshare cascades.

The first open question relates to jointly modeling a group of
heterogeneous cascades of the same item. Popularities are known to
be hard to predict, whether one uses discriminative predictors [14]
or generative models [41]. This suggests that learning from popular
diffusions on an online item leads to modeling bias as it omits the
dynamics of unpopular cascades. The question is: what represen-
tations can account for the diffusions of an online item, as
a collection of popular and unpopular cascades? We answer
this question in two steps. First, we adopt a new representation
for Hawkes point processes that decouples content virality and
influence decay (i.e., the decaying of influence from a reshare ac-
tion). As a result, we find that the maximum likelihood estimates of
model parameters are also separable, leading to a seprate learning
over multiple cascades. In the second step, we propose a novel
dual mixture self-exciting model that captures the diverse diffusion
dynamics that each online item encounters across a set of cascades.
One is a Borel mixture model [16] that accounts for the distribution
of final reshare counts for each cascade in the set, and the other is a
kernel mixture model that controls the inter-arrival time dynamics
for capturing influence decaying dynamics. Fig. 1 illustrates the
model where a group of cascades (left) relating to a video is modeled
by the dual mixture model (middle) and the two fitted models are
combined to form the intensity function of the mixture processes
(right).
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The second open question is how can we apply the mixture
models to describe online items and predict final content
popularities? Fitted model parameters and derived quantities are
commonly used for analyzing individual reshare cascades [37]. One
can describe an online item or a content producer by compiling
the key parameters of the dual mixture models. In this work, we
build quantities that summarize respectively an item’s content vi-
rality and influence decay. We also construct diffusion embeddings
that describe the item/producer reshare dynamics and can be used
with off-the-shelf supervised and unsupervised tools. We deploy
our methods on two large-scale retweet cascade datasets, the first
about YouTube videos and the second around far-right, conspir-
acy, controversial and reputable online news articles. When using
the diffusion embeddings, we find that content producers group
together with respect to video category and publisher virality in
the YouTube dataset. For the news dataset, the publishers of rep-
utable and controversial news form two separable clusters, and
we obtain an F1 score of 0.945 when using a Gradient Boosting
Machine to distinguish the two types of news. To accurately predict
the final popularities of newly posted items, we fit our proposed
dual mixture model on the historical information — how previously
posted items spread — and we leverage it for recent items. On both
datasets, we show that for individual cascades the dual mixture
models provide improved generalization performance compared to
individual cascade fits [37] and non-mixture models, especially for
unpopular cascades. For online items, the model obtains the best
final popularity prediction when compared against feature-based
regressors and the state-of-the-art generative models [29, 54].

The main contributions of this work are:

• Separable joint learning.We adopt a new representation for
Hawkes processes that separates virality and influence decay,
which leads to a separable learning of model parameters in the
maximum likelihood estimates

• Dual mixture self-exciting processes. We design mixture
models for the two separable model factors — a Borel mixture
for the virality, and a kernel mixture for the influence decay — in
order to capture the diverse diffusion dynamics that each online
item encounters across a set of cascades.

• Item characterization and item popularity prediction.We
propose a set of tools to quantify online items using their spread
dynamics: derived quantities, and the diffusion embeddings. We
also propose methods for predicting item final popularities.

• Two real-world case studies. On two large retweet datasets,
we show our methods are effective for the unsupervised ex-
ploratory analysis of collections of online publishers, and in
predicting content category — for example whether a news ar-
ticle is controversial. We also show better generalization and
popularity prediction performances for unseen items.

2 RELATEDWORK
Generative models are commonly employed for modeling temporal
diffusions of online information. Such models are designed to pre-
dict final popularities [6, 54], uncover hidden diffusion networks
[22] and detect rumors [33]. Feature-driven models predict pop-
ularity by training machine learning algorithms using statistical

Figure 1: Given a group of cascades relating to an online
item (e.g., a YouTube video), the dual mixture model fits sep-
arately a Borel mixture model (BMM) on the cascade event
counts, and a kernel mixture model (KMM) on the inter-
arrival times. Finally, the fitted BMM and KMM are com-
bined to construct the Hawkes intensity functions.

summaries of resharing events together with user features and con-
tent features [5, 35]. However, to our knowledge, most of the prior
work concentrate on popular cascades, and the complete temporal
information of the unpopular diffusions is rarely considered.

Hawkes processes [27] are a class of self-exciting point processes
— past events spawn future events — widely applied in analyzing
social media [13, 28, 53], earthquake aftershocks [39], neuronal
activity [1], online advertising [40] and finance [4]. The distribution
of event counts of Hawkes processes has not been explored until
recently. While Rizoiu et al. [41] and Daw and Pender [16] are able
to obtain the distribution under certain assumptions, O’Brien et al.
[38] show a method to numerically approximate actual event count
distributions. Our work enhances the understanding of Hawkes
processes by connecting its log-likelihood function with the event
count distribution.

Existing work leveraging mixture with temporal point processes
focuses on two levels. Event-level mixture modeling clusters indi-
vidual events from a sequence [19, 52], whereas, as in our work,
sequence-level mixture modeling identifies clusters of event se-
quences [49]. The prior work most relevant to ours is by Xu and
Zha [51]. Their model integrates Hawkes processes and a Dirichlet
distribution for learning event sequence groups. Our work extends
the prior literature in several ways. First, we derive two separate
mixture models from Hawkes processes for modeling content viral-
ity and content influence decay separately. Second, we apply the
models to complete historical diffusion cascades for learning and
quantifying temporal dynamics of online items.

3 PRELIMINARIES
In this section, we first define diffusion cascades. Next, we introduce
the Hawkes processes, together with essential concepts including
its cluster representation, branching factor, size distribution and
likelihood function.
Diffusion cascades. In online social media platforms, such as
Twitter, users read content posted by others, and they can re-
share it, exposing the content to a broader audience. The initial
posting event and the following reshare events together consti-
tute a diffusion cascade. In this work, we analyze groups of cas-
cades that discuss about the same online items, e.g., an online



Figure 2: The cluster representation of a Hawkes process.
Each individual event ti initiates an inhomogeneous Poisson
process with the intensity function n∗д(t − ti ) (identical for
all events). Different generations of events are shown in dis-
tinct colors; arrows indicate the parent-offspring relation;
and the event counts at each generation form a branching
process, i.e., {Z0,Z1,Z3, . . . }.

video [42], an image meme [30], or a news article [43]. Mathe-
matically, we denote a cascade i discussing an online item v as
Hv,i = {t0, t1, t2, . . . , tNv,i−1} where Nv,i ≥ 1 is the number
of events in cascade i of item v , ∀tj ∈ Hv,i are event times
on [0,∞) relative to t0 and t0 = 0 is the initial event time. Let
Hv,i (T ),Nv,i (T ) represent the event set and the event count be-
fore time T , respectively, i.e., Hv,i (T ) = {tj | tj ∈ Hv,i , tj < T }
and Nv,i (T ) = | Hv,i (T )|. The total event count Nv,i is also known
as the popularity of the cascade i . The popularity of the online item
v is then the total popularity of all related cascades.
Hawkes processes are special classes of self-exciting point pro-
cesses in which the occurrence of new events will increase the
likelihood of future event happening [26]. In Hawkes processes, the
event intensity is a function conditioned on the past occurred events
and we choose the intensity function in a form similar to [54]:

λ(t | H i (t)) = µ +
∑

tj ∈Hi (t )
n∗д(t − tj ) (1)

where µ is the background event rate, n∗ is known as the branching
factor,д : R+ → R+ is amemory kernel encoding the time-decaying
influence of past events on future events and

∫ ∞
0 д(τ )dτ = 1.

While Eq. (1) is equivalent to existing definitions of Hawkes pro-
cesses [26, 31], it explicitly incorporates n∗ as a model parameter
which simplifies derivations in Section 4. We note that for informa-
tion cascades (such as retweet cascades on Twitter), there is no back-
ground intensity, as all the retweets are considered to be spawned by
the original tweet, i.e., µ = 0. Common choices of the memory ker-
nels include the exponential kernel function [50],дEXP (τ ) = θe−θτ ,
the power-law kernel [37],дPL(τ ) = θcθ (τ+c)−(1+θ ), among others.
We refer to [29] for a review of kernels used with cascades.
Cluster representation and size distribution. An alternate rep-
resentation of the Hawkes self-exciting process is a latent cluster of
Poisson processes, introduced by Hawkes and Oakes [27]. Fig. 2 de-
picts the cluster representation of an example Hawkes process, with
highlighted parent-offspring relations between events. Each event
generates offspring events following an inhomogeneous Poisson
process with the intensity function n∗д(t), which means its number
of offspring follows a Poisson distribution of intensity

∫ T
0 n∗д(t)dt .

When T → ∞, the event counts at each generation — denoted
as {Z0,Z1,Z2, . . . } — produce a Galton-Watson branching process
whose offspring distribution is a Poisson distribution with intensity

n∗ [20]. The total size of a Hawkes process can be then computed as
N =

∑
n Zn . This quantity is known as the total progeny number of

the branching process, following a Borel distribution [8], denoted as

B(κ | n∗) = P[N = κ | n∗] = (κn∗)κ−1e−κn∗
κ ! , which holds for n∗ < 1.

The mean and variance of a Borel distribution are 1
1−n∗ and n∗

(1−n∗)3 .
The analysis of Hawkes process size distribution [38] and this par-
ticular analytical form [16] are both very recent developments on
the point process literature.
Parameter estimation. The parameters of a Hawkes process can
be estimated by maximizing the likelihood function of a general
point process [15]:

L(Θ | H i (T )) = e−
∫ T
0 λ(τ |Hi (T ))dτ

∏
tj ∈Hi (T )

λ(tj | H i (T )) (2)

4 SEPARABLE HAWKES PROCESSES FITTING
In this section, we discuss jointly learning a single set of parameters
from a collection of Hawkes realizations.

Let H = {H1,H2, . . . } be a set of independent Hawkes realiza-
tions, assumed to be generated from the same model parameterized
by n∗, the branching factor, and Θд , the parameter set of д(·). It
is then straightforward to estimate n∗ and Θд by maximizing the
joint log-likelihood function L(n∗,Θд | H) defined as the sum of
the individual log-likelihoods (i.e., the log of Eq. (2)):

L(n∗,Θд | H) =
∑

Hi ∈H
logL(n∗,Θд | H i ) (3)

After plugging Eq. (2) into Eq. (3), we see that the joint log-
likelihood function can be rearranged as a sum of two functions
with independent parameter sets given

∫ ∞
0 д(τ )dτ = 1 and T → ∞

(detailed in the online appendix [2]):

L(n∗,Θд | H) = Lд(Θд | H) + Ln (n∗ | H) (4)

with Lд a function of Θд and Ln a function of n∗:

Lд(Θд | H) =
∑

Hi ∈H

∑
tj ∈Hi , j≥1

log
∑
tz<tj

д(tj − tz | Θд) (5)

Ln (n∗ | H) =
∑

Hi ∈H
log

[
(n∗)Ni−1e−Nin∗ ]

(6)

Regarding the assumption T → ∞, we show in Section 7 that most
cascades are complete in practice given a largeT . We also note that
Eq. (6) can be solved efficiently and analytically by setting its first
derivative to 0.

The above results indicate that Θд and n∗ can be learned inde-
pendently in two separate phases, by maximizing Lд and Ln . This
amounts to fitting n∗ from observed final cascade sizes only, and
Θд from inter-arrival times between events.

We note that maximizing Ln is equivalent to the maximum
likelihood estimation of the Borel distribution. One can see this by



expanding both forms, as shown below:

argmax
n∗

∑
Hi ∈H

logB(Ni | n∗)

= argmax
n∗

∑
Hi ∈H

[
log(n∗)Ni−1e−Nin∗

+ log
NNi−1
i
Ni !

]
(a)
= argmax

n∗
Ln (n∗ | H) (7)

where we discard the log ratio of constants Ni at step (a).
To the best of our knowledge, this is the first work to discuss the

separable form of Hawkes parameter estimations and its connection
to the Borel distribution.

5 DUAL MIXTURE MODEL
In practice, an online item is reshared across a set of diffusion
cascades of diverse dynamics. In this section, we propose a dual
mixture model that allows individual cascades to differ one from an-
other. Given the separability of the log-likelihood functions (Eqs. (5)
and (6)), we introduce a Borel mixture model (BMM) and a kernel
mixture model (KMM) to automatically uncover the latent clusters
of models based on cascade sizes and time intervals. Finally, we
employ the fitted dual mixture model to construct item level char-
acterizations, such as n̂∗v , θ̂v and the diffusion embeddings with a
distance measure.
Mixture models for Hawkes processes. We are given Hv , a set
of cascades relating to an online item v , and the number of compo-
nents kv — there exist kv latent generative models with unknown
relations to the cascades in Hv . We seek to learn kv groups of n∗
andΘд , and their weights. As indicated in Section 4, we model these
two parameter sets separately using cascade sizes and inter-arrival
times. We denote the obtained model as Mv = {MB

v ,M
K
v } where

MB
v = {(n∗1,p

B
1 ), . . . , (n

∗
kv
,pBkv

)}, Mд
v = {(Θд

1 ,p
д
1 ), . . . , (Θ

д
kv
,p

д
kv

).
pB1 , . . . ,p

B
kv

and pд1 , . . . ,p
д
kv

are the component weights for corre-
sponding Borel models and kernel functions.

Given two mixture models, MB
v and MK

v , inferred separately
from a group of cascades, we assume the intensity functions of the
corresponding Hawkes processes — Eq. (1) — are parameterized by
the cartesian product ofMB

v andMK
v , i.e.,

MH
v = {(n∗i ,Θ

д
j ,p

B
i p

д
j ) | (n

∗
i ,p

B
i ) ∈ MB

v and (Θд
j ,p

д
j ) ∈ M

д
v } (8)

where pBi p
д
j gives the component weight. Fig. 1 summarizes the

modeling procedure.
Borel mixture model (BMM). To learn the MB

v for the online
item v , we present an EM estimation algorithm [17]. A BMM can
be fitted on Hv by maximizing the log-likelihood

LBMM =
∑

Hv,i ∈Hv
log

kv∑
k=1

pBk B(Nv,i | n
∗
k )︸             ︷︷             ︸

qB (k,Nv,i )

(9)

As maximizing Eq. (9) directly suffers from the identifiability is-
sue [7], we apply the Expectation-Maximization (EM) algorithm
commonly used for learning mixture models [44]. This algorithm

optimizes an alternative lower bound QBMM defined as

QBMM =
∑

Hv,i ∈Hv

kv∑
k=1

pB (k | Nv,i ) logqB (k,Nv,i ) (10)

where pB (k | Nv,i ) is the probability of Ni being a member of the
kth model and is updated during the E step. Next we give the update
formulas for the E and M steps.

E-step: membership probabilities are updated

pB (k | Nv,i ) =
qB (k,Nv,i )∑kv
j=1 q

B (j,Nv,i )
(11)

M-step: n∗k and pBk are updated analytically

(n∗k )
new =

∑
Nv,i p

B (k | Nv,i )(Nv,i − 1)∑
Nv,i p

B (k | Nv,i )Nv,i
(12)

(pBk )
new =

∑
Nv,i

pB (k | Nv,i )
|Hv |

(13)

Parameters are updated iteratively by alternating these two steps
until the convergence of LBMM .
Kernel mixture model (KMM). As we follow similar derivations
for obtainingMK

v , we note only two differences regarding the defi-
nition of LKMM and the update of Θд

k

LKMM =
∑

Hv,i ∈Hv
log

kv∑
k=1

p
д
k f

д(Hv,i | Θд
k ) (14)

(Θд
k )
new = argmax

Θд

∑
Hv,i ∈Hv

pд(k | Hv,i ) log f д(Hv,i | Θд)

where f д(Hv,i | Θд) = ∏
tj ∈Hv,i

∑
tz<tj д(tj − tz | Θд). The

way (Θд
k )
new is solved depends on specific kernel functions. In

our experiments, we solve this with a non-linear solver, Ipopt [46],
where a power-law kernel function is employed.

Eqs. (9) and (14) have respectively linear and quadratic computa-
tional complexity, however the EM algorithm allows an efficient
implementation of the dual mixture model. Detailed derivations of
the BMM and the KMM can be found in the online appendix [2].
Determining the number of components. Prior literature uses
a number of information criteria for choosing a component num-
ber of mixture models [12, 32], including the Akaike informa-
tion criteria (AIC). In our experiments, we employ AIC defined
as 2kv − 2LBMM to select kv with BMMs. Note that fitting BMM
is computationally efficient — due to the analytical updates of the
EM algorithm — which allows one to experiment various values
for kv . In our experiments, the numbers of components kv given
by AIC are generally between 2 and 5.
Characterizing items using the dualmixturemodel.We build
item-level quantifications based on the dual mixture model fitted
on all cascades relating to the given item. The diffusion embedding
provides a fixed length vector describing the information in the
components of BMM and KMM, while the content virality and
influence decay provide single value summarizations of the two
mixtures.



A diffusion embedding constructed from the fitted mixture mod-
elsMv is a vector of mixture component weights. Taking the power-
law kernel function as an example, we build a diffusion embedding
in two steps:
• Parameter discretization: we first discretize the continuousmodel
parameters n∗, θ and c by separating them into fixed number
of quantile bins. Given BMMs learned from all observed online
items V , we obtain the value of the ith quantile qn

∗
i from the

weighted samples {(n∗j ,p
B
j ) | j ∈ {1, . . . ,kv },∀v ∈ V }. We use

the algorithm provided in [25] to compute weighted quantiles.
Similarity, we get qci , q

θ
i from the fitted KMMs.

• Weight aggregation: we then convertMB
v into a vector of weights

for an online item v ,mmmn∗
v = [mn∗

v,1, . . . ]
T where each element

is the sum of weightsmB
v,i =

∑
qn∗i−1<n

∗
j ≤qn

∗
i

pBj . Moreover,Mд
v

can be encoded asmmmc
v = [mc

v,1, . . . ]
T andmmmθ

v = [mθ
v,1, . . . ]

T.

In the end, three vectors (mmmn∗
v ,mmm

c
v ,mmm

θ
v ) are provided for each online

item as the diffusion embeddings and can be used with off-the-shelf
supervised or unsupervised tools.

We also compute the single value summarizations as: n̂∗v =∑kv
k=1 n

∗
kp

B
k , ĉv =

∑kv
k=1 ckp

д
k , θ̂v =

∑kv
k=1 θkp

д
k . We denote n̂∗v as

content virality, and θ̂v as influence decay. These are two values of
interest showing how viral and how long the influence of an online
item stay in online discussions.
Distance between diffusion embeddings. Given two items de-
scribed by their respective diffusion embeddings (mmmn∗

1 ,mmm
c
1 ,mmm

θ
1 ) and

(mmmn∗
2 ,mmm

c
2 ,mmm

θ
2 ), we seek to measure their distanceD1,2. We note that

the position of elements in the embeddings represents quantiles
at an increasing order, but common distance measures, such as
the Euclidean distance and the cosine distance, ignore such infor-
mation. For example, givenmmmn∗

1 = [1, 0, 0, · · · ],mmmn∗
2 = [0, 1, 0, · · · ]

andmmmn∗
3 = [0, 0, 1, · · · ],mmmn∗

1 is intuitively closer tommmn∗
2 than tommmn∗

3
instead of equally close. To address this, we employ theWasserstein
distance [3] which accounts for positional information. TheWasser-
stein distance of order 1 for single dimensional histogram has a
closed-form solution defined asW1(MMMn∗

1 ,MMM
n∗
2 ) = ∑

i |Mn∗
1,i −Mn∗

2,i |,
whereMMMn∗

· = [∑1
j=1mmm

n∗
·, j ,

∑2
j=1mmm

n∗
·, j ,

∑3
j=1mmm

n∗
·, j , · · · ] represents the

cumulative weights at increasing quantiles. We then define the
distance of the pair of diffusion embeddings as

D1,2 =W1(MMMn∗
1 ,MMM

n∗
2 ) +W1(MMMc

1 ,MMM
c
2) +W1(MMMθ

1 ,MMM
θ
2 ) (15)

6 PREDICTING THE FUTURE OF CASCADES
In this section, we show how fitted mixture models can be applied
to future observations. We describe the evaluation of generalization
performance on holdout parts of unseen cascades. Next, we derive
predictions of final popularities.
Models for future content.We build mixture models for a newly
published item by combining historical fitted models of items Vρ
from the same publisher ρ, i.e.,

MB
ρ =

⋃
v ∈Vρ

{(n∗i ,p
B
i /|Vρ |), · · · }, ∀(n∗i ,pBi ) ∈ MB

v (16)

M
д
ρ =

⋃
v ∈Vρ

{(Θд
i ,p

д
i /|Vρ |), · · · }, ∀(Θд

i ,p
д
i ) ∈ MB

v (17)

andMρ = {MB
ρ ,M

д
ρ }, assuming the new item follows the dynamics

of its predecessors. Following Eq. (8), we obtainMH
ρ fromMρ . In

our experiments, we limit Vρ to the most recent published items.
Cascade holdout log-likelihood.When fitting a Hawkes process
on a cascade H i (T ) until an observation time T , the log-likelihood
value of the holdout part of this cascade, i.e., HLL = L(Θ | H i ) −
L(Θ | H i (T )), evaluates the model generalization performance to
unseen events. For our proposed dual mixture model, we compute
an expected holdout log-likelihood stemming from the posterior
model probabilities givenH i (T ), i.e.,

E [HLL] =
∑

(n∗
k ,Θ

д
j ,p

B
k p

д
j )∈MH

ρ

[L(Θ | H i ) − L(Θ | H i (T ))] ×

P[n∗k ,Θ
д
j | H i (T )] (18)

where we have: P[n∗k ,Θ
д
j | H i (T )] =

P[Hi (T ) |n∗
k ,Θ

д
j ]pBk p

д
j∑

MH
ρ
P[Hi (T ) |n∗,Θд ]pBpд

Cascade posterior size distribution. Given a pair of parame-
ters n∗ and Θд , we are able to derive the posterior size distribu-
tion given H i (T ) of a cascade i . The future events after time T
are of two kinds: direct offspring of observed events (their count
denoted as Nd

i ) and indirect offspring (children of children, to-
tal count denoted as N ind

i ). The process generating direct off-
spring is an inhomogeneous Poisson process of conditional intensity
λ(t | H i (T )), t > T — note that this is not a stochastic function as
only the history up to timeT is accounted in the intensity function.
Consequently, Nd

i follows a Poisson distribution of the intensity
Λi (T | n∗,Θд) =

∫ ∞
T λ(τ | H i (T ),n∗,Θд)dτ . Furthermore, each di-

rect offspring initiated a Hawkes process and its total progeny
number follows a Borel distribution. Given the number of direct
offspring Nd

i , the total number of direct and indirect offspring fol-
lows a Borel-Tanner distribution (also known as the generalized

Borel distribution) [24]: B(κ | n∗,Nd
i ) =

N d
i (κn∗)κ−N

d
i e−κn

∗

κ(κ−N d
i )!

for

κ = Nd
i ,N

d
i + 1, · · · . Its mean, N d

i
1−n∗ , and variance, N d

i n
∗

(1−n∗)3 , are
similar to those of a Borel distribution.

Finally, the posterior cascade size distribution is therefore

P[Ni = n | H i (T )] = Ni (T ) (19)

+

n−Ni (T )∑
z=0

Poi(z | Λi (T | n∗,Θд))B(n − Ni (T ) | n∗, z)

where Poi(·|λ) is the Poisson distribution given intensity λ. Eq. (19)
leads to a quadratic complexity in computing the final size dis-
tribution, which is intractable in most real-life scenarios. A nu-
merical trick can be applied to reduce the complexity by introduc-
ing a threshold probability ϵp and summing until Poi(z | Λi (T |
n∗,Θд)) < ϵp .
Online item popularity prediction. The final popularity of an
online item consists of two parts in prediction: the final popularities
of current observed cascades and new cascades created in future.

We first use past average cascade counts of the publisher ρ as
an estimation of the new cascades that will emerge in future, de-
noted as Ĉρ . The final popularity of these is thus the mean of a

Borel-Tanner distribution given Ĉρ initial events, i.e., Ĉρ
1−n∗ . We then



Table 1: Statistics of the two social media datasets.

Start time End time #categories #publishers #items #cascades #tweets

ActiveRT2017-Fit Jan 1, 2017 May 1, 2017 18 (Music,
Gaming, ...) 11, 297 channels 75, 717 videos 30, 535, 891 85, 334, 424

ActiveRT2017-Test Jun 1, 2017 Dec 31, 2017
RNCNIX-Fit June 30, 2017 Jan 1, 2019 2 (RNIX,

CNIX ) 73 domains 102, 429 articles 8, 129, 126 56, 397, 252
RNCNIX-Test Feb 1, 2019 Dec 31, 2019

compute the mean values from a posterior distribution as the pre-
dicted final popularity N̂v,i of the observed cascade i given n∗ and
Θд , i.e.,
N̂v,i (n∗,Θд)

= Nv,i (T ) +
∞∑
κ=0

κ∑
z=0

κ · Poi(z | Λi (T | n∗,Θд))B(κ | n∗, z)

(a)
= Nv,i (T ) +

∞∑
z=0

Poi(z | Λi (T | n∗,Θд))
∞∑
κ=z

κ · B(κ | n∗, z)

(b)
= Nv,i (T ) +

∑∞
z=0 z · Poi(z | Λi (T | n∗,Θд))

1 − n∗

(c)
= Nv,i (T ) +

Λi (T | n∗,Θд)
1 − n∗

(20)

where step (a) exchanges the order of two summations. Step (b) and
step (c) follow the means of a Borel-Tanner distribution [24] and a
Poisson distribution. Last, we add predictions of all cascades and
future cascades relating to a new online item and take expectation
over possible parameter sets from the mixture models

N̂v = EMH
ρ


Ĉρ

1 − n∗
+

∑
Hv,i (T )∈Hv (T )

N̂v,i (n∗,Θд)
 (21)

As the variance of Borel-Tanner distribution is also known [24],
Eq. (19) enables us to derive the variance of final popularities.

7 EXPERIMENTS AND RESULTS
This section shows how the proposed dual mixture model is used
to characterize online items. Section 7.1 introduces two Twitter
datasets used in this work and our experimental setup. Section 7.2
analyzes online items using fitted dual mixture models. In Sec-
tion 7.3 we investigate the predictability of item category. Finally
in Section 7.4, we evaluate model generalization and popularity
prediction performances on unseen data. 1

7.1 Datasets
We conduct experiments on two large-scale retweet cascade datasets
concerning the spread of two types of online items on Twitter:
YouTube videos (ActiveRT2017 ) and news articles (RNCNIX ). The
content category and publisher information are given for each item.
In the remainder of this section, we also explain data collection,
preprocessing and fitting steps.
Datasets collection. The tweets of ActiveRT2017 and RNCNIX
were collected from Twitter public APIs. For ActiveRT2017, during
2017, tweets mentioning YouTube videos were obtained by query-
ing for YouTube video url handlers (youtube.com and youtu.be) at

1The code and dataset can be found at: https://bit.ly/3glRerX

the real-time streaming endpoint2. The video metadata was crawled
using a tool provided in [48] including video categories, titles, tex-
tual descriptions and the YouTube channel information (i.e. the
publisher of the video). We only keep active videos where a video
is considered as active if it received at least 100 tweets and 100
shares within 120 days [36]. The tweets of RNCNIX were collected
by Digital Media Research Centre3. They retrospectively queried
the Twitter search endpoint4 for tweets mentioning articles from a
list of controversial news publishers and a list of leading Australian
news outlets [9–11]. We enriched this dataset with the textual
content of the news articles. For each article, we downloaded the
webpage and concatenated the content of the following HTML tags
— <title>, <meta name=“description”>, <meta name=“keyword”> and
<p> — that generally contain article titles, descriptions, keywords
and main text bodies. Throughout this paper, we collectively denote
YouTube videos (for ActiveRT2017 ) and news articles (for RNCNIX )
as online items. Similarly, YouTube channels (ActiveRT2017 ) and
news media website domains (RNCNIX ) are denoted as publishers.
We keep online items that have at least one cascade with at least
50 events. Note that this filtering is different from prior work as,
for selected items, we consider all of their cascades regardless of
their event counts.
Online item category. YouTube video categories are provided in
the YouTube metadata. For RNCNIX, we construct two categories
(RNIX and CNIX) based on the origin of the publisher: the Rep-
utable News Index (RNIX) which contains Australian traditional
news media such as abc.net.au, and the Controversial News Index
(CNIX) that regroups news sources that are known for producing
controversial news articles (such as infowars.com and breitbart.com).
Train-test split. We perform a temporal split of each dataset into
two subsets: the historical cascades and the test cascades. We intro-
duce a one month gap between the two subsets to make sure that
all cascades from the historical set are finished before the start of
the testing set (as discussed in Section 4). We show in the online
appendix [2] that more than 99% of all cascades in our datasets
finish within 30 days. We use the cascades in the historical set to fit
our dual mixture models, and to produce item-level quantifications.
We use the test set to evaluate model generalization and popularity
prediction on unseen content. Table 1 presents a summary of the
number of items, publishers, cascades and tweets in each dataset,
together with the start and end time periods for the fit-test splits.
Profiling fitted parameters on training set.We fit the dual mix-
ture model on all cascades relating to the same online item. The
number of mixture components is selected by optimizing the AIC
score for BMM. The power-law kernel function is applied for the

2https://developer.twitter.com/en/docs/tweets/filter-realtime/overview
3https://research.qut.edu.au/dmrc/
4https://developer.twitter.com/en/docs/tweets/search/overview

https://bit.ly/3glRerX


(a) ActiveRT2017-Fit

(b) RNCNIX-Fit
Figure 3: Density plots of content virality n̂∗ of BMMs and
content influence decay θ̂ of KMMs fitted on two datasets.
Mean and median are shown as red and blue dashed lines.

KMM, as it is shown to outperform others in modeling online in-
formation diffusion [37]. For each item v in each training dataset
(ActiveRT2017-Fit and RNCNIX-Fit), we obtain the fitted BMM and
KMM parameters, as well as the item-level descriptions introduced
in Section 5: n̂∗v , ĉv , θ̂v ,mmmn∗

v ,mmmc
v andmmmθ

v . We set the number of
quantiles to 10 for diffusion embeddings. Fig. 3 shows the parame-
ters distribution for the item virality n̂∗ (left column) and influence
decay θ̂ (right column). We see that RNCNIX-Fit presents higher n∗
values and higher θ values than ActiveRT2017-Fit (visible in the dis-
tributions as a whole and in the median values). This indicates that
news articles tend to be more viral than YouTube videos on Twitter,
however they stay for shorter in people’s collective memory. This
is expected, given the fast paced nature of news. Due to space limi-
tation, we also present in the online appendix [2] weighted density
plots of fitted BMM and KMM parameters where distributions of
different mixture components are shown.

7.2 Measurements of online items
The parameters of the dual mixture models characterize the online
items directly, given that the mixtures are trained on all cascades
pertaining to the same item. In this section, we explore the link
between item categories and publishers, and the fitted dual mixture
models.
Category-level overview. First, we investigate whether item cat-
egories can be distinguished using virality and influence decay of
their corresponding items, by studying the relation between the
density distributions of n̂∗v and θ̂v . For RNCNIX-Fit (Fig. 4a), we
discretize the range of values for n̂∗ into 10 bins, and for each bin
we plot the three-point summaries (25th , 75th percentiles and me-
dian) of θ̂ values of online items in RNIX and CNIX. The marginal
densities of n̂∗ and θ̂ are plotted on the sides of the main panel, and
show that articles from reputable news sources (RNIX ) are more
viral than those from controversial news sources (CNIX ), while
the θ̂ density is similar for the two sources. This appears to con-
tradict common intuition, however the joint plot pictures a more
nuanced story. For both RNIX and CNIX, θ̂ generally decreases as
n̂∗ increases. However, for n̂∗ < 0.25 CNIX shows higher values of
θ̂ , while for n̂∗ > 0.75 CNIX has slower influence decay rates. In
other words, low viral controversial articles are forgotten quickly,
but highly viral controversial articles are reshared in Twitter for
longer than the reputable articles.

(a) RNCNIX-Fit

(b) ActiveRT2017-Fit

Figure 4: Quantify online items at the category level via
the aggregated model parameters, n̂∗ and θ̂ of two datasets.
Fig.(a) RNIX and CNIX from RNCNIX-Fit: the median and
25th /75th quantiles of θ̂ (y axis) at varying n̂∗ values (x axis)
are presented alongwith densities of n̂∗ and θ̂ by sides. Fig.(b)
Four popular YouTube video categories, Music, Entertain-
ment, Gaming and News & Politics from ActiveRT2017-Fit:
density plots of n̂∗ and θ̂ .

Fig. 4b shows the marginal densities of n̂∗v and θ̂v for four chosen
popular YouTube video categories from ActiveRT2017-Fit. The joint
plot is less readable than the one in Fig. 4a, and it can be found in the
online appendix [2]. We see that Gaming videos are substantially
less viral than videos from other three categories, but these videos
also show slower influence decay, indicating that gamers consume
such videos for longer after they were posted. We also observe that
News & Politics videos exhibit similar diffusion patterns as news
articles, i.e., with high virality and fast decaying influence.
Exploring online item publishers. Here, we explore the usage
of the diffusion embeddings to analyse the relation between content
producers. We constructmmmn∗

ρ the embeddings for a publisher ρ by
aggregating the item embedding vectors (mmmn∗

ρ , mmmc
ρ and mmmθ

ρ ) for
all online items associated with the ρ. Specifically, we compute
their element-wise mean and we normalize the vectors to sum to 1,
e.g.,m′m′m′n∗

ρ = [∑v ∈Vρ mmm
n∗
v,1/|Vρ |, . . . ]

T andmmmn∗
ρ,i =m

′m′m′n∗
ρ,i/

∑
jm

′m′m′n∗
ρ, j .

We compute the distance between two publishers ρ1, ρ2 as Dρ1,ρ2
following Eq. (15). Finally, we use t-SNE [34] — a widely adopted
technique for visualizing high dimensional data — to present the
most popular publishers in a latent two-dimensional space.

In Fig. 5, the top 30 publishers with the most number of items
of each category are shown for ActiveRT2017-Fit and RNCNIX-Fit.
For ActiveRT2017-Fit, as category is labeled at the item level, we
construct publisher categories as the majority category for their
items. The bubble sizes of individual publishers are scaled by their
average n̂∗ over all published items. One conclusion emerges that,
in general, publishers from the same category are also similar in
terms of their diffusion patterns. In both figures, two major clusters



(a) ActiveRT2017-Fit

(b) RNCNIX-Fit

Figure 5: Clustering of publishers with respect to the fitted
model parameters. Top 30 publishers with the most num-
bers of produced online items in each category are cho-
sen from ActiveRT2017-Fit (Entertainment, Music, Gaming,
News & Politics) and RNCNIX-Fit (RNIX, CNIX). Categories
of YouTube publishers are determined by their mostly used
video categories. The bubble size indicates the average n̂∗ of
a publisher. Names of 20 publishers with high average n̂∗ val-
ues are presented.

emerge. ForActiveRT2017-Fit (Fig. 5a) we observe Entertainment and
Gaming in one cluster, and Music and News & Politics in the other.
For RNCNIX-Fit (Fig. 5b), the RNIX and CNIX categories appear
clearly separable. Fig. 5a also shows that Entertainment is a diverse
category with its publishers sprinkled across the entire latent space.
This is due to Entertainement videos covering a broad range of
subjects, from people singing to online game recordings. Also, we
identify some viral YouTube publishers such as some K-pop music
bands (ARIRANG K-POP, United CUBE) and controversial news
sources including breitbart.com from the plots. Another interesting
observation is that Fig. 5b groups similar controversial publishers
together, e.g., those showing a strong level of spreading conspiracy
(activistpost.com, intellihub.com and yournewswire.com) in the top-
right corner and those having far-right bias in their political stands
(breitbart.com, rt.com and twitchy.com) in the bottom-right corner.5

Given the perceived separability of publisher category in Fig. 5,
in the next section we setup a predictive exercise.

7.3 Prediction of item categories
In this section, we build a predictor for item category based on
item resharing dynamics and textual content. We use three types of
features for online items: our proposed diffusion embeddings (see

5Conspiracy levels and political stands can be found in https://mediabiasfactcheck.com

Table 2: Results of categorical prediction of online items
on ActiveRT2017-Fit and RNCNIX-Fit. We report Cohen’s
kappa coefficient and macro-F1 of predictors trained with
varying combinations of three feature types: the diffusion
embeddings, temporal features and text features.

Features Kappa F1

Diffusion Embed. 0.289 0.488
Temporal 0.536 0.675
Diffusion Embed. + Temporal 0.540 0.679
Text 0.803 0.862
Diffusion Embed. + Text 0.806 0.865
Text + Temporal 0.830 0.883

A
ct
iv
eR
T2
01
7-
Fi
t

Diffusion Embed. + Text + Temporal 0.831 0.884

Diffusion Embed. 0.610 0.675
Temporal 0.840 0.872
Diffusion Embed. + Temporal 0.844 0.874
Text 0.898 0.918
Diffusion Embed. + Text 0.908 0.925
Text + Temporal 0.930 0.944RN

C
N
IX
-F
it

Diffusion Embed. + Text + Temporal 0.932 0.945

Section 5), temporal features and text features. Temporal features
are shown by previousworks to be useful in popularity prediction [5,
14, 37], but have not been experimented with in predicting content
categories. The text features are the natural choices for this task
as they carry rich content information, particularly for the online
news articles.

Specifically, we build the three types of features as follows. Dif-
fusion embeddings. We use our proposed diffusion embeddings,
i.e., for a given online item v we concatenate the vectorsmmmn∗

v ,mmmc
v

andmmmθ
v .Temporal features.We compute the six-point summaries

(min, mean, median, max, 25th and 75th percentile) of inter-arrival
times, cascade sizes, cascade durations and number of followers of
Twitter users involved in cascades. Text features. For each online
item, we first concatenate its metadata to a single string. This in-
cludes video descriptions and video titles for ActiveRT2017-Fit, and
article titles, descriptions, keywords and body texts for RNCNIX-Fit.
We then use the state-of-the-art pre-trained multilingual text em-
bedding model, BERT, to encode text features [18, 47]. The model
encodes at a token-level and generates a set of embeddings with
768 dimensions for each token. We then apply mean aggregations
of these embeddings to create a single 768-dimension vector as the
final text feature embedding for the item.

The experiments are conducted on items from the four categories
of ActiveRT2017-Fit and all items from RNCNIX-Fit. We perform a
50%-50% train-test split and use the Gradient Boosting Machines
as the predictor (via the GBM package in R [23]). The predictors’
hyper-parameters are selected via 5-fold cross validations. As both
datasets are imbalanced, we evaluate the prediction performance
using the Cohen’s kappa coefficient [45] and the macro-F1 score.

We test all the seven possible combinations of the three feature
sets, and Table 2 reports the prediction scores. When individual
feature set is employed, the text features outperform both others due
to the richer content information they contain. We also note that as
generative models are often considered sub-optimal in prediction



(a) Generalization performance (b) Item popularity prediction

Figure 6: Forecasting for unseen content on ActiveRT2017-Test. Fig. (a): negative holdout log-likelihood per event computed
from thenon-mixturemodel, the dualmixturemodels andmodels from [37] given different observation times— lower is better.
The dots are themean values of the log-likelihoods. Fig. (b): itemfinal popularity predictions using fourmodels evaluatedwith
Absolute Relative Error (ARE) — lower is better. Times at x axis are the observation times since an online item was published.
The dots indicate the median values and error bars give the 25th /75th quantiles of the ARE values.

tasks [37], the diffusion embeddings appear the least performing
feature types. However, when combined with other feature sets
they consistently provide a slight improvement of performance,
indicating that they capture information not present in the textual
or temporal features. The best predictor is the one trained using
all feature sets and it achieves 0.831 and 0.932 of kappa values
on ActiveRT2017-Fit and RNCNIX-Fit, respectively. The result is
particularly interesting on RNCNIX-Fit, showing that the temporal
features (which are also designed to embed diffusion dynamics) are
informative features in predicting controversial news.

7.4 Forecasting for unseen content
Here, we examine the applications of dual mixture models for mod-
eling unseen diffusion cascades from ActiveRT2017-Test. The ob-
servations are similar on RNCNIX-Test which are discussed in the
online appendix [2].
Generalization performance. Here, on individual cascades we
compare the holdout log-likelihood values of dual mixturemodels to
single cascade fitting models [37] and to non-mixture joint models.
The dual mixture models and the non-mixture joint models are
fitted using cascades from the same publisher. Given a cascade H i
discussing an online itemv , we find the set of online items produced
by the v’s publisher, and we select all cascades relating to the 5
most recent items, denoted as Cρ . The dual mixture models are
fitted on all cascades inCρ . The holdout log-likelihood is computed
via Eq. (18). The single cascade models [37] use power-law Hawkes
processes and fitted onH i (T ) — whereT is the maximum time the
cascade is observed. Finally, the non-mixture joint model which is
Hawkes processes jointly fitted on all cascades in Cρ (as discussed
in Section 4).

Fig. 6a shows the holdout negative log-likelihood values on
ActiveRT2017-Test as boxplots, trained on increasingly long obser-
vation times T . For all observation times, the dual mixture models
consistently outperform single cascade trained models and non-
mixture models.When comparing the single cascade trainedmodels
and the non-mixture joint models, despite the former has a better
mean and median generalization values, we show in the online
appendix [2] that it has more outliers than the latter. Finally, we
observe that the advantage of using jointly fitted models over single
cascade models diminishes as the observations time increases, as
the latter observe more data to learn from.

Prediction of final popularity. We compare the final popularity
predictions on ActiveRT2017-Test with dual mixture models against
a predictor built using Seismic [54], an ensemble model in [29] and a
regressor trained using temporal features. Seismic and the ensemble
model predictions are produced by their provided R packages. Since
both models were designed to predict the final popularities of indi-
vidual cascades, we build an item popularity predictor by following
the same steps as in Section 6 and using the predictions instead of
N̂v,i (n∗,Θд) in Eq. (20). We construct the regressor using the same
sets of temporal features as Section 7.3 and the tuples (observa-
tion times, online items) for the set of examples, and the item final
popularity is the dependent variable to predict. We train a single
regressor using the GBM package in R [23], and we obtain predic-
tions for each tuple via 5-fold cross validation on ActiveRT2017-Fit.
Finally, final popularity predictions of the dual mixture models are
computed using Eq. (21) and at each observation time T . We note
that we re-fit the BMMs on cascades after the time T in historical
cascades to capture changes of content virality in time. We evaluate
the prediction results using the Absolute Relative Error (ARE) —
also used in [54] and defined as |N̂v−Nv |

Nv
where N̂v and Nv are the

predicted popularity and the actual final popularity.
Fig. 6b summarizes the prediction results, with the ARE values

in log scale. As Seismic and the ensemble models do not provide
cold-start predictions, only results for the dual mixture models
and the regressor are presented at T = 0 observation time. We
see that both the dual mixture models and the temporal features
regressor consistently outperform the other two baselines, Seismic
and the ensemble model, up to the 18-hour observation time. Also,
the regressor slightly outperforms the dual-mixture model for short
observation times, after which the dual-mixture model delivers the
best predictive performances.

8 CONCLUSION
This work is concerned with modeling and quantifying tempo-
ral dynamics of online items. We start from the observation that
maximum likelihood estimates for content virality and influence
decay are separable in a Hawkes process, which leads to a separated
learning procedure. Next, we propose a dual mixture self-exciting
process, which leverages a Borel mixture model and a kernel mix-
ture model, to jointly model the unfolding of a heterogeneous set
of cascades. When applied to cascades about the same online items,



the model directly characterizes the spread dynamics of online
items and supplies interpretable quantities as well as methods for
predicting the final content popularities.
Limitations and future work. Due to the restriction of the size
distribution of Hawkes processes, the current joint fitting is re-
stricted to complete and unmarked processes. We plan to relax
these constraints to allow for joint modeling with more flexible
forms of Hawkes processes.
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A DUAL MIXTURE MODEL FOR SELF-EXCITING PROCESSES
A.1 Joint Log-likelihood of Hawkes Processes
The joint log-likelihood function of Hawkes processes given a group of cascades H is defined as

L(n∗, Θд | H) =
∑
Hi ∈H

log L(n∗, Θд | Hi ) (22)

Plugging Eq. (2) into this equation leads to

L(n∗, Θд | H) =
∑
Hi ∈H


∑

tj ∈Hi (T )
log λ(tj | Hi (T )) −

∫ T

0
λ(τ | Hi (T ))dτ

 (23)

=
∑
Hi ∈H


∑

tj ∈Hi (T )
log

∑
tj ∈Hi (t )

n∗д(t − tj ) −
∫ T

0

∑
tj ∈Hi (t )

n∗д(t − tj )dτ
 (24)

(a)
=

∑
Hi ∈H


∑

tj ∈Hi (T )
log

∑
tj ∈Hi (t )

д(t − tj ) +
∑

tj ∈Hi (T )
logn∗ − n∗

∑
tj ∈Hi (T )

∫ T

tj
д(T − tj )dτ

 (25)

(b)
=

∑
Hi ∈H


∑

tj ∈Hi (T )
log

∑
tj ∈Hi (t )

д(t − tj ) + Ni logn∗ − n∗Ni

 (26)

= Lд (Θд | H) + Ln (n∗ | H) (27)

where in step (a) we separate n∗ due to the logarithm and we swap the order of integration and summation. Step (b) follows the assumption that T → ∞.

A.2 The Borel Mixture Model
As the final cascade size distribution of Hawkes processes is only determined by the branching factor (Section 3), i.e. the Borel distribution, we are able
to model sizes of a group of cascades as a Borel mixture model. Specifically, given a cluster number kv , we aim to find the parameter set as MB

v =

{(n∗
1, p

B
1 ), . . . , (n∗

kv
, pBkv )}. The parameters are estimated via the EM algorithm following [44]. The log likelihood function is

LBMM =
∑

Hv,i ∈Hv
log

kv∑
k=1

pBk B(Nv,i | n∗
k ) (28)

For simplicity, let qB (k, Nv,i ) = pBk B(Nv,i | n∗
k ). We first introduce the probability of Nv,i being a member of k which is also the E-step in the algorithm:

pB (k | Nv,i ) =
qB (k, Nv,i )∑kv
j=1 q

B (j, Nv,i )
(29)

By employing Jensen’s inequality, we get

LBMM =
∑

Hv,i ∈Hv
log

kv∑
k=1

qB (k, Nv,i ) (30)

=
∑

Hv,i ∈Hv
log

kv∑
k=1

pB (k | Nv,i )
qB (k, Nv,i )
pB (k | Nv,i )

(31)

≥
∑

Hv,i ∈Hv

kv∑
k=1

pB (k | Nv,i ) log
qB (k, Nv,i )
pB (k | Nv,i )

(32)

Optimizing Eq. (32) is equivalent to optimizing the following QBMM function

QBMM =
∑

Hv,i ∈Hv

kv∑
k=1

pB (k | Nv,i ) logqB (k, Nv,i ) (33)

At the Maximization step, the parameters are updated by maximizing QBMM .



• For updating n∗
k , we take the derivative of QBMM w.r.t. n∗

k

∂QBMM

∂n∗
k
=

∑
Hv,i ∈Hv

∂
∑kv
k=1 p

B (k | Nv,i ) logqB (k, Nv,i )
∂n∗

k
(34)
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∂ logqB (k, Nv,i )
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k

[
logpBk B(Nv,i | n∗
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(36)
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∂

∂n∗
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k ) (37)
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pB (k | Nv,i )
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∂n∗
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B(Nv,i | n∗

k )

B(Nv,i | n∗
k )

(38)

we note that
∂B(Nv,i |n∗

k )
∂n∗

k
has a special solution
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k
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∂
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k
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=

Nv,i−1
n∗
k

(Nv,in∗
k )
Nv,i−1e−Nv,in

∗
k − Nv,i (Nv,in∗

k )
Nv,i−1e−Nv,in

∗
k

Nv,i !
(41)

=
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B(Nv,i | n∗
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Plugging this result back to Eq. (38)

∂QBMM

∂n∗
k
=

∑
Hv,i ∈Hv

pB (k | Nv,i )
Nv,i − Nv,in∗

k − 1
n∗
k

(43)

Let the derivative be 0 will lead to the equation ∑
Hv,i ∈Hv

pB (k | Nv,i )(Nv,i − Nv,in∗
k − 1) = 0 (44)

where an analytical solution exists,

(n∗
k )
new =

∑
Hv,i ∈Hv pB (k | Nv,i )(Nv,i − 1)∑

Hv,i ∈Hv pB (k | Nv,i )Nv,i
(45)

• Updating pBk shares same derivation steps from [44]

(pBk )
news =

∑
Hv,i ∈Hv pB (k | Nv,i )

|Hv | (46)

Because final sizes of Hawkes processes are highly skewed towards small sizes, the estimation complexity can be reduced by counting the number of
presences of various cascade sizes in Hv , i.e., obtaining a set C′ = {(ci , Nv,i )} where there are ci cascades with size Nv,i . The summation over Hv can be
then replaced by this set for efficiency.

A.3 The Kernel Mixture Model
We also define a mixture model for the kernel function д(·) (KMM) based on its likelihood function of inter-arrival times of Hawkes processes. Similarly, for a
cluster number kv , we denote the parameters as Mд

v = {(Θд1 , p
д
1 ), . . . , (Θ

д
kv

, pдkv )}. The log-likelihood function is

LKMM =
∑

Hv,i ∈Hv
log

kv∑
k=1

pдk f
д (Hi | Θдk ) (47)

where f д (Hv,i | Θд ) =∏
tj ∈Hv,i

∑
tz<tj д(tj − tz | Θд ). The membership probability (E-step) is then

pд (k | Hv,i ) =
pдk f

д (Hv,i | Θдk )∑kv
j=1 p

д
j f

д (Hv, j | Θдj )
(48)



The function for learning parameters in EM algorithm is

QKMM =
∑

Hv,i ∈Hv

kv∑
k=1

pд (k | Hv,i ) log(pдk f
д (Hv,i | θдk )) =

∑
Hv,i ∈Hv

kv∑
k=1

pд (k | Hv,i ) logpдk +
∑

Hv,i ∈Hv

kv∑
k=1

pд (k | Hv,i ) log f д (Hv,i | Θдk ) (49)

Updating pдk is the same as the procedure for BMM, i.e. (pдk )
news =

∑
Hv,i ∈Hv pд (k |Nv,i )

|Hv | . Whereas, Θдk is updated via

(Θдk )
new = argmax

Θд

∑
Hv,i ∈Hv

pд (k | Hv,i ) log f д (Hv,i | Θд ) (50)

As there is no analytical solution for the power-law kernel, we solve (Θдk )
new with a non-linear solver, Ipopt [46].

B ADDITIONAL RESULTS ON ACTIVERT2017 AND RNCNIX
B.1 Inter-arrival times of cascades
Fig. 7 shows the complementary cumulative density function of the inter-arrival times of cascades from the two datasets. This shows that our assumption —
cascades that do not get new retweet for 30 days are finished — accounts for more than 99% of cascades in our datasets.

Figure 7: The complementary cumulative density function (CCDF) of the maximum inter-arrival time of cascades from Ac-
tiveRT2017 andRNCNIX. The labeled points show the proportions of cascades with inter-arrival times larger than 30 days. The
CCDF curves does not start at 1 as maximum inter-arrival times for single-event cascades are considered 0 thus being filtered
during the log transformation of x axis.

B.2 Weighted density plots of n∗ and θ
In addition to Fig. 3, we show here weighted density plots of n∗ and θ of the fitted parameters on ActiveRT2017-Fit and RNCNIX-Fit, where the density weights
refer to the mixture components weights.

(a) ActiveRT2017-Fit (b) RNCNIX-Fit

Figure 8: Weighted density plots of content virality n∗ of BMMs and content influence decay θ of KMMs fitted on two datasets.

B.3 Analysis of mixture models on explaining popular cascades and unpopular cascades
In this section, we first choose an online items with its fitted dual mixture model and then show the posterior mixture component assignments of individual
cascades relating to this item. A YouTube video (ID: QvCj3wsXQDQ) is chosen and the following figure shows cascades are assigned to 5 different components.
Overall, this figure shows that unpopular and popular cascades are modeled by different mixture components which reinforces the assumption that the
proposed dual mixture model leverages the information from unpopular diffusion cascades.



Figure 9: Posterior assignments to the fitted mixture components of cascades relating to a YouTube video (ID: QvCj3wsXQDQ).
Each dot is a diffusion cascade positioned by the final cascade size (x axis) and the total diffusion time (y axis). Each color
represents a mixture component whose parameters are shown in the legends.

B.4 Category-level measurement
Fig. 10 quantifies online items from ActiveRT2017-Fit at the category level in the same form as Fig. 4a.

Figure 10: Quantify online items at the category level via the aggregated model parameters, n̂∗ and θ̂ of ActiveRT2017-Fit. Four
popular YouTube video categories,Music, Entertainment, Gaming and News & Politics from ActiveRT2017-Fit: the median and
25%/75% quantiles of θ̂ (y axis) at varying n̂∗ values (x axis) are presented along with densities of n̂∗ and θ̂ by sides.

B.5 Comparing mixture models to non-mixture models on distinguishing publishers
The non-mixture models are individual power-law decayed Hawkes processes fitted jointly on all cascades related to all online items from a given publisher.
Using the fitted parameters [n∗, c, θ ]T of each publisher, we use t-SNE [34] to clustering the publishers as in Fig. 11. In comparison, Fig. 5 depicts a better
separability as the diffusion embeddings are applied which encode more diverse item-level temporal information.



(a) ActiveRT2017-Fit (b) RNCNIX-Fit

Figure 11: Clustering of publishers with parameters fitted on all cascades related to all online items from a given publisher.

B.6 Forecasting for unseen content
We present here the results on evaluating the generalization performance and the item popularity predictions on ActiveRT2017-Test and RNCNIX-Test. In
Fig. 13, we further split ActiveRT2017-Test into two parts based on cascade popularities to compare varying performances of different models. We observe from
Fig. 13a that on popular cascades, both mixture and non-mixture models outperform the benchmark [37] with similar percentages of failed cascades for all
models. This indicates that joint fittings from historical cascades provide the most performance gain on popular cascades. However, in Fig. 13b, we note that
the proposed dual mixture model achieves the best negative holdout likelihood values among the three. Most notable, as much less events are available for
learning, much higher proportions of failed fits are shown for individual cascade fits [37].

(a) ActiveRT2017-Test (b) RNCNIX-Test
Figure 12: Negative holdout log-likelihood per event computed from the fitted non-mixture model, the dual mixture models
and [37] on ActiveRT2017-Test and RNCNIX-Test given different observation times — lower is better.

(a) On cascades with less than 50 events

(b) On cascades with more than 50 events

Figure 13: Negative holdout log-likelihood per event (left panels) and percentages of failed cascades (right panels) computed
from the fitted non-mixturemodel, the dualmixturemodels and [37] on different subsets ofActiveRT2017-Test given different
observation times — lower is better.



(a) ActiveRT2017-Test (b) RNCNIX-Test

Figure 14: Newly published online item final popularity predictions of three models on ActiveRT2017-Test and RNCNIX-Test,
evaluated with Absolute Relative Error — lower is better. Times at x axis are the observation time since an online item was
published. The dots indicate the median values and error bars give the first/third quarters of the ARE values.
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