
VN Network: Embedding Newly Emerging Entities with Virtual
Neighbors

Yongquan He
heyongquan@iie.ac.cn

School of Cyber Security, University
of Chinese Academy of Sciences

Institute of Information Engineering,
Chinese Academy of Sciences

Zihan Wang
zihanwang.sdu@gmail.com

School of Computer Science and
Technology, Shandong University

Peng Zhang∗
pengzhang@iie.ac.cn

Institute of Information Engineering,
Chinese Academy of Sciences

Zhaopeng Tu
tuzhaopeng@gmail.com

Tencent AI Lab

Zhaochun Ren
zhaochun.ren@sdu.edu.cn

Shandong University

ABSTRACT
Embedding entities and relations into continuous vector spaces has
attracted a surge of interest in recent years. Most embedding meth-
ods assume that all test entities are available during training, which
makes it time-consuming to retrain embeddings for newly emerg-
ing entities. To address this issue, recent works apply the graph
neural network on the existing neighbors of the unseen entities. In
this paper, we propose a novel framework, namely Virtual Neighbor
(VN) network, to address three key challenges. Firstly, to reduce the
neighbor sparsity problem, we introduce the concept of the vir-
tual neighbors inferred by rules. And we assign soft labels to these
neighbors by solving a rule-constrained problem, rather than sim-
ply regarding them as unquestionably true. Secondly, many existing
methods only use one-hop or two-hop neighbors for aggregation
and ignore the distant information that may be helpful. Instead, we
identify both logic and symmetric path rules to capture complex
patterns. Finally, instead of one-time injection of rules, we employ
an iterative learning scheme between the embedding method and
virtual neighbor prediction to capture the interactions within.
Experimental results on two knowledge graph completion tasks
demonstrate that our VN network significantly outperforms state-
of-the-art baselines. Furthermore, results on Subject/Object-R show
that our proposed VN network is highly robust to the neighbor
sparsity problem.

CCS CONCEPTS
• Computing methodologies→ Knowledge representation and
reasoning; Natural language processing.

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’20, October 19–23, 2020, Virtual Event, Ireland
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6859-9/20/10. . . $15.00
https://doi.org/10.1145/3340531.3411865

KEYWORDS
knowledge graph embedding, unseen entities, virtual neighbors,
rule-constrained problem

ACM Reference Format:
Yongquan He, Zihan Wang, Peng Zhang, Zhaopeng Tu, and Zhaochun
Ren. 2020. VN Network: Embedding Newly Emerging Entities with Vir-
tual Neighbors. In Proceedings of the 29th ACM International Conference
on Information and Knowledge Management (CIKM ’20), October 19–23,
2020, Virtual Event, Ireland. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3340531.3411865

1 INTRODUCTION
Recently, knowledge graphs (KGs) such as Freebase [1] andGoogle’s
Knowledge Vault [4] have proven to be extremely useful resources
for many natural language processing(NLP) relevant applications
[17, 31]. A typical KG can be considered as a multi-relational graph,
where nodes and various types of edges reflect entities and relations,
respectively. Each edge is presented as a triple of the form (head
entity, relation, tail entity), e.g., (John, bornedIn, Athens). Although
effective in representing structured data, the symbolic nature of
triples often makes KGs hard to manipulate, and most of the KGs
are far from complete compared to existing facts in the real world.
To tackle this issue, KG embedding methods have been proposed,
aiming to embed entities (nodes) and relations (edges) into the
continuous vector spaces. In that way, such kind of methods can
encode the structure of the KGs and simplify the manipulation.
And KG embeddings contain rich semantic information and can
facilitate KG completion and inference [3, 6, 15, 25].

Despite the success of embedding methods, previous approaches
still can not handle newly emerging entities as all the entities need
to be seen in the training process. In that case, newly emerging
entities are unknown to the original system. Without retraining
on the whole KG, the original system is difficult to predict missing
facts about new entities. As knowledge graphs evolve dynamically,
new entities appear along with emerging events or new products
[8, 19]. Therefore, an inductive learning framework is needed for
avoiding a time-consuming retraining process. The key idea of an
inductive learning framework is to generalize the original system
to the newly observed subgraph, which requires the recognition
of the neighborhood structural properties of the unseen nodes [9].

ar
X

iv
:2

40
2.

14
03

3v
1

 [
cs

.L
G

]
 2

1
Fe

b
20

24

https://doi.org/10.1145/3340531.3411865
https://doi.org/10.1145/3340531.3411865
https://doi.org/10.1145/3340531.3411865

MEAN [8] applies the graph neural network (GNN) on both the
observed and unseen entities, mapping the newly emerging entities
into embeddings by aggregating their known neighbors. However,
it neglects the different edge types (relations) and adopts the sim-
ple mean pooling aggregator. Based on that, logic attention based
neighborhood aggregation network (LAN) [23] is proposed, which
employs both logic rules and neural network attention mechanisms
to capture the redundancy information and concentrate on the
query relevant facts.

Figure 1: The average ratio of neighbors to predicted facts
with and without virtual neighbors.

Although the abovemethods can solve the unseen entity problem
to some extent, there are still several problems not fully addressed.

Neighbor Sparsity Problem: In fact, compared to observed
entities, we generally do not have enough information to learn
good representations for newly emerging entities. As shown in
Figure 1, in the subject-{20, 25} and object-{20, 25} datasets [23]
which obtained by selecting 20% or 25% triples from FB15K [2]
test set, to sample the candidate unseen entities. And then use
these candidate unseen entities to split the original training set, to
ensure that these unseen entities are not observed during training
process. We can see that the average ratio of the known neighbors
to the predicted triples for the unseen entities is lower than the
observed entities by at least 11 in the current graph, which makes
the knowledge representation learning much more difficult when
collecting neighborhood information. For example, in the subject-
20, we only know average 29.19 triples of facts about the unseen
entity, but for the observed entities is 43.32. Both methods above
suffer this sparsity problem.

Complex Pattern: The previous methods mainly focus on the
1 or 2 hops of the connecting structures, or the 1 hop rules about
the relation dependence, while there are many other long-distance
dependencies that are helpful for the knowledge base completion.
As Figure 2 describes, at test time, we receive new triples containing
the entity "Alec Guiness", which is not observed in the original KG.
From the first path (green) we can find the entity "Tom", which has
similar semantic about actors’ roles. We know the fact that "Tom"
was in the science fiction "The Infinite Worlds", and such fact can
help complete the missing edge "starredIn", which means an actor
played a character who belongs to a science fiction, he must be
in that science fiction. And the second path (blue) hints that they

were born in different cities in the same country. We can analogy
that "Alec" had lived in England by finding the pattern about "Tom",
meaning that a person was born in a city of a country, he must
have lived in that country. So we can obtain more information and
capture long dependencies between entities through these long-
distance paths to assist with short logic rules.

Interactions Between the Rule Inference and Embedding
Learning: LAN regards the confidence level of the logic rules as
the constant weights for the aggregator, while embeddings encoded
with rich semantics can tune the results inferred by rules. As RUGE
[6] and IterE [33] mentioned, rules can infer new facts more accu-
rately with the refined embeddings, and newly inferred facts can
also help to learn the embeddings of higher quality.

Figure 2: The example of the unseen entities problem about
original KG.

In this work, we propose a novel inductive learning framework,
VN network, to embed newly emerging entities. The VN network
consists of three main components, including the virtual neighbor
prediction, encoder, and decoder. To reduce the sparsity problem,
we introduce the concept of the virtual neighbors and employ the
rule-based virtual neighbor prediction algorithm. Meanwhile, to
capture more information in the KGs, we adopt the logic rules and
identify the long-distance symmetric path rules. In that case, the
soft labels of triples inferred by rules are computed by solving a
convex rule-constrained problem over the current KG embeddings.
Then, the KG with the predicted virtual neighbors is inputted to the
GNN-based encoder composed of several structure aware layers
and one query aware layer. Finally, we output the embeddings from
the encoder to the decoder for predicting the missing facts. At each
iteration, to combine with rules in an iterative manner, we first
refine the soft labels using the current embeddings and then obtain
the optimal current KG embeddings by minimizing the global loss
over both the hard labeled and soft labeled triples.

Our contributions are summarized as follows: 1)We propose a
novel inductive learning framework to handle the unseen entities.
2)We develop a virtual neighbor prediction method to reduce the
sparsity problem, identify the logic and symmetric path rules to
capture more information and establish an iterative refinement

scheme over the soft labels and KG embeddings. 3)We conduct two
types of the knowledge graph completion tasks on WordNet11,
FB15K and YAGO37 to demonstrate the effectiveness of the VN
network, and show about a significant improvement over the state-
of-the-art LAN.

2 RELATEDWORK
In recent years, we have witnessed increasing interests in embed-
ding methods for KGs. Such methods have become one of the most
important techniques on knowledge base completion (KBC), aim-
ing to map the entities and relations into continuous vector space.
Recent works can be mainly classified into two categories: some
of them proposed more complicated scoring functions and deeper
frameworks, such as TransE extensions [10, 26], RESCAL exten-
sions [22, 32], and combining with deep neural network [18, 25].
Others tried to further incorporate other information available, in-
cluding relation paths [14, 28, 35], typing information [34], visual
information [29] and logic rules [3, 6, 33]. More detailed reviews
can be found in [11] and [24].

Although proving the success in the KBC task, traditional KG
embedding methods still fall short on the newly emerging enti-
ties issue. Previous embedding frameworks require all the entities
should be seen during the training process. However, KG evolves
frequently, and a large number of new entities emerge almost on a
daily basis, especially between late 2015 and early 2016 [19]. Mean-
while, retraining on the whole KG to obtain embeddings of the
new entities is extremely time-consuming. To address the newly
emerging entities problem, several works utilize other types of in-
formation, such as text descriptions and image [19, 29], to predict
new facts. These methods are still limited when text and image
information are not sufficient or provided. Moreover, we also need
knowledge which are usually graph-specific under domain expert
guidance to use these information. Compared with above informa-
tion, rules are easier to obtain, and there are many efficient rule
mining methods for knowledge graph, such as AMIE+ [5] or RLvLR
[16]. And rules are inherently inductive since they are independent
of node identities, which can assist embedding learning as useful
information for reasoning. The efficiency of learning embedding
and rules in an iterative way has proved [6, 33]. But most general
rule-based methods only focus on one-hop and two-hop relations.
In this paper, through introducing the symmetric path rules, we
can capture long-distance dependencies between entities.

There are some other works such as DKGE [27] aiming at solv-
ing the emerging facts about KGs, but the most relevant works to
ours are LAN [8] and MEAN [23], which focus on the represen-
tation learning of the unseen entities by aggregating neighbors.
MEAN [8] applies a simple mean pooling on the neighborhood
structures of the emerging entities without distinguishing the edge
types. To obtain a more effective neighborhood aggregator, LAN
[23] employs two kinds of attention mechanisms, and the attention
weights are estimated by either logic rules or a neural network.
These methods above still face the neighbor-sparseness problem
when few neighbors of unseen entities are known. They also ignore
the meaningful complex patterns in the KGs which only focuses on
one-hop neighbors and fail to recognize the interactions between

rules and embeddings. In contrast, our method, VN network, pro-
poses the concepts of the virtual neighbors to handle the sparseness
problem, identify logic and symmetric path rules to capture more
information, and optimize the KG embeddings and rule inference
in an iterative manner.

3 METHOD
This section introduces the proposed Virtual Neighbor network (VN
network). As Figure 3 shows, the model has three main components:
the rule-based virtual neighbor prediction, a GNN-based encoder
and an embedding-based decoder. In the following sections, we
describe the definitions and notations used in this paper firstly. And
then we give an overview of the model architecture and detail the
three components.

3.1 Definitions
This section introduces the definitions and notations for the knowl-
edge graph (KG) under the setting of unseen entities and rules used
in this paper.

3.1.1 Knowledge Graph (KG). A knowledge graph can be consid-
ered as a multi-relational graph, consisting of a set of the observed
edges (fact triples), i.e., O = {𝑥𝑜 }, where 𝑥𝑜 = (𝑒𝑖 , 𝑟𝑘 , 𝑒 𝑗). Each
edge (triple) consists of two nodes (entities) 𝑒𝑖 , 𝑒 𝑗 ∈ E𝑜 , and the
edge (relation) 𝑟𝑘 ∈ R, where E𝑜 and R are the entity and relation
sets respectively. And for an entity 𝑒 , we define its neighborhood in
O as 𝑁𝑜 (𝑒), where 𝑁𝑜 (𝑒) = {(𝑒

′
, 𝑟) | (𝑒 ′ , 𝑟 , 𝑒) ∈ O ∨ (𝑒, 𝑟, 𝑒 ′) ∈ O}.

In addition to the observed triples and entities, we collect the
newly emerging entities and auxiliary triples. Newly emerging
entities are unseen during the training process but appear in the test
set. And auxiliary triples are newly added facts for the original KG,
which connect the unseen entities with the original graph, to learn
the embeddings for unseen entities during the aggregating process.
For example, as Figure 2 shows, (𝐿𝑜𝑛𝑑𝑜𝑛, 𝑖𝑠𝐶𝑖𝑡𝑦𝑂 𝑓 , 𝐸𝑛𝑔𝑙𝑎𝑛𝑑) ∈ O
is an observed triple, where 𝐿𝑜𝑛𝑑𝑜𝑛, 𝐸𝑛𝑔𝑙𝑎𝑛𝑑 ∈ EO and 𝑖𝑠𝐶𝑖𝑡𝑦𝑂 𝑓 ∈
R. (𝐴𝑙𝑒𝑐, 𝑏𝑜𝑟𝑛𝑒𝑑𝐼𝑛, 𝐿𝑜𝑛𝑑𝑜𝑛) ∈ AUX is an auxiliary triple, com-
posed of one unseen entity𝐴𝑙𝑒𝑐 ∈ E𝑢 , one observed entity𝐿𝑜𝑛𝑑𝑜𝑛 ∈
E𝑜 , and their relation 𝑏𝑜𝑟𝑛𝑒𝑑𝐼𝑛 ∈ R, where AUX is the auxiliary
triple set, and E𝑢 is the unseen entity set.

In the VN network, to address the sparseness problem of AUX
as mentioned above, we introduce the concept of the virtual neigh-
bor, which were obtained by using rules on O andAUX (detailed
in §3.3). To be more specific, a triple (𝑒𝑖 , 𝑟𝑘 , 𝑒 𝑗) is not in O and
AUX, where 𝑒𝑖 ∈ E𝑜 , 𝑒 𝑗 ∈ E𝑢 and 𝑟𝑘 ∈ R, we define the head
entity 𝑒𝑖 as the virtual neighbor of the tail entity 𝑒 𝑗 under re-
lation 𝑟𝑘 . We denote the set containing such kind of triples as
VN = {𝑥VN}. And as in Figure 2, (𝐴𝑙𝑒𝑐, 𝑏𝑜𝑟𝑛𝑒𝑑𝐼𝑛, 𝐿𝑜𝑛𝑑𝑜𝑛) is
newly added fact containing unseen entity "Alec", so it belongs to
AUX. (𝐴𝑙𝑒𝑐, 𝑠𝑡𝑎𝑟𝑟𝑒𝑑𝐼𝑛, 𝑆𝑡𝑎𝑟𝑊𝑎𝑟𝑠) can be inferred by rules, and
it is not in O and AUX, so (𝑆𝑡𝑎𝑟𝑊𝑎𝑟𝑠 , 𝑠𝑡𝑎𝑟𝑟𝑒𝑑𝐼𝑛) is the virtual
neighbor of "Alec".

3.1.2 Rule. A set of rules with different confidence levels are de-
noted as F = {𝑓𝑝 , 𝜆𝑝 }, where 𝑓𝑝 is the 𝑝-th logic rule defined over
the given KG. For example, (𝑖, 𝑟1, 𝑗) ⇒ (𝑖, 𝑟2, 𝑗) : 𝑖, 𝑗 ∈ E and
𝑟1, 𝑟2 ∈ R, which indicates that any two entities connected by 𝑟1
should also be connected by 𝑟2. The left-hand side of the implication

Figure 3: The framework of the VN network. VN network contains three components: the rule-based virtual neighbor prediction,
the GNN-based encoder to capture structure information and embed entities, the decoder to calculate the probability of edges
and then refine the model with soft labels.

⇒ is called the premise, and the right-hand side is conclusion. 𝜆𝑝
represents the confidence level of rule 𝑓𝑝 , where 𝜆𝑝 ∈ [0,1]. The
higher the confidence level of rule, the more likely it is.

3.1.3 Symmetric Path. Although logic rules can be mined through
AMIE+, RLvLR or other useful rule mining methods, which can
help us find the missing facts, but they still have limitations. As
they mainly concentrate on one-hop or two-hop relations while
there may be some long-distance dependencies helpful. Moreover,
due to the sparsity problem mentioned above, we may lack neigh-
bors to mine sufficient rules or obtain the grounding rules. Under
such circumstance, the symmetric paths can help us find some
entities that have similar contextual semantics, which contain two
subpaths with the same relation order but the opposite direction.
As shown in Figure 2, we start with the unseen entity "Alec", we
can find two symmetric paths, namely, the blue one and the green
one, and the end node at the other end of the path is "Tom" samely,
but the two paths hint "Alec" is an actor and a resident of England
respectively. Taking an example in meta-path learning [21], A-P-A
(representing co-authorship relationship) and A-P-V-P-A (repre-
senting two papers published by two authors in the same venue)
as meta-paths for a bibliographic graph, we can sample such node
pairs and incorporate them in embeddings. But above method is
usually graph-specific and highly rely on knowledge from domain
experts, which requires empirical results from previous works on
the same graph. Our proposed symmetric path do not have to learn
such meta-path explicitly, and semantically similar entities can be
found to help enrich the neighbors for unseen entities.

3.2 Model Architecture
This section briefly introduces the model architecture with three
components: the rule-based virtual neighbor prediction, a GNN-
based encoder, and an embedding-based decoder. In the VNnetwork,
as Figure 3 indicates, given a knowledge graph, we extract the logic

and symmetric path rules to make the virtual neighbor predic-
tion. We predict a soft label 𝑠 (𝑥𝑣𝑛) ∈ [0, 1] to every unobserved
triple containing virtual neighbors. To do so, we solve a convex
optimization problem constrained by rules and calculate the soft
labels using the current KG embeddings. As a result, the original KG
becomes denser, which extremely facilitates embedding learning
and predicting.

Then, the knowledge graph with virtual neighbors is inputted to
the GNN-based encoder. The key idea of the GNN-based encoder
is to collect information from the neighbors and project nodes
(entities) to the continuous spaces. As mentioned in [30], modern
GNNs follow the neighbor aggregation strategy, which is to update
the representation of a node by aggregating representations of its
neighbors repeatedly. For a multi-relational knowledge graph, we
can formulate the 𝑙 th layer of a GNN as:

𝑎
(𝑙)
𝑖

= AGGREGATE(𝑙) (ℎ (𝑙−1)
𝑟,𝑗

: (𝑖, 𝑟 , 𝑗) ∈ O),

ℎ
(𝑙)
𝑖

= COMBINE(𝑙) (ℎ (𝑙−1)
𝑟0,𝑖

, 𝑎
(𝑙)
𝑖
),

(1)

where 𝑎𝑖 is the neighborhood aggregating information for the node
𝑖 .ℎ (𝑙)

𝑟,𝑗
denotes the message passing from the neighbor entity 𝑗 under

relation 𝑟 at 𝑙 th layer, ℎ (𝑙)
𝑟0,𝑖

denotes the self-connection message at
𝑙 th layer, and 𝑟0 means the self-connection relation. In this work,
the encoder is composed of several structure aware layers and
one query aware layer.

Since knowledge base completion task aims to predict new facts
when given an incomplete knowledge graph, this task requires to
determine how likely the unseen facts are true. To handle this task,
the decoder should assign scores to the fact triples with the entity
embedding 𝑒𝑖 from the GNN-based encoder, where 𝑒𝑖 = ℎ𝐿

𝑖
: 𝑖 ∈ E𝑜 .

As the choice of the decoder is independent of the encoder, various
methods can be used here. In this work, we mainly adopt DistMult

Table 1: An Example of KG Containing Two Types of Sym-
metric Path Starting from "Bob"

Node pair 𝑠𝑝𝑖 𝑠𝑝 𝑗

(Bob, Zurich)
√ √

(Bob, Sam)
√ ×

(Bob, Rome)
√ √

(Bob, Amy)
√ √

(Bob, Adam)
√ √

[32] as our decoder, and we also consider TransE [2] and ComplEX
[22] decoders.

Finally, we optimize a global loss over observed facts and virtual
neighbors to refine embeddings. In that way, we can obtain un-
seen entities’ embeddings fitting the ground truths while satisfying
the extracted rules. Note that, in the testing process, we only apply
the rule-based virtual neighbor prediction and the GNN-based en-
coder on the auxiliary triple set AUX, and then use the obtained
embeddings to predict missing facts about newly emerging enti-
ties without refining the soft labels since the testing process is not
iterative.

3.3 Virtual Neighbor Prediction
In this section, we describe how to predict the soft label 𝑠 (𝑥𝑣𝑛)
for each triple 𝑥𝑣𝑛 inVN inferred by the logic or symmetric path
rules.

3.3.1 Logic and Symmetric Path Rules. For the logic rules obtained
by the KG rule mining tool, we instantiate them with concrete
entities to obtain the ground rules. For example, given a rule (𝑖 ,
𝑝𝑙𝑎𝑦𝑠𝐹𝑜𝑟 , 𝑗)⇒ (𝑖 , 𝑖𝑠𝐴𝑓 𝑓 𝑖𝑙𝑖𝑎𝑡𝑒𝑑𝑇𝑜 , 𝑗), we can instantiate this rule
as (𝑆𝑎𝑖𝑑𝑢, 𝑝𝑙𝑎𝑦𝑠𝐹𝑜𝑟, 𝐶ℎ𝑖𝑎𝑠𝑠𝑜) ⇒ (𝑆𝑎𝑖𝑑𝑢, 𝑖𝑠𝐴𝑓 𝑓 𝑖𝑙𝑖𝑎𝑡𝑒𝑑𝑇𝑜,𝐶ℎ𝑖𝑎𝑠𝑠𝑜).
As there could be a huge number of groundings and our goal is to
reduce the sparsity problem for unseen entities, we take as valid
groundings only those where premise triples are observed in O ∪
AUX and conclusion triples that including the unseen entities in
E𝑢 . Moreover, we only use the rule whose confidence is not less
than our threshold, and the confidences of the rules are calculated
directly by the AMIE+.

To get the symmetric path rule (SP rule) and its grounding, we
do the following operations. Firstly, starting from one unseen entity
𝑒𝑖 , we search all the symmetric paths 𝑆𝑃 (𝑒𝑖) by random walks. And
if we find that the path is not symmetric, we terminate the search
of this path early. Then we consider the pairwise combinations of
symmetric paths, and the confidence level of them is calculated
by the head coverage value [5], which mainly focus on the co-
occurrence frequency of the premise and conclusion. As shown in
Table 1, the confidence of the 𝑠𝑝 rule 𝑠𝑝𝑖 ⇒ 𝑠𝑝 𝑗 about "Bob" is 0.8,
and we limit the number of 𝑠𝑝𝑖 to no less than 5.

For each symmetric path in the form of 𝑠𝑝𝑖 , we search from the
other end of it. And if we can obtain the symmetric path in the form
of 𝑠𝑝 𝑗 by connecting the last edges with the unseen entity 𝑒𝑖 , we
get the grounding rule of 𝑠𝑝𝑖 ⇒ 𝑠𝑝 𝑗 . In Figure 4, we add the edge
"starredIn" to obtain the 𝑠𝑝 𝑗 path which share the same ends of 𝑠𝑝𝑖 .
To model the dependency between the two end entities and for

brevity, we express the grounding rule of it as (𝑥 𝑓 𝑖𝑟𝑠𝑡1) ∧ (𝑥𝑙𝑎𝑠𝑡1) ∧
(𝑥𝑙𝑎𝑠𝑡2) ⇒ (𝑥 𝑓 𝑖𝑟𝑠𝑡2), where 𝑥 𝑓 𝑖𝑟𝑠𝑡1 and 𝑥𝑙𝑎𝑠𝑡1 are the first triple
and last triple in 𝑠𝑝𝑖 , 𝑥𝑙𝑎𝑠𝑡2 is the triple connect the other end of
𝑠𝑝 𝑗 , and 𝑥 𝑓 𝑖𝑟𝑠𝑡2 is the triple inferred as Figure 4 in 𝑠𝑝 𝑗 . In this way,
we can focus on specific entities and capture more information
from long-distance nodes, to assist with logic rules to enrich the
neighbors for unseen entities. Wewill demonstrate the effectiveness
of SP rules through the experimental results.

Figure 4: The example of the the symmetric path rule. P
is person. R is role. F is film. And T is type. Note that for
symmetric paths, we only care about the type and direction
of the edges, and the letters of the nodes in the graph are just
to illustrate the underlying meaning of them.

3.3.2 Soft Label Prediction. To model rules, we adopt t-norm fuzzy
logics [7]. Following [6], the logical conjunction (∧), disjunction(∨),
and negation(¬) are defined as follow:

𝜋 (𝑓1 ∧ 𝑓2) = 𝜋 (𝑓1) · 𝜋 (𝑓2),
𝜋 (𝑓1 ∨ 𝑓2) = 𝜋 (𝑓1) + 𝜋 (𝑓2) − 𝜋 (𝑓1) · 𝜋 (𝑓2),

𝜋 (¬𝑓1) = 1 − 𝜋 (𝑓1),
(2)

Here, 𝑓1 and 𝑓2 are two logical expressions, which can either be
single triples or be constructed by combining triples with logical
connectives. 𝜋 (·) assigns a truth value to each expression, indicating
to what degree the logical expression is true. For triples, 𝜋 (·) is the
score function (DistMult) used in the decoder. For a conjunction
of several triples, the truth value can be calculated recursively
through Eq. 2. For example, for the rule 𝑓𝑖 ⇒ 𝑓𝑗 , the truth value
can be computed as follows:

𝜋 (𝑓𝑖 ⇒ 𝑓𝑗) = 𝜋 (¬𝑓𝑖 ∨ 𝑓𝑗) = 𝜋 (𝑓𝑖) · 𝜋 (𝑓𝑗) − 𝜋 (𝑓𝑖) + 1. (3)

To this end, our goal is to find a soft label 𝑠 (𝑥𝑣𝑛) ∈ 𝑆 for each
triple 𝑥𝑣𝑛 ∈ VN , using the current KG embeddings Θ and the
ground rules F𝑟𝑢𝑙𝑒 . The optimal soft label 𝑠 (𝑥𝑣𝑛) should keep close
to truth value 𝜋 (𝑥𝑣𝑛), while constrained by the ground rules. To
do so, we introduce the conditional truth value 𝜋 (𝑓𝑟𝑢𝑙𝑒 |𝑆) for the
ground rule 𝑓𝑟𝑢𝑙𝑒 ∈ F𝑟𝑢𝑙𝑒 . For example, for the ground rule 𝑓𝑟𝑢𝑙𝑒 :
(𝑒𝑖 , 𝑟𝑠 , 𝑒𝑢) ⇒ (𝑒 𝑗 , 𝑟𝑘 , 𝑒𝑢), where premise (𝑒𝑖 , 𝑟𝑠 , 𝑒𝑢) is an known
triple with unseen entity 𝑒𝑢 , and conclusion is an unknown triple

(𝑒 𝑗 , 𝑟𝑘 , 𝑒𝑢) ∈ VN with unseen entity 𝑒𝑢 . Then, we can calculate
𝜋 (𝑓𝑟𝑢𝑙𝑒 |𝑆) as:

𝜋 (𝑓𝑟𝑢𝑙𝑒 |𝑆) = 𝐼 (𝑒𝑖 , 𝑟𝑠 , 𝑒𝑢) · 𝑠 (𝑒 𝑗 , 𝑟𝑘 , 𝑒𝑢) − 𝐼 (𝑒𝑖 , 𝑟𝑠 , 𝑒𝑢) + 1, (4)

where 𝐼 (𝑒𝑖 , 𝑟𝑠 , 𝑒𝑢) is a truth value defined by the score function
with the current embeddings, and 𝑠 (𝑒 𝑗 , 𝑟𝑘 , 𝑒𝑢) (can also be written
as 𝑠 (𝑥𝑣𝑛)) is a soft label to be predicted for the triple containing
the virtual neighbor. To get the optimal soft labels, we introduce
the slack variables 𝜉 𝑓 for the rule 𝑓 , and establish the following
optimization problem:

min
𝑆,𝜉

1
2

∑︁
𝑥𝑣𝑛∈VN

(𝑠 (𝑥𝑣𝑛) − 𝐼 (𝑥𝑣𝑛))2 +𝐶
∑︁

𝑓 ∈𝐹𝑟𝑢𝑙𝑒
𝜉 𝑓 ,

𝑠 .𝑡 .𝜆𝑓 (1 − 𝜋 (𝑓 |𝑆)) ≤ 𝜉 𝑓 , 𝜉 𝑓 ≥ 0, 0 ≤ 𝑠 (𝑥𝑣𝑛) ≤ 1,
(5)

This kind of the optimization problem is convex [6]. Therefore, we
can obtain the closed form solution:

𝑠 (𝑥𝑣𝑛) =
𝐼 (𝑥𝑣𝑛) +𝐶

∑︁
𝑓 ∈𝐹𝑟𝑢𝑙𝑒

𝜆𝑓 ∇𝑠 (𝑥𝑣𝑛)𝜋 (𝑓 |𝑆)

1

0

(6)

where𝐶 is the constant penalty parameter, and 𝜆𝑓 is the confidence
value for the rule 𝑓 , determined by the extracted algorithm. [·]10 =
min(max(𝑥, 0), 1) is a truncation function. Through using currently
learned embeddings and rules to predict soft labels for virtual triples,
we consider the influence of embeddings on the rule-inference
results rather than regarding them as necessarily true.

3.4 Encoder and Decoder
This section details the encoder and decoder in our framework.

3.4.1 Structure and Query Aware Layers. As mentioned above, our
encoder consists of several structure aware layers and one query
aware layer. In the first place, we adopt multiple GNN layers to
map the connectivity structures of the KG into continuous spaces.
To be specific, we use the weighted graph convolutional network
(WGCN) [18] in the local aggregation process. Each structure aware
layer assigns the different attention weights for each relation type,
and the output embedding of the 𝑙 th layer for the entity 𝑖 can be
formulated as follow:

𝑎
(𝑙)
𝑖

=𝑊 (𝑙) (
∑︁

(𝑖,𝑟 , 𝑗) ∈O
𝛼
(𝑙)
𝑟 ℎ

(𝑙−1)
𝑗
),

ℎ
(𝑙)
𝑖

= tanh(𝑎 (𝑙)
𝑖
+ ℎ (𝑙−1)

𝑖
𝑊 (𝑙)),

(7)

where 𝛼𝑟 is the attention weight for relation 𝑟 connected with the
head entity 𝑖 and tail entity 𝑗 .ℎ (𝑙)

𝑖
∈ 𝑅𝑑 (𝑙) is the embedding of entity

𝑖 at the 𝑙 th layer.𝑊 (𝑙) ∈ 𝑅𝑑 (𝑙−1)×𝑑 (𝑙) is the connection matrix for
the 𝑙 th layer, transforming ℎ (𝑙−1)

𝑖
to ℎ (𝑙)

𝑖
. We randomly initialize

the input entity embeddingℎ (0)
𝑖

, and stack multiple structure aware
layers before the query aware layer.

Besides the common structure information in the KG, given the
query relation (relation of the inputted triple), an ideal aggregator
is able to focus on the relevant facts in the neighborhood [23]. To
exploit the query-relevant information, we construct a query aware
layer based on the neural network mechanism [23]. Specifically,

given a query relation 𝑞 ∈ R, the importance of the neighbor 𝑗 to
entity 𝑖 is calculated as follow:

𝛼NN
𝑗 |𝑖,𝑞 = softmax(𝛽 𝑗 |𝑖,𝑞) =

exp(𝛽 𝑗 |𝑖,𝑞)∑
(𝑖,𝑟, 𝑗 ′) ∈O exp(𝛽 𝑗 ′ |𝑖,𝑞)

, (8)

where the unnormalized attention weight 𝛽 𝑗 |𝑖,𝑞 can be computed
by the following neural network:

𝛽 𝑗 |𝑖,𝑞 = LeakyReLU(𝑢 · [𝑊𝑒ℎ𝑖 ;𝑊𝑞𝑧𝑞 ;𝑊𝑒ℎ 𝑗]), (9)

where 𝑢 ∈ 𝑅3𝑑 ,𝑊𝑒 and𝑊𝑞 ∈ 𝑅𝑑×𝑑 are the global attention parame-
ters, while 𝑧𝑞 ∈ 𝑅𝑑 is a relation-specific attention parameter. Then,
given the query relation 𝑞, the whole query aware layer can be
defined as:

ℎ𝑂𝑖 =
∑︁

(𝑖,𝑟, 𝑗) ∈O
𝛼NN
𝑗 |𝑖,𝑞 · ℎ

𝐼
𝑗 , (10)

where ℎ𝐼
𝑗
= ℎ
(𝐿)
𝑗

is the embedding of the entity 𝑗 from the last
structure aware layer. ℎ𝑂

𝑖
= 𝑒𝑖 is the output embedding of the entity

𝑖 to the decoder. When obtaining embeddings for unseen entities,
we apply the encoder on auxiliary and virtual triples by simply
replacing all the observed triples (𝑖, 𝑟 , 𝑗) ∈ O in Eq. 7, 8 and 10 with
the triples (𝑖′, 𝑟 ′, 𝑗 ′) ∈ AUX ∪VN .

3.4.2 DistMult Decoder. Then we use DistMult as our decoder to
assign scores for the fact triples with the entity embedding ℎ𝑂

𝑖
output from the GNN-based encoder:

𝐼 (𝑒𝑖 , 𝑟𝑘 , 𝑒 𝑗) = 𝑒𝑇𝑖 𝑅𝑘𝑒 𝑗 , (11)

where 𝐼 (·) is the score function. 𝑒𝑖 , 𝑒 𝑗 ∈ Θ are the entity embeddings,
and 𝑅𝑘 is a diagonal matrix for the relation 𝑟𝑘 ∈ R.

Algorithm 1 Procedure of VN Network
Require:

The positive triples and negative triples L = {(𝑥𝑙 , 𝑦𝑙)};
The triples inferred by rules that containing virtual neighbors
VN = {𝑥VN};
The trained encoder and decoder on the original KG;
The iteration number 𝑁 ;

1: repeat
2: for each mini-batch L𝑏 ,VN𝑏 do
3: Compute the soft labels forVN𝑏 using Eq. 6;
4: Input L𝑏 ,VN𝑏 into encoder;
5: Get the scores for L𝑏 andVN𝑏 from decoder;
6: Minimize the global loss using Eq. 12;
7: 𝑛 ← 𝑛 + 1
8: end for
9: until 𝑛 < 𝑁

Ensure: Θ𝑁

3.5 Training Objective
Algorithm 1 summarizes the learning procedure of our method. We
randomly corrupt the head or tail entity of a positive triple to form
negative triples. We are given a hard labeled setL = {(𝑥𝑙 , 𝑦𝑙)}, each
positive or negative triple in it has a hard label 𝑦𝑙 ∈ {0, 1}. We also
collect the set of virtual triples with soft labels, i.e.,VN = {𝑥VN}.
Our goal is to learn the optimal KG embeddings Θ𝑁 with both

Table 2: The Statistics of Three Datasets

Dataset Entities Relations Training Validation Test

WordNet11 38,696 11 112,581 5,218 21,088
FB15k 14,951 1,345 483,142 50,000 59,071
YAGO37 123,189 37 989,132 50,000 50,000

hard labeled and soft labeled triples. To do so, we establish a loss
function over L andVN as follow:

min
Θ

1
|L|

∑︁
L

𝑙 (𝐼 (𝑥𝑙), 𝑦𝑙) +
1
|VN |

∑︁
VN

𝑙 (𝐼 (𝑥𝑣𝑛), 𝑠 (𝑥𝑣𝑛)), (12)

where we adopt the cross entropy 𝑙 (𝑥,𝑦) = −𝑦 log𝑥 − (1 −
𝑦) log (1 − 𝑥). 𝐼 (·) is the score function defined in Eq.11. We use
the ADAM algorithm [12] to minimize the global loss function. In
this way, the resultant embeddings of unseen entities fit the newly
emerging facts while constrained by rules.

4 EXPERIMENTS
In this section, we evaluate our proposed framework, VN network,
in twoKBC tasks: triple classification and link prediction.Wemainly
compare our model with three baselines, LSTM and LAN in [23],
and MEAN in [8]. And we mainly evaluated our method from
the following perspectives, 1)whether our model can learn bet-
ter embeddings for unseen entities than the above methods with
the neighbor sparsity problem, 2)whether each component of our
framework is useful for the learning of embeddings.

Since the link prediction is a common task for knowledge graph
completion which considers the ranks of all entities, we do further
analysis on the link prediction task.

4.1 Datasets
We evaluate VN network on three datasets: WordNet11 [20], FB15k
[2] and YAGO37 [6]. WordNet11 is a subset of WordNet, which is
a database of lexical relations between words. FB15K is a subset
of the multi-relational knowledge base Freebase. And YAGO37 is
extracted from the core facts of YAGO3 where entities appearing
less than 10 times are discarded. Table 2 summarizes the detail
statistics of the above datasets.

For the triple classification task, we directly use the datasets
released in [8] based on WordNet11, including Subject-{1000, 3000,
5000}, Object-{1000, 3000, 5000} and Both-{1000, 3000, 5000}. For the
link prediction task, the published data sets of FB15K differ from
what is written in [23], and there is no public dataset available on
YAGO37 under the unseen entities setting. So we use the datasets on
FB15K that they publish, and construct the datasets on YAGO37 by
following the similar protocol mentioned in [23], including Subject-
{5, 10, 15, 20, 25} and Object-{5, 10, 15, 20, 25}. The basic idea of the
dataset construction is to randomly sample triples from test set, and
select entities from these triples as candidate unseen entities. Then
using these entities to split the training set. The specific process is
as follows:

Sampling unseen entities. Firstly, 𝑅 = 5%, 10%, 15%, 20%, 25%
triples are randomly sampled from the original FB15K(YAGO37) test
set as candidate test set. As for WordNet11, 𝑁 = {1000, 3000, 5000}

testing triples are sampled. And Subject is the strategy that used to
construct the candidate unseen entities sets E𝑢 , where only entities
appearing as the head entities in the candidate test set are added
to E𝑢 . The same goes for Both and Tail, where tail entities or both
the head and tail entities are added to E𝑢 . Then entities in E𝑢 that
do not have any neighbors in the original training set are filtered.
For a triple (𝑒𝑖 , 𝑟𝑘 , 𝑒 𝑗) in the candidate test set, if 𝑒𝑖 ∉ E𝑢 ∧ 𝑒 𝑗 ∉ E𝑢 ,
it is removed from the candidate test set. The new test sets T are
obtained after filtering.

Filtering and splitting data sets. The second step is to ensure
that unseen entities would not appear in the final training set or val-
idation set. The original training set are split into two data sets, the
new training set O and auxiliary set AUX. For a triple (𝑒𝑖 , 𝑟𝑘 , 𝑒 𝑗)
in original training set, if 𝑒𝑖 ∈ E𝑜 ∧ 𝑒 𝑗 ∈ E𝑜 , it is added to the new
training set O. If 𝑒𝑖 ∈ E𝑜 ∧𝑒 𝑗 ∈ E𝑢 or 𝑒𝑖 ∈ E𝑢 ∧𝑒 𝑗 ∈ E𝑜 , it is added
to the auxiliary set AUX, which serves as existing neighbors for
unseen entities in the aggregating process. For the new validation
set, we keep only triples that have no unseen entities.

We employ AMIE+ [5] to extract the logic rules on all the datasets.
We only keep the logic rules with the length not longer than 2
and the confidence not less than 0.8. Besides, through the use of
randomwalks and drool rule engine tool [13], we extract symmetric
paths with length 2, 4 and 6, and also keep the symmetric path
rules with the confidence not less than 0.8. Then we enrich the
neighbors for unseen entities with these rules. We omit the virtual
neighbors that overlap with the existing neighbors, and take the
one with the highest confidence when the virtual neighbors conflict
with themselves. The detail statistics of WordNet11 can be found
in [8]. And Table 3 summarize the detail statistics of FB15K and
YAGO37. Since most of the tail entities of YAGO37 are locations or
organizations which have many connected edges, so the subject-
𝑅 and object-𝑅 are not balanced as FB15K. We can see that the
average ratio of neighbors to predicted facts of unseen entities has
increased by at least five after the supplement, which helps to solve
the sparsity problem.

4.2 Triple Classification Task
This task is to classify every test triple as true or false. To tackle this
task, we need to set a threshold 𝛿𝑟 for each relation 𝑟 . The triple
𝑥 = (𝑒𝑖 , 𝑟 , 𝑒 𝑗) is predicted to be true when 𝐼 (𝑥) ≥ 𝛿𝑟 , otherwise
the triple is false. We determine the optimal 𝛿𝑟 by maximizing
classification accuracy on the validation set.

4.2.1 Experimental Setup. We randomly sample 64 negative triples
for each triple in O ∪ AUX. For all the datasets, we create 100
mini-batches on each dataset, and we conduct a grid search to
find hyperparameters that maximize accuracy on the validation
sets in at most 100 iterations. The embedding dimensions for the
encoder and decoder are all set to 200. The learning rate is 0.002.
The dropout rate during training is 0.3. The regularization penalty
coefficient on KG embeddings is 0.001. The constant penalty 𝐶 is
0.01. We employ three structure aware layers and one query aware
layer in the encoder, and DistMult in the decoder. Our models are
implemented by PyTorch and run on NVIDIA TITAN RTX Graphics
Processing Units.

Table 3: Statistics of Processed FB15K and YAGO37 Dataset

FB15K YAGO37
Dataset O AUX E𝑢 Valid Test 𝑎𝑣𝑔 − R𝑏𝑒 𝑓 𝑜𝑟𝑒 𝑎𝑣𝑔 − R𝑎𝑓 𝑡𝑒𝑟 O AUX E𝑢 Valid Test 𝑎𝑣𝑔 − R𝑏𝑒 𝑓 𝑜𝑟𝑒 𝑎𝑣𝑔 − R𝑎𝑓 𝑡𝑒𝑟
Subject-5 188,238 235,746 1,465 19,454 1,834 85.54 125.89 929,037 59,453 2,408 49,972 2,458 23.79 35.04
Object-5 170,672 254,454 1,344 17,712 1,896 88.66 129.51 568,900 269,988 1,774 49,933 2,484 140.22 146.71

Subject-10 108,854 249,798 2,102 11,339 2,811 52.33 73.31 899,110 87,868 4,707 49,861 4,925 17.26 27.92
Object-10 99,783 261,341 1,947 10,190 2,987 53.63 74.58 441,916 382,082 3,188 49,815 4,926 92.58 99.61

Subject-15 71,407 228,484 2,358 7,310 3,250 37.14 50.36 848,034 137,255 6,846 49,752 7,299 17.43 22.49
Object-15 67,651 243,316 2,228 6,878 3,703 39.00 52.65 380,053 440,759 4,499 49,699 7,379 67.56 75.31

Subject-20 49,456 205,242 2,571 5,048 3,586 29.19 38.37 812,019 170,536 8,838 49,614 9,601 15.93 26.36
Object-20 46,982 222,200 2,388 4,843 4,132 30.92 40.59 332,204 488,332 5,884 49,556 9,745 55.25 63.71

Subject-25 37,986 179,656 2,704 3,908 3,889 22.53 29.12 781,209 200,073 10,897 49,526 12,048 15.76 26.18
Object-25 34,126 195,627 2,470 3,498 4,283 24.92 32.01 297,655 523,251 7,234 49,452 12,193 45.69 51.37

Table 4: Evaluation Accuracy on Triple Classfication(%)

Subject Object Both
Model 1000 3000 5000 1000 3000 5000 1000 3000 5000

MEAN 87.3 84.3 83.3 84.0 75.2 69.2 83.0 73.3 68.2
LSTM 87.0 83.5 81.8 82.9 71.4 63.1 78.5 71.6 65.8
LAN 88.8 85.2 84.2 84.7 78.8 74.3 83.3 76.9 70.6

VN network 89.1 85.9 85.4 85.5 80.6 76.8 84.1 78.5 73.1

4.2.2 Results. The detailed results are shown in Table 4.We can see
that VN network achieves the best performance over all the datasets,
and most of the improvements over other baselines are significant.
The results demonstrate that embedding newly emerging entities
with virtual neighbors indeedly improves the quality of KG embed-
dings. Note that the improvements on Subject-{1000,3000,5000} are
not considerable as the other two groups. It may be because the
Subject-𝑅 datasets are much easier to classify than the other two
groups, the performances are more difficult to improve. Interest-
ingly, with the number of unseen entities increase, the improvement
is more obvious, which proves that our method is more effective in
dealing with more unseen entities.

4.3 Link Prediction Task
Link prediction task aims at completing every test triple with sub-
ject or object missing. For example, in Subject-𝑅(Object-𝑅) data sets,
we firstly hide the object(subject) of each testing triple to produce
a missing part. Then we replace the missing part with all entities
to construct candidate triples. We compute the scoring function de-
fined in Eq. 11 for all candidate triples, and rank them in descending
order. Finally, we evaluate whether the ground-truth entities are
ranked ahead of other entities. We use three widely used metrics:
mean rank (MR), mean reciprocal rank (MRR), Hits at n (Hits@n).
And for this ranking process, we remove corrupted triples which is
called "filtered” setting. We report filtered MRR and Hits at 1, 3 and
10.

4.3.1 Experimental Setup. In this task, we finetune the embedding
dimension 𝑑 in {100, 150, 200, 250, 300}, the dropout rate 𝛼 in {0.1,
0.15, 0.2, 0.25, 0.3, 0.4}, the learning rate 𝛽 in {0.001, 0.002, 0.005,
0.01, 0.1} with a grid search. The optimal configurations are 𝑑

= 100, 𝛼 = 0.25 and 𝛽 = 0.002 for FB15K. And for YAGO37, the

optimal configurations are 𝑑 = 200, 𝛼 = 0.2 and 𝛽 = 0.002. Other
hyperparameters are set the same as those in the triple classification
task.

4.3.2 Results. As Table 5 shows, VN network outperforms all the
baselines. Compared to the best performing baseline LAN, our
model achieves an improvement of 13.5% in HITS@10 on FB15K,
and an improvement of 21.4% on YAGO37 under the setting of Sub-
ject. And our model achieves an improvement of 14.5% in HITS@10
on FB15K, and an improvement oft 13.9% on YAGO37 under the
setting of Object. The link prediction results demonstrate the supe-
riority of our proposed framework again. To explore whether each
component is useful in our VN network and generalizes to other
configurations, we will do further analysis on the link prediction
task in the following.

Ablation Study: To investigate the effectiveness of the compo-
nents in our framework. We conduct the link prediction task on
several variants of our method, as Table 6 describes. First, we only
employ structure aware layers, which weighs the different types
of relations differently. Then, without the soft label prediction pro-
cess, we directly inject the hard rules which always hold with no
exception. Next, to ensure the necessity of the soft label prediction,
we adopt the soft logic rules setting. Besides, we add the symmetric
path rules for the logic and SP rules setting, to ensure whether
using long-distance dependencies between entities can be helpful.
Finally, we evaluate our method with the query aware layer.

As Table 6 shows, even if we only use the structure aware layers,
our method still outperforms the simple MEAN aggregator in most
cases, which indicates that the structure aware layers are able to
effectively encode the connectivity structure information.

Meanwhile, We can see two significant improvements, that is
due to the use of hard labeled neighbors inferred by hard rules
and iteratively soft labeled virtual neighbors. The first significant
improvement strongly demonstrates the sparsity problem of unseen
entities, and we can learn more expressive embeddings for the
unseen entities by enriching the neighbors. The second significant
improvement shows the importance of adding soft labeled virtual
neighbors in an iterative manner. Because when we add virtual
neighbors for unseen entities, we also introduce noise. Therefore,
through considering the interactions between KG embeddings and
rules, we can obtain embeddings that are more accurate and adapt
to the rules.

Table 5: The Link Prediction Results

FB15K YAGO37
Subject-10 Object-10 Subject-10 Object-10

Model MR MRR Hits@10 Hits@3 Hits@1 MR MRR Hits@10 Hits@3 Hits@1 MR MRR Hits@10 Hits@3 Hits@1 MR MRR Hits@10 Hits@3 Hits@1

MEAN 293 31.0 48.0 34.8 22.2 353 25.1 41.0 28.0 17.1 2393 21.5 42.0 24.2 17.8 4763 17.8 35.2 17.5 12.1
LSTM 353 25.4 42.9 29.6 16.2 504 21.9 37.3 24.6 14.3 3148 19.4 37.9 20.3 15.9 5031 14.2 30.9 16.1 11.8
LAN 263 39.4 56.6 44.6 30.2 461 31.4 48.2 35.7 22.7 1929 24.7 45.4 26.2 19.4 4372 19.7 36.2 19.3 13.2

VN network 175 46.3 70.1 52.6 34.5 212 42.3 62.7 44.6 28.2 1757 46.5 66.8 53.8 35.7 3145 27.4 50.1 36.4 19.5

Table 6: Effectiveness of Each Component on Subject-10

Model MR MRR Hits@10 Hits@3 Hits@1

Structure aware 291 34.2 56.7 40.3 24.8
Hard rules 237 40.6 64.2 46.5 30.3
Logic rules 218 43.9 66.2 50.6 32.3

Logic and SP rules 185 45.9 69.8 51.9 33.6

VN network 175 46.3 70.1 52.6 34.5

Table 7: Different Decoders on Subject-10

Encoder Decoder MRR Hits@10 Hits@3 Hits@1

MEAN ComplEx 28.6 44.7 32.2 20.4
MEAN TransE 31.0 48.0 34.8 22.2
MEAN DisMult 29.7 45.8 33.5 21.2

LAN ComplEx 37.1 53.1 42.2 28.7
LAN TransE 39.4 56.6 44.6 30.2
LAN DisMult 37.8 53.4 43.2 29.3

VN ComplEx 39.6 60.1 45.4 29.7
VN TransE 43.5 66.7 49.4 31.6
VN DisMult 46.3 70.1 52.6 34.5

Although the use of symmetric path rules does not improve
as the two components above, the improvement proves that the
representational power of the original embeddings can be improved
by introducing the long-distance dependencies between entities.
Our proposed framework achieves the best result by the use of
the query aware layer, and the main improvements are Hits@1
and Hits@3, because it can exploit the query-relevant information
which helps to focus on more relevant facts in the neighborhood.

Impact of Other Decoders: To find out the influence of the
different decoders, we consider three typical embedding methods
here: DistMult, TransE and ComplEx. The LSTM is still inferior to
MEAN as described in [23], so we also omit the results of LSTM.
The results are reported in Table 7. We can see that our method
outperforms MEAN consistently by a large margin on all the eval-
uation metrics. And as for the LAN, VN network performs better
on most metrics. VN network with the ComplEx decoder results
in the worst performance, due to the high parameter complexity.
In contrast, VN network with the DistMult or TransE decoder can
achieve the state-of-the-art results, while the DistMult leads to the
best result. The experiment results show that the superiority of our

(a) FB15K-Subject-R. (b) FB15K-Object-R.

(c) YAGO37-Subject-R. (d) YAGO37-Object-R.

Figure 5: Link prediction results on Subject/Object-R.

model to the baselines can generalize to other scoring functions
and learn more expressive embeddings for unseen entities.

Impact of the Percentage of Unseen Entities: In order to
investigate the impact of the percentage of unseen entities, we
conduct experiment under the setting of the Subject-𝑅 and Object-
𝑅 on the FB15K and YAGO37 datasets. And it seems reasonable
that with the ratio of the unseen entities over the training entities
increases (namely the observed knowledge graph becomes sparser),
the accuracy would decline.

As Figure 5 shows, our method and LAN are much better than
MEAN and LSTM. And with the percentage of the unseen entities
increasing and the KG becoming spaser, VN network still achieves
better results than other baselines on all data sets. We observe
that the increasing proportion of unseen entities certainly has a
negative impact on all models because of the sparsity problem
as mentioned above, especially MEAN and LSTM can not learn
effective embeddings as LAN and VN network when the proportion
of unseen entities is high. But the improvements of our model are
relatively stable. And on the YAGO37 data sets, there only drops of
less than 2% from 5 percent to 25 percent in our model, while LAN
drops more obvious. We can conclude that when unseen entities
appear, with the iterative guidance from virtual neighbors, our
framework can reduce the sparsity problem and accurately predict
the missing facts of the unseen entities to learn more expressive
embeddings.

5 CONCLUSIONS
In this paper, we discuss the problems of the KG embedding task
under the setting of unseen entities. And we propose a novel frame-
work, VN network, to address the unseen entity problems. To han-
dle the sparsity problem, we introduce the short logic rules and
symmetric path rules to capture more information and enrich the
neighbors for unseen entities. We also use three structure aware
layers and one query aware layer, which can adapt the amount
of information from neighbors used in local aggregation and con-
centrate on more relevant information, leading to more accurate
embeddings of unseen entities. And through introducing the con-
cept of the virtual neighbor and employ a rule-based prediction
algorithm to assign soft labels using the current KG embeddings,
we consider the interactions between the rule predictions and KG
embedding learning rather than making a one-time injection of
logic rules. Experimental results show that VN network achieves
improvements over state-of-the-art baselines.

ACKNOWLEDGMENTS
This work was supported by the National Key R&D Program with
No.2016QY03D0503,2016YFB081304, and Strategic Priority Research
Program of Chinese Academy of Sciences, Grant No.XDC02040400.

REFERENCES
[1] Kurt D. Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.

2008. Freebase: a collaboratively created graph database for structuring human
knowledge. In SIGMOD. 1247–1250. https://doi.org/10.1145/1376616.1376746

[2] Antoine Bordes, Nicolas Usunier, Alberto García-Durán, Jason Weston, and Ok-
sana Yakhnenko. 2013. Translating Embeddings for Modeling Multi-relational
Data. 2787–2795. http://papers.nips.cc/paper/5071-translating-embeddings-for-
modeling-multi-relational-data

[3] Boyang Ding, Quan Wang, Bin Wang, and Li Guo. 2018. Improving Knowledge
Graph Embedding Using Simple Constraints. In ACL. 110–121. https://doi.org/
10.18653/v1/P18-1011

[4] Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Mur-
phy, Thomas Strohmann, Shaohua Sun, and Wei Zhang. 2014. Knowledge vault:
a web-scale approach to probabilistic knowledge fusion. In SIGKDD. 601–610.
https://doi.org/10.1145/2623330.2623623

[5] Luis Galárraga, Christina Teflioudi, Katja Hose, and Fabian M. Suchanek. 2015.
Fast rule mining in ontological knowledge bases with AMIE+. VLDB J. 24, 6
(2015), 707–730. https://doi.org/10.1007/s00778-015-0394-1

[6] Shu Guo, Quan Wang, Lihong Wang, Bin Wang, and Li Guo. 2018. Knowledge
Graph Embedding With Iterative Guidance From Soft Rules. In AAAI. 4816–4823.
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16369

[7] Petr Hájek. 1998. Metamathematics of Fuzzy Logic. Trends in Logic, Vol. 4. Kluwer.
https://doi.org/10.1007/978-94-011-5300-3

[8] Takuo Hamaguchi, Hidekazu Oiwa, Masashi Shimbo, and Yuji Matsumoto. 2017.
Knowledge Transfer for Out-of-Knowledge-Base Entities : A Graph Neural Net-
work Approach. In IJCAI. 1802–1808. https://doi.org/10.24963/ijcai.2017/250

[9] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Repre-
sentation Learning on Large Graphs. In NIPS. 1024–1034. http://papers.nips.cc/
paper/6703-inductive-representation-learning-on-large-graphs

[10] Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and Jun Zhao. 2015. Knowledge
Graph Embedding via Dynamic Mapping Matrix. In ACL. 687–696. https://www.
aclweb.org/anthology/P15-1067/

[11] Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and Philip S. Yu. 2020.
A Survey on Knowledge Graphs: Representation, Acquisition and Applications.
CoRR abs/2002.00388 (2020). arXiv:2002.00388 https://arxiv.org/abs/2002.00388

[12] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In ICLR, Yoshua Bengio and Yann LeCun (Eds.). http://arxiv.org/abs/
1412.6980

[13] Dingcheng Li. 2012. Applying JBoss® Drools Business Rules Man-
agement System for Electronic Health Records Driven Phenotyping.
http://knowledge.amia.org/amia-55142-a2012a-1.636547/t-006-1.640361/f-
001-1.640362/a-245-1.640478/a-246-1.640475

[14] Arvind Neelakantan, Benjamin Roth, and Andrew McCallum. 2015. Composi-
tional Vector Space Models for Knowledge Base Completion. In ACL. 156–166.
https://www.aclweb.org/anthology/P15-1016/

[15] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. 2011. A Three-Way
Model for Collective Learning on Multi-Relational Data. In Proceedings of the 28th
International Conference on Machine Learning, ICML 2011, Bellevue, Washington,
USA, June 28 - July 2, 2011. 809–816. https://icml.cc/2011/papers/438_icmlpaper.
pdf

[16] Pouya Ghiasnezhad Omran, Kewen Wang, and Zhe Wang. 2018. Scalable Rule
Learning via Learning Representation. In Proceedings of the Twenty-Seventh In-
ternational Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018,
Stockholm, Sweden. ijcai.org, 2149–2155. https://doi.org/10.24963/ijcai.2018/297

[17] Evgenia Wasserman Pritsker, William W. Cohen, and Einat Minkov. 2015. Learn-
ing to Identify the Best Contexts for Knowledge-based WSD. In EMNLP. 1662–
1667. https://www.aclweb.org/anthology/D15-1192/

[18] Chao Shang, Yun Tang, Jing Huang, Jinbo Bi, Xiaodong He, and Bowen Zhou.
2019. End-to-End Structure-Aware Convolutional Networks for Knowledge Base
Completion. In AAAI. 3060–3067. https://doi.org/10.1609/aaai.v33i01.33013060

[19] Baoxu Shi and Tim Weninger. 2018. Open-World Knowledge Graph Completion.
In AAAI. 1957–1964. https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/
view/16055

[20] Richard Socher, Danqi Chen, Christopher D. Manning, and Andrew Y. Ng. 2013.
Reasoning With Neural Tensor Networks for Knowledge Base Completion. 926–
934.

[21] Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S. Yu, and Tianyi Wu. 2011. PathSim:
Meta Path-Based Top-K Similarity Search in Heterogeneous Information Net-
works. Proc. VLDB Endow. 4, 11 (2011), 992–1003. http://www.vldb.org/pvldb/
vol4/p992-sun.pdf

[22] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume
Bouchard. 2016. Complex Embeddings for Simple Link Prediction. In ICML.
2071–2080. http://proceedings.mlr.press/v48/trouillon16.html

[23] PeiFeng Wang, Jialong Han, Chenliang Li, and Rong Pan. 2019. Logic Attention
Based Neighborhood Aggregation for Inductive Knowledge Graph Embedding.
In AAAI. 7152–7159. https://doi.org/10.1609/aaai.v33i01.33017152

[24] Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. 2017. Knowledge Graph
Embedding: A Survey of Approaches and Applications. IEEE TKDE 29, 12 (2017),
2724–2743. https://doi.org/10.1109/TKDE.2017.2754499

[25] Zihan Wang, Zhaochun Ren, Chunyu He, Peng Zhang, and Yue Hu. 2019. Robust
Embedding with Multi-Level Structures for Link Prediction. In IJCAI. 5240–5246.
https://doi.org/10.24963/ijcai.2019/728

[26] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. 2014. Knowledge
Graph Embedding by Translating on Hyperplanes. In AAAI. 1112–1119. http:
//www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8531

[27] Tianxing Wu, Arijit Khan, Huan Gao, and Cheng Li. 2019. Efficiently Embedding
Dynamic Knowledge Graphs. CoRR abs/1910.06708 (2019). arXiv:1910.06708
http://arxiv.org/abs/1910.06708

[28] Han Xiao, Minlie Huang, Lian Meng, and Xiaoyan Zhu. 2017. SSP: Semantic
Space Projection for Knowledge Graph Embedding with Text Descriptions. In
Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, February
4-9, 2017, San Francisco, California, USA. 3104–3110. http://aaai.org/ocs/index.
php/AAAI/AAAI17/paper/view/14306

[29] Ruobing Xie, Zhiyuan Liu, Huanbo Luan, and Maosong Sun. 2017. Image-
embodied Knowledge Representation Learning. In IJCAI. 3140–3146. https:
//doi.org/10.24963/ijcai.2017/438

[30] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Pow-
erful are Graph Neural Networks?. In ICLR. https://openreview.net/forum?id=
ryGs6iA5Km

[31] Bishan Yang and Tom M. Mitchell. 2017. Leveraging Knowledge Bases in LSTMs
for Improving Machine Reading. In ACL. 1436–1446. https://doi.org/10.18653/
v1/P17-1132

[32] Bishan Yang,Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. 2015. Embed-
ding Entities and Relations for Learning and Inference in Knowledge Bases. In 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings. http://arxiv.org/abs/1412.6575

[33] Wen Zhang, Bibek Paudel, Liang Wang, Jiaoyan Chen, Hai Zhu, Wei Zhang,
Abraham Bernstein, and Huajun Chen. 2019. Iteratively Learning Embeddings
and Rules for Knowledge Graph Reasoning. In The World Wide Web Conference,
WWW 2019, San Francisco, CA, USA, May 13-17, 2019. 2366–2377. https://doi.
org/10.1145/3308558.3313612

[34] Zhao Zhang, Fuzhen Zhuang, Meng Qu, Fen Lin, and Qing He. 2018. Knowledge
Graph Embedding with Hierarchical Relation Structure. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium,
October 31 - November 4, 2018. 3198–3207. https://doi.org/10.18653/v1/d18-1358

[35] Yukun Zuo, Quan Fang, Shengsheng Qian, Xiaorui Zhang, and Changsheng Xu.
2018. Representation Learning of Knowledge Graphs with Entity Attributes and
Multimedia Descriptions. In Fourth IEEE International Conference on Multimedia
Big Data, BigMM 2018, Xi’an, China, September 13-16, 2018. 1–5. https://doi.org/
10.1109/BigMM.2018.8499179

https://doi.org/10.1145/1376616.1376746
http://papers.nips.cc/paper/5071-translating-embeddings-for-modeling-multi-relational-data
http://papers.nips.cc/paper/5071-translating-embeddings-for-modeling-multi-relational-data
https://doi.org/10.18653/v1/P18-1011
https://doi.org/10.18653/v1/P18-1011
https://doi.org/10.1145/2623330.2623623
https://doi.org/10.1007/s00778-015-0394-1
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16369
https://doi.org/10.1007/978-94-011-5300-3
https://doi.org/10.24963/ijcai.2017/250
http://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs
http://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs
https://www.aclweb.org/anthology/P15-1067/
https://www.aclweb.org/anthology/P15-1067/
https://arxiv.org/abs/2002.00388
https://arxiv.org/abs/2002.00388
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://knowledge.amia.org/amia-55142-a2012a-1.636547/t-006-1.640361/f-001-1.640362/a-245-1.640478/a-246-1.640475
http://knowledge.amia.org/amia-55142-a2012a-1.636547/t-006-1.640361/f-001-1.640362/a-245-1.640478/a-246-1.640475
https://www.aclweb.org/anthology/P15-1016/
https://icml.cc/2011/papers/438_icmlpaper.pdf
https://icml.cc/2011/papers/438_icmlpaper.pdf
https://doi.org/10.24963/ijcai.2018/297
https://www.aclweb.org/anthology/D15-1192/
https://doi.org/10.1609/aaai.v33i01.33013060
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16055
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16055
http://www.vldb.org/pvldb/vol4/p992-sun.pdf
http://www.vldb.org/pvldb/vol4/p992-sun.pdf
http://proceedings.mlr.press/v48/trouillon16.html
https://doi.org/10.1609/aaai.v33i01.33017152
https://doi.org/10.1109/TKDE.2017.2754499
https://doi.org/10.24963/ijcai.2019/728
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8531
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8531
https://arxiv.org/abs/1910.06708
http://arxiv.org/abs/1910.06708
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14306
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14306
https://doi.org/10.24963/ijcai.2017/438
https://doi.org/10.24963/ijcai.2017/438
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://doi.org/10.18653/v1/P17-1132
https://doi.org/10.18653/v1/P17-1132
http://arxiv.org/abs/1412.6575
https://doi.org/10.1145/3308558.3313612
https://doi.org/10.1145/3308558.3313612
https://doi.org/10.18653/v1/d18-1358
https://doi.org/10.1109/BigMM.2018.8499179
https://doi.org/10.1109/BigMM.2018.8499179

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Definitions
	3.2 Model Architecture
	3.3 Virtual Neighbor Prediction
	3.4 Encoder and Decoder
	3.5 Training Objective

	4 Experiments
	4.1 Datasets
	4.2 Triple Classification Task
	4.3 Link Prediction Task

	5 Conclusions
	Acknowledgments
	References

