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ABSTRACT

In mobile crowdsourcing (MCS), the platform selects participants
to complete location-aware tasks from the recruiters aiming to
achieve multiple goals (e.g., profit maximization, energy efficiency,
and fairness). However, different MCS systems have different goals
and there are possibly conflicting goals even in one MCS system.
Therefore, it is crucial to design a participant selection algorithm
that applies to different MCS systems to achieve multiple goals. To
deal with this issue, we formulate the participant selection prob-
lem as a reinforcement learning problem and propose to solve
it with a novel method, which we call auxiliary-task based deep
reinforcement learning (ADRL). We use transformers to extract
representations from the context of the MCS system and a pointer
network to deal with the combinatorial optimization problem. To
improve the sample efficiency, we adopt an auxiliary-task training
process that trains the network to predict the imminent tasks from
the recruiters, which facilitates the embedding learning of the deep
learning model. Additionally, we release a simulated environment
on a specific MCS task, the ride-sharing task, and conduct extensive
performance evaluations in this environment. The experimental
results demonstrate that ADRL outperforms and improves sample
efficiency over other well-recognized baselines in various settings.
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1 INTRODUCTION

With the massive deployment of mobile devices, mobile crowd-
sourcing (MCS) has become a new service paradigm in recent years.
The MCS platforms recruit a large number of participants to supply
fast, economical and efficient services for mobile users, including
online product searching [8], sports video categorization [1], and
ride-sharing [31]. Furthermore, given the explosive growth of data
available on the web, MCS can help users to obtain effective infor-
mation in many online services such as online shopping sites. All
in all, MCS systems have been playing a vital and indispensable
role in various areas to boost business and are pervasive across
numerous online services.

There are two main roles in a typical MCS system, recruiters and
participants. The recruiters are those who outsource their tasks
to the crowd and the participants are those who are willing to
accomplish the tasks. The undertaking of the tasks brings the par-
ticipants profit, knowledge, and experience [17], and also meets the
requirements of the recruiters. Accordingly, how to select suitable
participants for each task is an important research topic that many
researchers focus on [32].

On an MCS platform, the participant selection (or task alloca-
tion) method is important for the platform to improve the efficiency,
increase the overall profit, and attract more recruiters and partic-
ipants. Nevertheless, conventional participant selection methods
[20, 32] can hardly achieve a good performance in a multi-goal set-
ting where different goals such as fairness, energy efficiency, and
profit maximization need to be optimized simultaneously. In a ride-
sharing system, a specific MCS system, shown in Figure 1, diverse
objects ask for diverse participant selection methods. When the
objective is to minimize the total time consumption (Figure 1a), the
participant V3 is selected according to the distance factor which is a
key factor for time consumption. When the objective is changed to
fairness (Figure 1b), the participant V4 is chosen to complete a new
task because it receives the least incentives in previous tasks. Under
such contexts, the incentives a participant receives is a key factor
that affects the participant selection strategy. When the objective is
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Figure 1: A motivation example in a specific MCS system, ride-sharing system.

changed to minimize the total energy consumption (Figure 1c), V1
is selected because it consumes the lowest energy under such a cir-
cumstance. However, when the goal is a mixture of the above goals,
(Figure 1d), it is hard to find a key factor or a simple participant
selection method to optimize all of these objectives. Conventional
participant selection methods become ineffective in this situation.
Moreover, environment uncertainty such as traffic jams also brings
difficulties for conventional participant selection methods. As such,
in this paper, we address a key research issue in MCS: how to select
participants to complete the tasks in a multi-goal environment?

The method proposed by Pu et al. [22] requires to accumulate the
personal information of participants to predict their mobile patterns.
However, it is hard for the platform to obtain the full information
of a participant. In addition, the trade-off between different goals is
fixed and naive in previous researches. For instance, Peng et al. [21]
present a trade-off between fairness and energy-efficiency, which
is characterized by min-max aggregate sensing time. Compared to
the above methods, reinforcement learning is more suitable for a
multi-goal environment. Sadhu et al. [25] adopt deep reinforcement
learning to maximize the expected pay-off against the uncertainty
in MCS. Lin et al. [16] use multi-agent reinforcement learning to
predict explicit coordination among participants. However, the
multi-goal setting in MCS is not considered in these papers. To the
best of our knowledge, this is the first paper that proposes an end-to-
end participant selection method via ADRL to solve the multi-goal
optimization problem in MCS. There are three challenges in the
participant selection problem with multi-goal setting:

Conflicting goals. The motivation examples disclose that, given
a mixture of goals in MCS, it is hard to find a key factor or a simple
participant selection method. Moreover, in the multi-goal setting,
the multiple goals are possibly conflicting with each other. For in-
stance, achieving the goal of fairness might lead to a decrease in
the total profit and energy efficiency. It is a challenge to trade-off
among the various goals.

Structured context in MCS. The context of a typical MCS en-
vironment is structured (e.g., the context is represented by the
timestamps, the text data and the position information), which
makes it difficult to distill information from the underlying intri-
cate relationships.

Sample complexity in reinforcement learning. The model-
free reinforcement learning algorithms usually suffer from sample
inefficiency, especially when the policy is approximated by a neural

network with a large number of parameters. Since the samples
in real scenarios are expensive, it is hard to learn a policy by a
sample inefficient algorithm. Meanwhile, the goal is flexible (i.e.,
the multiple goals or the trade-off between different goals of an
MCS system may change over time) and therefore we need to
frequently retrain the model. However, training a model using a
sample inefficient algorithm is time-consuming even in a simulated
environment.

In response to the challenges mentioned above, we propose a
participant selection method using ADRL based on transformers
and a pointer network, inspired by AlphaStar [2]. More specifically,
we adopt the transformers to extract features from the participants
and the tasks, and the pointer network to select suitable participants
to complete the tasks. The main contributions of our work are
summarized as follows:

e We formulate the participant selection problem as a rein-
forcement learning problem which enables optimizations
for arbitrary reward functions and thus is suitable for the
flexible and multiple goal setting.

e We release a simulated MCS environment based on real
datasets, which can generate a large number of experiences
to train policies under the reinforcement learning formu-
lation. Besides, the configurations of the tasks, the partici-
pants and other environment conditions can be easily cus-
tomized. For the ease of future research, we base our sim-
ulated environment on the OpenAI Gym [5] interface and
publish it on https://github.com/swtheing/Auxiliary-task-
Based-Deep-Reinforcement-Learning.

e In ADRL, we use the transformers to exploit the inherent
structures in the MCS environment and use the pointer net-
work to select suitable participants to complete the tasks.

e We design an auxiliary task training process to improve sam-
ple efficiency and therefore accelerate the training. In this
process, we train the model to predict the imminent tasks
in the future, which helps the model to learn a better repre-
sentation of tasks and participants. Empirically, we observe
that this process greatly improves the sample efficiency and
the performance of the policy.

The rest of this paper is organized as follows. The problem state-
ment and the simulated environment are introduced in Section 2.
The policy network of ADRL is specified in Section 3. The auxiliary
training process is shown in Section 4. Experiments based on the
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real dataset and performance evaluations are presented in Section
5. The related work and conclusion are shown in Section 6 and
Section 7 respectively.

2 PROBLEM STATEMENT AND SIMULATED
ENVIRONMENT

In this section, we formulate the participant selection problem
as a reinforcement learning problem and introduce the simulated
environment for ride-sharing, which is a specific MCS task.

2.1 Problem Statement

In an MCS system, a recruiter requests a location-aware task at a
time point. Then, the platform accumulates a batch of tasks in a
time interval. At the end of the time interval, the platform assigns
the tasks to suitable participants. Under such a context, the partic-
ipant selection problem in MCS is to select suitable participants
to complete these tasks for multiple goals. In this problem, the
platform makes decisions (select suitable participants for the tasks)
at the end of each time interval and the decision in a particular
time interval affects the subsequent decisions. This makes it hard
to divide this problem into a series of subproblems, each of which
corresponds to a particular time interval. Therefore, we formulate
the participant selection problem as a Markov decision problem in
this paper.

The state and the action of Markov decision problem are defined
as follows:

Sh ={FTh, FPh, FEh}

_ 1

ap —{aht}teTh
where the subscript h represents the index of the time interval. The
state s, consists of three parts, the task features FT}, the participant
features FPj, and the environment features FE, at the end of the
h-th time interval. The set of the pending tasks collected by the
platform till the end of the h-th time interval is denoted as Tj,, and
the corresponding set of available participants is denoted as Py,.
The platform selects one or more participants for each task ¢ in T,
from the set of all currently available participants at the end of the
h-th time interval, which is denoted as ap; C Pj. The set of the
selections for all the tasks in the h-th time interval is defined as
the action ay,. Thus, the participant selection policy is defined as
n(ap|sp)- At last, the reward for the Markov decision problem can
be set arbitrarily to indicate the goals of the system.

In the experiments, we use the following features: The task fea-
tures include basic task description, timestamp, recruiter informa-
tion, location information, and the requirements for the task (e.g.,
time limit and the number of participants required). The participant
features include basic participant description, location information
and the state of the participant (e.g., whether the participant is
occupied). The environment features include the weather condition
and the traffic condition. In our implementation, the environment
features for the locations associated with participants or tasks are
appended to the corresponding participant or task representations.

The reward of the sequential decision process is designed and
serves as the objective for the policy optimization. We design a
flexible reward function for the multi-goal setting,

()= D > wkonk () (2)
h k

where ry, is the reward function in the h-th time interval, oy (-) is
function of the k-th objective in the h-th time interval and wy is
the weight of the objective o.

There are three main goals in our setting specified as follows:

o Effectiveness. Participants consume resources to accom-
plish the tasks. Therefore, the platform needs to control the
total amount of the resources to level up the effectiveness.

o Fairness. The platform needs to allocate each participant
roughly an equal number of tasks, which helps the partic-
ipants to make profits and incentivizes the participants to
take more tasks.

e Overall profit. The platform needs to make the overall prof-
its to accelerate its development.

2.2 Simulated Environment

In this section, we design a simulated environment for ride-sharing
and show the framework in Figure 2.

2.2.1 Task and participant generation. In our framework, the
data manager provides the raw data of participants and tasks. The
participant generator and the task generator preprocess the raw
data and generate the participants and the tasks respectively by
sampling from the data. The maximum limit on the number of
the tasks and participants in each time interval can be customized
according to the practical application scenario. Additionally, the
trajectory manager maintains and evolves all the generated tasks
and participants during the interaction with the agent.

Environment
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Figure 2: The framework of the simulated environment.
There are three modules in the simulated environment: the
task and participant generation module, the simulator mod-
ule, and the reward computing module.

2.2.2 Simulator. The simulator extracts the task and partici-
pant features as the state of the environment to provide to the
agent. Then the simulator receives and executes the actions of
the agent. With the help of the trajectory manager, the simulator
maintains and updates the states of all the participants and tasks
synchronously. At last, the simulator computes and returns the
reward to the agent.

In order to simulate a real ride-sharing environment for some
complicated situations like traffic jams and different weather condi-
tions, we set different moving speeds for the participants in different
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Figure 3: The architecture of the policy network. There are
three main modules in the architecture of the policy net-
work: the input module, the task and participant encoder
module, and the interaction module with a pointer network
and an LSTM core.

locations. In detail, the whole map is divided into a number of grids.
We set the speeds in different grids on the map to simulate the
traffic situation. For the weather variation, the moving speed of
a participant in a grid changes along with time. In addition, a re-
cruiter is possible to cancel the task after submitting this task in
our environment.

2.2.3 Reward computing. The reward is a weighted sum of (1)
distance cost which is the distance between the participant and the
recruiter when the task is assigned to the participant, (2) the total
distance of all the completed tasks, (3) time cost which is the total
time cost of all the tasks, (4) the standard deviation of the distance
cost across different participants and the standard deviation of the
time cost across different tasks and (5) overall energy, which is
the total energy consumed by all completed tasks. In this reward
setting, we describe the overall profit by (1) and (2), the fairness by
(3) and (4) and the effectiveness by (5).

3 POLICY NETWORK

ADRL is based on REINFORCE [38] with baselines, a classic pol-
icy gradient algorithm. The policy in ADRL is approximated by a
neural network whose architecture is specified in Figure 3. The ar-
chitecture consists of four modules: the input module, the task and
participant encoder module, the interaction module with pointer
network and LSTM core, and the greedy selection module.

Input module. In the input module, the task, participant, and envi-
ronment are extracted as corresponding features. The features of
the i-th task are denoted as #;. The features of the j-th participants

are denoted as p;. The environment features are included in the par-
ticipant and task features. The features are transformed to task and
participant embeddings by the embedding layers. To distinguish
between different participants and tasks, batch normalization (BN)
layers [13] are appended to the embedding layers. In the previous
work [26], the batch normalization layer is used to address the
internal covariate shift problem. In our model, it helps to distin-
guish among the participant (or task) embeddings. We found that
these BN layers make the training process more robust to weight
initialization and different learning rates.

Task and participant encoder module. The encoder of the task or
the participant is composed of multiple identical blocks. Each block
is composed of four layers: a multi-head self-attention layer [33], a
fully connected feed-forward layer, and two layer norm layers [3].

There are two types of self-attention layers: the participant self-
attention layers and the task self-attention layers. In the former
type of layers, the queries, keys and values are all participant em-
beddings. The pairwise interaction between two participants in
{pi}i=1:n is represented by p; - p;. Then the participant embedding
P = {pi}i=1:n is updated by accumulating information from all
the interactions, p « softmax(p - p7 )p in the encoder module. The
latter type of layers process in a similar manner. The activation
functions are ReLU functions [18].

Interaction module with pointer network and LSTM core. The
pointer network and the LSTM core are adopted to select suitable
participants for each task. Using the pointer network, each task can
interact with every participant and this benefits the combinational
optimization. In the pointer network, the interaction between the
Jj-th participant and the i-th task is denoted as

uj = pj - ti. (3)

Then, we use the LSTM core to select suitable participants for
each task one by one, following an order according to the arrival
time. For the i-th task, the LSTM core gives the probability that we
select each participant in P.

P(P;t;) = softmax(LSTM(u'|u?, - - -, u'™1)), (4)

where u’ is concatenation of {u]’ };l=1' Each element in P(P;t;) €
A(P) denotes the probability that the corresponding participant in P
is selected by the i-th task. By considering the participants selected
by preceding tasks, the LSTM core alleviates the collisions between
the participant selections on different tasks. Besides, the LSTM core
makes the training process more stable, which is observed from
our experiments. These innovations in the policy network improve
the quality of the representations learned, leading to significant
performance gains.

Greedy selection module. In the h-th time interval, the previous
module outputs the probability P (Py; ;) that each participant is
selected to accomplish the task t;. In the greedy selection module,
we sequentially process the tasks in the same aforementioned order.
For each task t; € T, we select suitable participants in P with
the probability P(Py; t;), and then remove the selected participants
from Py,.
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Table 1: The statistics of the trajectory dataset and the hy-

perparameters used in the experiments.

Number of participants
Number of trajectories
Number of points
Number of passengers
Total distance
Total duration
Total fare amount
Total amount
Number of transformer layers
a in equations (6)

564,516
26,206
616,928
41,989
66,546.73 km
21,602 hours
3,249,543 dollars
400,689.55 dollars
8
0.1

Figure 4: The auxiliary-task training process. In this pro-
cess, we train the network with an additional loss which is
the mean squared loss between the predicted tasks and the
truth.

4 AUXILIARY-TASK TRAINING PROCESS

Conventional model-free reinforcement learning suffers from sam-
ple inefficiency. To accelerate the training process and improve the
final performance, we implement an auxiliary-task training process
which is shown in Figure 4.

Consider a case where there are no adequate participants around
the location of a recruiter. The system has two choices: 1) accept
this task and allocate a participant from a far area to accomplish the
task, or 2) do not accept this task. However, this decision depends
on whether there will be an increasing number of tasks appearing
in this area in the future. Accordingly, it is easier to make a good
decision when the future task appearance is predicted.

Based on the above analysis, the model should not only take
account of the past tasks but also predict future tasks in the decision
process. The prediction of future tasks provides more information
for making decisions.

The model predicts the future tasks by an additional attention
layer appended to the task encoder module, where the task embed-
dings from the task encoder are decoded as the embeddings of the
predicted tasks. Moreover, we train the network with an additional
loss which is the mean squared loss between the predicted tasks
and the truth (We use N(0) to denote the loss of the auxiliary task
associated with the policy 7y.). As a consequence, the model selects
better participants for the current tasks through the prediction of
future tasks.

The objective of reinforcement learning is to maximize the cu-
mulative reward

J©O) = Er~p9(‘r)[r(f)]’ (5
where 0 is the parameter of policy network, 7 is a sequence of
0,40, S1, a1, - - -, po(7) is the probability that the sequence 7 is sam-

pled when we adopt the policy g, and r(r) is cumulative reward
of the trajectory.
Therefore, the loss of the auxiliary-task training process is to
minimize
L(0) = —J(0) + a - N(6), (6)

where « is a hyper parameter.

Table 2: The ablation study in the atom task. In Model with
SL, we perform a supervised learning over the optimal so-
lutions using the policy network architecture in Figure 3. In
Model with RL, we perform the reinforcement learning with
the same policy network. Then, we respectively drop the
BN layer, (Model without BN Layer) the LSTM layer (Model
without LSTM Layer) and the dropout layer; (Model with-
out Dropout Layer); we replace the transformers with MLPs
(Model with MLP Only) or use only one layer in the trans-
formers. (Model with One Layer Transformer).

Solution Reward
Optimal Solution 0.088
Model with SL 0.087
Model with RL 0.086
Model without BN Layer 0.070
Model without LSTM Layer 0.077
Model without Dropout Layer 0.079
Model with One Layer 0.077

Transformer

Model with MLP Only 0.066

5 EXPERIMENTS

The performance of ADRL is evaluated by a series of experiments
in the simulated environment. We first introduce the experiment
setups and some baseline methods in detail. Then, we present and
compare the evaluation results of our algorithm to the baseline
methods and the ablated variants.

5.1 Datasets and Experiment Setups

The datasets used in the stimulated experiment are the NYC Taxi
dataset and the Uber Trips dataset [27], which are both open-
sourced [28]. Table 1 lists the scale of the whole dataset. It was
collected by publicly available taxi and Uber trajectories in NYC
from 2009 to 2018, covering billions of individual trips. In the taxi
dataset, each trip of a vehicle contains not only the coordinates and
timestamps of the pickup and drop-off locations but also the trip
distances and the detailed fares. The data of Uber Trips is different
from that of NYC Taxi. The coordinates of a Uber vehicle are given
in the order of time, and thus the one-day trips are recorded with



Table 3: The performance comparison between the baselines and ADRL in fairness-first reward settings. In the fairness-first
reward setting, the weight of the fairness reward component is equal to the sum of the weights of the other components. In
the environment setting, s represents the number of steps (time intervals), ¢ represents the number of tasks and p represents
the number of participants.

Environment Settings Fairness-First Reward

st p NPF NAPF WPF RWM PPOWM ADRL
2 2 10 3.828 3.828 3.099 2515 2.605 3.790
2 5 10 5.247 5.298 5.335 5.642 5.341 7.576
5 5 5 1.329 1993 2898 4331 5.287 6.368
5 5 15 10.962 12.425 8.673  15.269 13.281 16.832
10 5 10 17.096 22.029 21.407 22.510 21.926 23.186
5 10 15 25473 20.310 18.586 24310  20.006  27.172
10 10 20 28.996 37.868 41.356 42.747 36.171 47.832
20 5 30 9.117  14.299 51.235 54.834 37.885 61.852

Table 4: The performance comparison between the baselines and ADRL in energy-first reward setting. In the energy-first re-
ward setting, the weight of the energy efficiency reward component is equal to the sum of the weights of the other components.

Environment Settings Energy-First Reward

st p NPF NAPF WPF RWM PPOWM ADRL
2 2 10 3.019  3.019 2371 2.626 2.295 3.087
2 5 10 4.600 4.636  4.831  5.944 4.917 7.353
5 5 5 2.824  2.684  4.241 5.397 5.936 6.387
5 5 15 10.453 11406  9.030  15.657 12.752  19.304
10 5 10 17.046 20.254 20.279 24919  20.908  25.995
5 10 15 25.092 24430 22.130 26.467 20.724  30.817
10 10 20 32.309 39.970 40.399 48.445  38.075 48.075
20 5 30 19.504 21.849 48.063 55.117 37.007  57.683

Table 5: The performance comparison between the baselines and ADRL in profit-first reward setting. In the profit-first reward
setting, the weight of the profit reward component is equal to the sum of the weights of the other components.

Environment Settings Profit-First Reward

S t p NPF NAPF WPF RWM PPOWM ADRL

2 2 10 2.372 2.372 1.796  2.682 2.649 2.513

2 5 10 4.083 4.105 4.458 6.154 5.206 7.269

5 5 5 4.020 3.237 5.160 6.597 7.028 7.996

5 5 15 6.246 7.790 8.757  16.486 12.879 21.934

10 5 10 17.006 18.833 19.532 27.120 23.085 28.115

5 10 15 25.261 22.608 20.606 29.037 22.990 34.856

10 10 20 34959 41.651 39.935 49.786 41.796 51.899

20 5 30 27.814 27.889 41.520 55.096 41.893 60.694
discrete timestamps. The pickup and drop-off coordinates are not 5.2 Baseline Methods
recorded. These two sources of data are preprocessed and then the In this section, we introduce a series of baseline methods that are
tasks and participants are sampled from the data in the simulated adopted from [22] and [31].
environm.eflt. ' ) ) Nearest participant first (NPF). NPF is an algorithm that allo-

In addition, we use an elght-ltayer transformer in the POh.CY cates a pending task to the nearest participant, which is a simple

network. We set a to 0.1, the learning rate to 0.1 and the batch size but effective participant selection method for ride-sharing tasks.

to 640.
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Figure 5: Reward proportion analysis. We analyze the reward proportion of three goals attained by the policies trained by
ADRL in three reward settings respectively. Additionally, we do the experiments in the reward setting that the weight of each
goal is equal. The statistics of these experiments are shown in the sub-graph Balanced-Reward.

Nearest available participant first (NAPF). NAPF is an improved
version based on NPF [22]. The participants allocated to a time-
consuming task may be unavailable in a long period of time. To
avoid selecting the participants that are unavailable in a long time to
complete the task, NAPF selects the nearest and currently available
participant to complete the task.

Worst-off participant first (WPF). Given a task, the WPF algo-
rithm selects the participants allocated with the fewest tasks within
a given distance from the task. This algorithm pays attention to
both the overall profit and the fairness of the system.

Reinforce algorithm with multi-layer perceptron (we denote
it as MLP) (RWM). The RWM method uses the Reinforce algo-
rithm in which we adopt MLP as the policy network.

Proximal policy optimization algorithm with MLP (PPOWM).

The PPOWM method uses the Proximal policy algorithm [29] in
which we adopt MLP as the policy network.

Reinforce algorithm with the same policy network in ADRL
(DRL). The DRL method uses reinforce algorithm in which the
policy network is the same as ADRL.

5.3 Atom Task and Ablation Study

We first introduce a minimal ride-sharing task, called atom task. In
this task, there is one ride-sharing task with two participants in a
particular time interval, whose optimal solution is easy to gain. We
conduct two experiments on the atom task.

1) We first do a supervised learning (SL) over the optimal solution,
which is used to test the model capacity. Then we compare the
performance of SL and RL. We show the result in Table 2. We find
that the performance of the RL method is comparable to that of
the SL method, which indicates that the RL model is capable to
represent a near-optimal solution for the atom task.

2) Then, we do an ablation study to evaluate the effectiveness
of the policy network in ADRL. As shown in Table 2, we test the
effectiveness of the designs in our deep learning architecture (such
as Transformer, BN, LSTM, and the dropout layer). We first replace
the Transformer with MLP and one layer Transformer in the policy
network. Then, the performance declines, which demonstrates that
the eight-layer transformer is important in the policy network. In
addition, we drop the BN, LSTM, and dropout layer in our deep
learning architecture respectively. The result demonstrates that
the ablation of any design in our model results in performance
degradation.

5.4 The Performance Evaluation

We compare ADRL with the baseline methods under three types
of rewards and eight different environment settings, and show the
performances in Table 3, 4 and 5. For the three types of rewards,
we set different weights for the reward components to emphasize
the fairness, the overall profit or the energy efficiency respectively.
For instance, we set the weight of the component that describes
the fairness equal to the sum of the weights of other components
in the fairness-first reward setting. This reward setting pays more
attention to the fairness. The result shows that ADRL attains a
comparable or better policy than the baseline methods across dif-
ferent settings, which indicates that ADRL is effective for different
goals. In addition, we conduct experiments with eight different
environment settings. These settings represent different levels of
complexity in the MCS systems. In some of the MCS systems, there
are adequate participants to complete with each other. In some of
the MCS systems, the number of steps is large which requires a
more careful and complex planning.

In these experiments, ADRL is better than NPF, NAPF, WPF,
RWM and PPOWM in 21 out of 24 settings. In three of the settings
(the number of time steps, tasks and participants are 2, 2, 10 in the
fairness-first and profit-first settings and 10, 10, 20 in the energy-
first setting), ADRL is worse than some of the baselines, due to
the fact that the baseline methods can attain a near-optimal solu-
tion in these simple situations (as in the atom task) or the reward
setting is not intricate. In the experiments, we observe that in eas-
ier tasks where there are adequate number of participants, ADRL
is only slightly better than the baselines. Otherwise, ADRL has a
significantly better performance than the baselines. This demon-
strates that ADRL is better to deal with complex combinational
optimizations in the participant selection problem.

In addition, we compare ADRL with RWM and PPOWM in Figure
6. The performance of ADRL is better than the RWN and PPOWM
algorithms. Furthermore, instead of RWN and PPOWN, the ADRL
can attain a good performance by a few iterations. It indicates that
ADRL needs fewer iterations to train policy network than baselines.

In Figure 5, we present the reward proportions of the three
sub-goals attained by the policies trained by ADRL in the fairness-
first, energy-first and profit-first reward settings. Additionally, we
conduct the experiments in the reward setting that the weights of
these sub-goals are equal. The statistics of this set of experiments
are shown in the sub-graph Balanced-Reward. In these different
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reward settings, the policies pay attention to different sub-goals.
For instance, in the fairness-first setting, the reward component
corresponding to the fairness from the trained agent takes up a
large proportion of the total reward, which demonstrates that the
policy is indeed a fairness-first policy.

5.5 Auxiliary-Task Training Process

In this comparative experiment, we test the effectiveness of the
auxiliary-task in ADRL. We show the result in Figure 6. The ADRL
agent is trained to optimize the policy and predict the future tasks.
The DRL agent is only trained to optimize the policy. The curves
are the averaged cumulative reward on each epoch during the
training. In the entire training process, the performance of ADRL is
better than DRL. Furthermore, the ADRL agent can obtain a good
performance in the begining of the training process and obtain a
more stable performance than the DRL agent in the end of training
process. The experiment discloses that the auxiliary-task training
process accelerates the training of the DRL and achieves a better
performance.

6 RELATED WORK

Mobile crowdsourcing and participant selection. Previously,
several approximate algorithms based on specific assumptions have
been proposed to solve the MCS problem. However, these assump-
tions are relatively strong. For example, Zhang et al. [42] assumes
that the income is equally paid to each participant; Pu et al. [22]
requires the information of each participant. Moreover, estimating
the reliability of participants is also significant in MCS [4].

In the specific MCS task, ride-sharing task, Zhang et al. [43]
propose a novel system to dispatch taxis to finish multiple tasks
aiming to optimizes the overall travel efficiency. In [39], an order
dispatch problem is modeled as sequential decision-making and a
Markov decision process method is deployed. In [16], a multi-agent
reinforcement learning network is used to tackle the large-scale
fleet management problem, which improved the system satisfaction
and increased the utilization of transportation resource [19]. The
travel time prediction model is presented in [37]. Moreover, Qin
et al. [23] present a simulation-based human-computer interaction
of deep reinforcement learning in action on order dispatching and
driver re-positioning for ride-sharing. They use deep reinforcement
learning to train agents (drivers) to cooperate to achieve higher
objective values. As many researchers focus on the ride-sharing
task, there is adequate data to supply a simulated environment and
different baselines to compare with. Moreover, we can optimize for
multiple goals in the ride-sharing tasks, such as profit, fairness and
energy-efficient. Therefore, we test ADRL on the ride-sharing task
in our paper. However, our method can be easily applied in other
MCS tasks.

Deep reinforcement learning with multi-head attention and
Pointer Networks. Another relevant research topic is deep rein-
forcement learning with multi-head attention and Pointer Net. In
[41], a multi-head attention based RL algorithm is proved to perform
relational reasoning over structured representations successfully. In
[36], Pointer Net is trained to output satisfactory solutions to three
combinatorial optimization problems. In AlphaStar [35], the agent
trained via multi-agent reinforcement learning with multi-head

attention and Pointer Net beats 10 professional human players.
It motivates us to use these advanced techniques to exploit the
inherent structures in the MCS environment and learn better rep-
resentations. Similar to [36], we use Pointer Net to perform the
combinatorial optimization problem, i.e., selecting suitable partici-
pant to complete the tasks.

Auxiliary-task learning in machine learning. Learning auxiliary
tasks simultaneously along with the main task can help learn a
representation with better generalization. It leverages the domain
knowledge from other tasks (e.g., self-supervised learning or unsu-
pervised learning) to improve the performance of the main task. For
example, in natural language processing, language models [6, 24]
which are train without explicit supervision can achieve good per-
formance in many tasks in the zero-shot or few-shot settings. In
reinforcement learning, the auxiliary-task is also successful. In the
model-based settings, world models can be trained to learn a com-
pact representation of the environment. Ha and Schmidhuber [10]
adopt a two-stage (or iterative) process where a world model is first
learned in a unsupervised manner from samples and then used to
train the policy. However, learning the auxiliary tasks simultane-
ously (as we do) often leads to a better performance [34], such as
Dreamer [11] and PlaNet [12]. In the model-free settings, many al-
gorithms construct various auxiliary tasks to improve performance,
such as predicting the future states [9, 14], predicting various value
functions with different cumulants [34] or policies [7], or recog-
nizing transformations to the image-based states [30]. In MCS, a
multi-view network is applied in taxi demand prediction [40] and
a multi-task representation learning model is proposed for travel
time estimation [15]. Similarly, we use the auxiliary task in our
method to facilitate the representation learning.

7 CONCLUSION

In conclusion, we formulate the participant selection problem as
a reinforcement learning problem and propose the auxiliary-task
deep reinforcement learning method (ADRL) to solve it, which
is shown to be a good training method to achieve flexible and
compound goals in MCS. Besides, we release a simulated MCS en-
vironment based on real datasets. To facilitate further research and
reproducibility of our results, we base the simulated environment
on the OpenAl Gym interface and publish it online. At last, we
conduct extensive performance evaluations and the experimental
results demonstrate that ADRL achieves better performance and
accelerates the training process of deep reinforcement learning.

There are two future directions based on our work. First, it is
worthy to investigate the detailed reason why the auxiliary-task
training process improves the sample efficiency in RL. Second, we
could introduce more realistic factors such as the road conditions
and the user profiles into the simulated environment to model a
more complex world.
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