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ABSTRACT
How to effectively utilize the dialogue history is a crucial problem
in multi-turn dialogue generation. Previous works usually employ
various neural network architectures (e.g., recurrent neural net-
works, attention mechanisms, and hierarchical structures) to model
the history. However, a recent empirical study by Sankar et al. has
shown that these architectures lack the ability of understanding
and modeling the dynamics of the dialogue history. For example,
the widely used architectures are insensitive to perturbations of
the dialogue history, such as words shuffling, utterances missing,
and utterances reordering. To tackle this problem, we propose a
Ranking Enhanced Dialogue generation framework in this paper.
Despite the traditional representation encoder and response genera-
tion modules, an additional ranking module is introduced to model
the ranking relation between the former utterance and consecutive
utterances. Specifically, the former utterance and consecutive utter-
ances are treated as query and corresponding documents, and both
local and global ranking losses are designed in the learning process.
In this way, the dynamics in the dialogue history can be explicitly
captured. To evaluate our proposed models, we conduct extensive
experiments on three public datasets, i.e., bAbI, PersonaChat, and
JDC. Experimental results show that our models produce better
responses in terms of both quantitative measures and human judg-
ments, as compared with the state-of-the-art dialogue generation
models. Furthermore, we give some detailed experimental analysis
to show where and how the improvements come from.
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1 INTRODUCTION
With the development of deep learning techniques and the acquisi-
tion of a massive amount of chat data, multi-turn dialogue genera-
tion systems have achieved great progress, and many technology
companies have launched their chat-bots, such as Microsoft Xiaoice,
Cortana, and Apple Siri. As the dialogue goes on, the number of its
turns increases, accompanying with the emotion changing [20, 29],
topic drifting [8, 32], and task switching [6, 30]. Therefore, the
dialogue history embodies the high-level dynamics, and how to
effectively use the dialogue history becomes crucial yet a big chal-
lenge in the task of multi-turn dialogue system.

Most recent neural dialogue generation methods are based on
the Seq2Seq [24] framework, which can be mainly categorized
into two groups. The first group treats the whole history as a
sequence of text [28]. The historical utterances are directly con-
catenated in chronological order before the encoding process to
generate a dialogue history representation. Typically, recurrent
neural network [17] and Transformer neural network [27] are used
to aggregate all the dialogue history to a single vector, and the
outputs of the encoder are treated as the input representation for
response generation. The second group treats the dialogue history
hierarchically [22, 23, 25, 33, 34]. Each history utterance is encoded
separately, and then another encoder is applied on these encoded
utterances sequentially to generate the historical representation.
Both word-level encoder and utterance-level encoder are modeled
by either recurrent neural network or Transformer neural network,
hence both words in utterance and utterances in the dialogue his-
tory are captured. However, Sankar et al. point out that neither the
recurrent neural network nor Transformer neural network in the
Seq2Seq framework can fully capture the dynamics. As previous
models focus more on the generative loss, the dynamics are often
modeled simply and implicitly by the recurrent structure or the
positional embeddings, which is insufficient for thoroughly using
the useful information implicated in dynamics.

To further enhance their understanding to the history, we pro-
pose to explicitly model the dynamics for multi-turn dialogue gen-
eration. Specifically, in multi-turn dialogue, dynamics can be repre-
sented as the flow of the semantic information in history utterances,
for example, task steps in task-oriented dialogue or topic drifting
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in chit-chat. In most of the time, the history utterance follows the
consistency attribute, that the next utterance can be predicted by
the former utterances. As an initial step of modeling dynamics in
dialogue, we ignore the special cases, while assuming that if the
next utterance can be selected from candidates using the former
utterances, the dynamic flow will be captured by the generation
model. Thus, we introduce a Ranking Enhanced Dialogue gener-
ation framework (RED) to explicitly model the internal utterance
order in the dialogue history.

The RED framework mainly consists of three modules. Despite
the traditional utterance representation module and response gener-
ation module, an additional ranking enhanced module is introduced
to explicitly model the dynamics of the dialogue histories. Referring
to the definition of ranking task in information retrieval, for each
utterance in dialogue history, the former utterances can be treated
as a query, in the meanwhile, the consecutive utterance right be-
hind the query can be treated as the most relevant document. The
suitability of the dynamic flow between them can be treated as
relevance in information retrieval. In other words, the utterance
ranking task aims to identify the next utterance from the candidates,
given the former utterances as a query, where the candidates can
be selected from the utterances after the query. So the target of
the ranking enhanced module is to evaluate the relevance between
the query and documents, by making use of the ranking technique
which has been well-explored in information retrieval [14]. We
design both local ranking loss and global ranking loss to capture
such dynamics, by using local or global information for utterance
ranking. Our proposed RED framework is general and can be easily
incorporated with most of the recent dialogue generation models.

To demonstrate the effectiveness of our proposed RED frame-
work, we conduct experiments on three public datasets to compare
with two types of state-of-the-art neural dialogue generation mod-
els. Experimental results show that the proposedmodels outperform
existing ones, by incorporating the ranking enhanced module. The
detailed analysis further proves that explicitly learning the dynam-
ics of the dialogue history does help response generation. Moreover,
it gives some explanations on where and how the improvements
come from.

2 RELATEDWORKS
In this section, we first describe the general form of the multi-turn
dialogue generation task. Then, two categories of recent models
that make use of dialogue history are introduced.

2.1 Multi-turn Dialogue Generation Task
The multi-turn dialogue generation task provides a context that
contains the history utterances of a conversation, while recent sin-
gle turn dialogue only provides the nearest one, called the post.
Therefore, the multi-turn dialogue generation task naturally sat-
isfies a two-level hierarchy: a sequence of sub-sequences, and
sub-sequences of tokens. In particular, a dialogue is modeled as
a sequence of utterances (subsequences), with each utterance be-
ing a sequence of words. Formally, suppose that we are given a
collection of dialog history and its corresponding response pairs,
where the collectionD = {(Hi , ri )}Ni=1 containsN history-response
pair instances. Each dialogue history Hi contains M utterances,

Hi = [h1,h2, . . . ,hM ] and each utterance hj ∈ Hi composites by a
sequence of words with lengthK , denotes as hj = [w1,w2, . . . ,wK ].
The ri = [v1,v2, . . . ,vL] denotes the response sentence of the i-th
instance. In a Seq2Seq framework, neural generation models are
trained on the given collection, which parameterizes a probability
distribution P , governed by parameters θ , over the set of all possible
dialogues of arbitrary lengths. The probability of generating the
response r can be defined as:

Pθ (r ) =
L∏
l=1

Pθ (vl |v<l ,H ), (1)

where v<l = [v1,v2, . . . ,vl−1] denotes the words before vl in the
response. The task is analogous to language modeling, with the
critical difference that dialogue generation is conditioned on history
H . Sampling from the model can be performed as in standard lan-
guage modeling: sampling one word at a time from the conditional
distribution Pθ (vl |v<l ,H ) given the previously sampled words.

2.2 Multi-turn Dialogue Generation Models
Using the dialogue history effectively is vital for generating co-
herent and meaningful responses. Existing studies can be mainly
separated into two categories, sequential way and hierarchical way
depending on the different network structures for encoding the
dialogue history information.

In a sequential way, it treats all dialogue history as a whole se-
quence of text, where the words in each utterance are directly con-
catenated in its chronological order. This category merely applies
single turn dialogue generation models in the multi-turn settings,
just treating current dialogue history as a longer post. Vinyals and
Le [28] first applies the recurrent neural network to the dialogue
generation task, which considers all previous utterances equiva-
lently. To summarize all the past information up to the last token
representation suffers from the vanishing gradient effect. Therefore
the short-term goals will dominate the output distribution [3]. In
particular, for sequences with high variability, the models are likely
to favor short-term predictions as opposed to long-term predictions.
Bahdanau et al. [1] introduces the attention mechanism into a recur-
rent neural network to tackle this problem. For simplification, a pure
attention-based approach is proposed, namely Transformer [27].
By eschewing recurrence and instead relying entirely on attention
mechanism, Transformer draws global dependencies between input
and output whichmakes it more parallelizable than RNNs. However,
all of the sequential models ignore the two-level hierarchy struc-
ture of the multi-turn dialogue generation task, which provides
rich information during the encoding part.

In a hierarchical way, Serban et al. [22] first propose the hierar-
chical recurrent encoder-decoder architecture (HRED), they use an
utterance level RNN to get the embedding of each history utterance,
and use an inter-utterance level RNN to get the final embedding
of the whole history by feeding the embedding of each history
utterance as the inputs. Considering that treating all history turns
indiscriminately is not proper as the response is only usually related
to some certain previous history turns, Tian et al. [25] proposed a
weighted sequence (WSeq) attention model for HRED, using the co-
sine similarity to measure the degree of the relevance between the
utterance of the current turn and each of utterance of the previous



A@1: Hey there. How are you?
B@1: Good, see my lovely dog, do you 

like animals?
A@2: I like cats. I had one in my office.

B@2: Where do you work?

A@3: I stay at home with the kids now. 
Do you like TV?

B@3: Sure I like TV, what do you watch?

A@4: Really anything, what about you?

B@4: I have no time watching TV, I am a
programmer.

Response

Topic 1
(greeting)

Topic 2
(animal)

Topic 3
(work)

Topic 4
(hobby)

Figure 1: An example of dynamics in multi-turn dialogue.

history turns. Xing et al. [33] extend the HRED with the attention
mechanism [1] to attend to important parts within and among ut-
terances with word-level attention and utterance-level attention.
Zhang et al. [34] propose a Transformer based model named Re-
CoSa to HRED, they use history turns self-attention to strengthen
the encoder and use history-response attention to extract and use
the relevant history turns for response generation.

However, the aforementioned works solely concentrate on ex-
ploring new network structures for modeling dialogue history, ex-
pecting the dynamic flow can be captured bywell-designed network
structures implicitly.

3 MOTIVATION
Previous studies [12, 15] take their effort to construct multi-turn
dialogue datasets, expecting that richer contextual information
can facilitate selecting and generating the next utterance [36]. It
is inspired by the behavior that human-generated responses are
heavily dependent on the previous dialogue segments at different
granularities (words, phrases, sentences, etc), both semantically and
functionally, over multiple turns rather than one turn [10, 26]. As
we can see in Figure 1, the post (A@4) is a general question ‘what
about you?’, thus dialogue history, such as ‘TV’ entity plays an
important role in generating the response. In a typical multi-turn
dialogue, there are several kinds of dialogue flows in the history dia-
logue to sustain the conversation, 1) the task-oriented conversation
has a clear purpose which required to fulfill specific steps in order,
2) speaker can change from information-provider to information-
seeker in turns, for example asking follow-up questions (B@1), 3)
speakers often have different views about a topic (A@3), and by ex-
changing different proposals, they persuade and influence the other.
The above-described dialogue flows embed the dynamics inside,
such as topic drifting in Figure 1, from general to specific, from
public to private. Therefore, each utterance in history is predictable.

Recent works implicitly model the dynamics in history dialogue
using the predefined network structures, such as recurrent neural
network and transformer neural network. Recurrent neural net-
work processes tokens step by step in history dialogue. Therefore,
the output representation of the current token is a combination of
previous token output representation and the current token input

representation. Similarly, the Transformer structure utilizes posi-
tional embeddings to keep the order of utterance in mind. These
model structures proposed for the sequential data assume to capture
the dynamics implicitly. Nevertheless, Sankar et al. [21] point out
that neither the recurrent neural network nor the Transformer neu-
ral network in the Seq2Seq framework fully captures the dynamic
flow in the dialogue history. In their study, authors make the per-
turbations to the dialogue history, but surprisingly find a marginal
hurt to the generation performance. The increases to the perplexity
of the generated response is too small, even though using drastic
and unnatural modifications, including shuffling or reversing every
utterance in the dialogue history. Such observations suggest that
the well-known sequential model structures use far from all the
information in the dialogue history that is available to them, not
order information, let alone other complex dynamics.

Therefore, in this paper, we argue that the dynamics in history
dialogue should be modeled explicitly. As we have seen in Figure 1,
the order of utterances reflects the simplest dynamic flow structure,
any change of the dialogue history (A@1 - A@4) will destroy the
dynamic flow in this conversation. In order to force utterances in
order, predicting the next utterance using previous utterances is a
good way which can be treated as a ranking problem. The previous
utterance can be treated as a query and the next utterance can be
treated as the most relevant document to the given query, while
the other utterances are not as relevant as it. Thus we propose a
ranking enhanced dialogue generation approach, in order to utilize
dialogue history effectively.

4 OUR APPROACHES
This section first introduces the architecture and major components
involved in the proposed RED framework. As shown in Figure 2,
the RED framework mainly consists of three components: utterance
representation module, response generation module, and ranking
enhanced module. The former two modules are derived from tra-
ditional dialogue generation models, while the additional ranking
enhanced module is the core part in RED distinguishing to them.

Utterance representationmodule: Given the dialogue history
H = [h1,h2, . . . ,hM ], whereM is the number of history utterances.
Each utterance is composited of words. We first get the word em-
bedding for each word in all history utterances. For sequential
models, the whole sequence of word embeddings are fed into an
RNN encoder or a Transformer encoder according to the struc-
ture of different models. The encoder then outputs the represen-
tation for each word. We use the average of word representations
for each history utterance as its representation. For hierarchical
models, the word embeddings for each history utterance are first
fed into an utterance level RNN encoder. The outputs of the ut-
terance level RNN encoder are then fed into an inter-utterance
level RNN encoder or Transformer encoder. We use the output
of inter-utterance level encoder for each history utterance as its
representation. The final representations of the dialogue history is
denoted asU = [u1,u2, . . . ,uM ].

Response generation module: A typical decoding module in
the Seq2Seq framework. In the training, our goal is to maximize
the response probability defined in Equation 1. It takes the history
dialogue and previously generated responsewords as the conditions,
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Figure 2: Overview architecture of RED model, RED with 2-order as an example.

then maximizes the probability of choosing the next right response
word. In the testing, one common way is to generate response word
by word, and greedy pick the word with the highest probability at
each time step.

Ranking enhanced module: Directly constructed upon the
utterance representation module, and shares the representations
with the response generation module, as shown in the top of Fig-
ure 2. The goal of ranking enhanced module is to make sure that the
next utterance can be predicted by the utterances before, thereby
maintaining the dynamic structure of dialogue history. To achieve
this goal, we introduce a ranking perspective in this module, then
construct the query, the most relevant document and less relevant
documents using history utterances (the circles with different col-
ors in Figure 2). Therefore, the degree of learning dynamic flow can
be evaluated by utilizing a list-wise ranking loss.

4.1 Ranking Enhanced Module
Assuming that simplest dynamic flow in dialogue history can be
regarded as the chronological order between utterances, for the
purpose of keeping all history utterances in order, we introduce a
ranking perspective on the dialogue history. Recalling that the top-1
relevant document ranking task in information retrieval defines a
standard ranking framework. Given a query q represents the user’s
information need and a set of n documents D = {d1,d2, . . . ,dn },
where dr ∈ D represents the most relevant document. The goal
of ranking is to maximize the probability P(dr |q). Specifically, in
the case of multi-turn dialogue generation, former utterances can
be treated as query q, and the consecutive utterance right after
the query can be treated as the most relevant document, while the
others are less or not relevant. Note that the query is constructed
by multiple former utterances (Section 4.1.1) and the relevant docu-
ment is exactly the next utterance (Section 4.1.2).

4.1.1 Query Construction. There are two approaches to construct
the ranking query, i.e., local and global query construction. Within
both ranking methods, a sequential structure LSTM is adopted to
aggregate former utterances, in order to obtain a fixed-dimensional
query representation. Despite the common structure, the scope of
selecting former utterances is the main difference between the two
ranking approaches.

…
Query Candidate Documents

…
…

(A) Local Ranking: (2-order for example)

Query
(B) Global Ranking:

…
Candidate Documents
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Figure 3: Two types of ranking enhanced module.

Query construction for local ranking It is often the case that
locally consecutive utterances belong to the same topic, or have a
gradual and smooth topic drifting to keep coherence. To meticu-
lously capture such local dynamic flow, we design the local query
for ranking. Consider the utterance ui in a dialogue history, for
constructing a k-order query in the local ranking method, the top
k − 1 former utterances closest to ui and the ui itself are used to
construct the query. More precisely, the query representation qi is
defined as,

qi = LSTM(ui−k+1, . . . ,ui ), i ∈ [k,M − 1]. (2)

where ui is the representation of the i-th utterance in dialogue
history, LSTM is a function generating the last hidden state of the
LSTM encoder. As index i varies from k toM − 1 in the history H ,
we can constructM − k queries in total. TheM − k k-order queries
can be obtained in a sliding window, where the window size is k .
For example, as shown in Figure 3 (A), the first query is constructed
from utterances [u1,u2], exactly fulfill the first window with size 2.
When the window slides one step to the right, a new query [u2,u3]
is generated. When the window slides to the end, we get the last
query [uM−2,uM−1].

Note that in this work, k is set to be 1, 2, 3, denote as 1-order
query, 2-order query, and 3-order query, respectively. Note that
when k = 1, only ui itself is used to construct the 1-order query.

Query construction for global ranking To effectively utilize
the previous dynamic flow till this history position and better mod-
eling the global dynamic flow, different from using a fixed number
of former utterances near the i-th utterance, the global ranking



method uses all former utterances before the i-th utterance and
the i-th utterance itself to construct the query. We call this type of
query as full-order query, the representations qi of which is then
constructed as follows:

qi = LSTM(u1, . . . ,ui ), i ∈ [1,M − 1]. (3)

Similar to the local ranking query, M − 1 queries can be con-
structed by using the different length of history, as in Figure 3 (B).

4.1.2 Documents Construction. Given the dialogue history utter-
ance representationsU = [u1,u2, . . . ,uM ], for the i-th query qi , the
utterance ui+1 is the most relevant document. Thus, the candidate
document set contains all of the utterances after the i-th utterance,
denoted as U>i = {ui+1, . . . ,uM }. That is to say, each utterance
in the candidate set can be seen as a unique document, and the
query is used to rank the candidate documents according to their
relevance with the query. The relevance here can be viewed as a
certain type of manifestation for proper dynamic flow. Specifically,
(qi ,ui+1) is the most relevant pair, while {(qi ,uj ), j > i + 1} are
treated as less relevant or irrelevant pair.

4.1.3 Ranking. For the local ranking method, the utterances in
a sliding window described in 4.1.1 are used for constructing the
query, all of the utterances after those utterances are candidate
documents. For the local ranking methods using the k-order query,
we can construct M − k query-documents pairs. For the global
ranking method, dialogue history can be simply divided into two
consecutive parts, the former part is the query and the following
part is the candidate documents, thus we construct M − 1 query-
document pairs.

Within each query-document pair, the Topk-ListMLE [31] is
designed for correct ranking at the top-k positions in information
retrieval. In our ranking task, given former utterances, we only
need to rank the next utterance correctly at the top-1 position
without taking the ranking position among utterances after the
next utterance into account, because all of them are less relevant
than the next utterance. Thus, we use Top1-ListMLE loss in the
RED framework for our ranking task.

Specially, in our ranking case, for the i-th query-documents pair,
its query is qi , its candidate document set isU>i = {ui+1, . . . ,uM }
and the ground-truth labels are {1, 0, . . . , 0}. We firstly get the rank-
ing score for each element ut in theU>i by a ranking function fr .
The fr function is implemented in the following steps. Firstly, we
concatenate qi with each element in theU>i and get a sequence of
concatenated representations,

{
[qi ,ui+1], [qi ,ui+2], . . . , [qi ,uM−i ]

}
,

where [·, ·] represents the function that concatenates two vectors.
Secondly, for the utterance ut inU>i , we use a fully connected

layer to get its final ranking score. This layer takes the concatenated
representation [qi ,ut ] as the inputs and then outputs a real-value
score for the utterance ut . fr (ut ) can be formalized as,

fr (ut ) =W r · [qi ,ut ] + br , (4)

whereW r and br are the parameters of the fully connected layer.
After getting the ranking score for each utterance in the candi-

date documents, the Top1-ListMLE loss Li is defined as,

Li (U>i ; fr ) = − log
exp

(
fr (ui+1)

)∑M
t=i+1 exp

(
fr (ut )

) . (5)

For the ranking task, we design local ranking loss and global
ranking loss for capturing the local and global dynamics implied
in dialogue history turns. For the local ranking method, the local
ranking loss for the i-th query-documents pair is denoted as Lilocal .
For the global ranking method, the global ranking loss for the i-th
query-documents pair is denoted as Liдlobal .

Given a single history-response pair, the REDmodel whose query
is k-order query designed for capturing local dynamics, the local
ranking loss Llocal

rank is defined as,

Llocal
rank =

1
M − k

M−1∑
i=k

Lilocal(U>i ; fr ), (6)

and the RED model whose query is full_order query designed for
capturing global dynamics, the global ranking lossLglobal

rank is defined
as,

Lglobal
rank =

1
M − 1

M−1∑
i=1

Liдlobal (U>i , fr ). (7)

4.2 Objective Function and Training
The RED framework appends ranking enhanced module to the orig-
inal dialogue generation models, so the objective function contains
two parts, including a traditional sequence generation loss, denotes
as Lдen and a newly proposed ranking loss, denotes as Lrank . The
overall loss function is a linear combination of these two losses:

L = Lдen + αLrank, (8)
where α is a hyper-parameter that control the ratio of two losses.
Moreover, the generative lossLдen for response generation module
is defined as,

Lдen = − log(
L∏
l=1

P(vl |v<l ,H )) (9)

where H is the given dialogue history and the target response is
represented as r = {v1,v2, . . . ,vL}. The ranking loss Lrank can be
set to either Llocal

rank or Lglobal
rank , to complete a local ranking task or

a global ranking task, and can be seen as a regular type. We jointly
train the response generation module and the ranking enhanced
module by sum up the generation loss and the ranking loss with a
parameter α , then we get the final loss function L.

The training for generation is a type of supervised training, and
the training for ranking is indeed a type of self-supervised learning.
We train the RED models with joint training loss using batched
Stochastic Gradient Descent (SGD) with Adam [9].

5 EXPERIMENTS
Experiments are conducted on three public multi-turn dialogue
datasets, i.e., bAbI, PersonaChat and JDC, including task-oriented
datasets and open domain datasets in multiple languages, e.g Eng-
lish and Chinese, in order to thoroughly evaluate our proposed
RED framework. In this section, we first introduce experimental
settings including dataset statistics, evaluation metrics and base-
lines description. Result evaluations, then, proposed in order to
demonstrate the effectiveness and generalization of our RED frame-
work. Furthermore, empirical analysis is conducted to show where
and how the improvements come from.



Table 1: Descriptive statistics of datasets, including the number of dialogues in train/valid/test sets, the total number of history-
response pairs,the average number of turns, the average number of words per turn and vocabulary size

Dataset #Train #Valid #Test #History-Response Pairs #Avg. Turns #Avg. Words # Vocabulary
PersonaChat 8939 1000 968 162064 14.86 14.24 18745
JDC 99944 1549 1565 980023 9.51 15.86 113503
bAbI dialog 1000 1000 1000 110390 36.8 7.02 1109

5.1 Experimental Settings
5.1.1 Datasets. We conduct experiments on three multi-turn di-
alogue datasets with different styles, they are the bAbI dialog [4],
the PersonaChat [35] and the Chinese customer service dataset
(JDC) [34] respectively. Each dataset is split into train/valid/test sets
according to the previous works [21, 34]. Note that each multi-turn
dialogue in the three datasets is processed to many history-response
pairs with different history lengths. Table 1 provides descriptive
statistics about the three datasets.

PersonaChat is an open domain dataset with multi-turn chit-
chat conversations between turkers who are each assigned a “per-
sona” at random. It comprises 10.9k dialogs with an average of 14.86
turns per dialog.

JDC The Chinese customer service dataset, named JDC, consists
of 103058 dialogues published by the JD multi-turn dialogue chal-
lenge. This dataset is a collection of multi-turn dialogues between
customer and customer service in the JD E-commerce platform.
The average turns per dialogue is 9.51.

bAbI Dialog is a synthetic goal-oriented multi-turn dialogue
dataset consisting of 5 different tasks for restaurant booking with
increasing levels of complexity. We consider Task 5 in our exper-
iments since it is the hardest and is a union of all four tasks. The
average turns per dialogue is 36.8.

5.1.2 Evaluations. We use both quantitative metrics and human
judgments for evaluation in our experiments. Considering that
BLEU [19] and other word-overlap metrics correlate poorly with
human judgements of response quality [13], we use per-word per-
plexity (PPL) [2] and Distinct [11] as automatic metrics for quanti-
tative comparisons. The traditional metric PPL describes how well
our trained probabilistic model (denoted as p) predicts the expected
ground-truth responses. Given an utterance u = {w1,w2, . . . ,wn },
the PPL is defined as the exponentiation of the word entropy,

PPL(u) = exp
(
H [p(u)]

)
= exp

(
−

N∑
i=1

p(wi ) logp(wi )
)
.

The smaller the PPL, the closer the generated probabilistic distribu-
tion is to the ground-truth distribution. The metric PPL has been
widely used in NLP and multi-turn dialogue generation [5, 25, 33]
to evaluate the quality of generated responses. We use Distinct
to evaluate the degree of diversity of the generated responses by
calculating the number of distinct unigrams and bigrams in the
generated responses. The two numbers are scaled by the total num-
ber of generated tokens and then denoted as dist-1 and dist-2. The
larger the distinct values indicates the more informative and diverse
the generated responses.

What’s more, we also conduct a human evaluation to evalu-
ate the ability of the models to generate good responses. Given

200 randomly sampled dialogue history turns, we choose the stan-
dard Transformer and ReCoSa, and their corresponding ranking
enhanced RED1 and REDfull models (which model local and global
dynamics respectively) to generate responses for each of the 200
sampled cases. We then invite 3 CS annotators to judge the quality
of responses generated by the 6 representative models. Each of them
is required to give the comparison between our proposed ranking
enhanced models and the baseline standard models, e.g., win, loss,
and tie, based on the informativeness, fluency and relevance with
history. For example, the "win" label means that the generated re-
sponse of model A is more proper than model B. Notably, the order
of the responses is shuffled randomly.

5.1.3 Baselines and Our Models. We compare 5 baseline models,
Seq2Seq, Seq2Seq with attention (SeqAtt), Transformer, HRED and
ReCoSa, with those models applied our RED framework.

For sequential models:
• Seq2Seq: The RNN based sequence to sequence model uses
LSTM for both encoder and decoder.

• SeqAtt: The se2seq with attention. It introduces the atten-
tion mechanism to the RNN-based Seq2Seq model.

• Transformer [27]: The standard Transformer model which
takes all of the history turns as a whole sequence of words.

The above three models are provided by the ParlAI [18] frame-
work which is identical to the experiments in Sankar’s empirical
study [21]. The hyperparameters are exactly the same as which
provided by their work for fair comparison on the bAbI and Per-
sonaChat.

For hierarchical models:
• HRED [22]: The basic hierarchical model which uses a two-
level hierarchical encoder to encode the history turns.

• ReCoSa [34]: The state of the art hierarchical model which
uses Transformer as the inter-utterance level encoder.

We implement HRED and ReCoSa in the ParlAI framework by our-
selves, to reuse the standard components and the common process
provided by the framework.

REDx_y: The prefix ‘RED’ denotes our Ranking Enhanced Di-
alogue generative models, and the x in 1,2,or 3 denotes all of the
ranking enhanced methods whose query are 1 order, 2 order or
3 order respectively. We set x to symbol ‘full’ to denote ranking
method who use all the history utterances as a query. The y denotes
the baseline models from Seq2Seq, SeqAtt, Transformer, HRED or
ReCoSa. For example, RED2_Transformer denotes the Transformer
model with 2 order local ranking enhanced module.

The query is constructed using a single LSTM layer with 64 hid-
den size, and followed a fully connected layer with the hidden size
of 128 in all RED based models. The hyperparameter α set to be
0.01 in loss function L. For the bAbI dialog and the PersonaChat



Table 2: Human evaluation on the PersonaChat dataset.

Informativeness Fluency Relevance
Models v.s. Transformer Win/Tie/Loss Kappa Win/Tie/Loss Kappa Win/Tie/Loss Kappa
- RED1_Transformer 50.13/44.73/5.14 0.493 23.02/56.31/20.67 0.578 25.47/54.04/20.49 0.589
- REDfull_Transformer 51.30/39.51/10.19 0.482 35.62/44.06/20.32 0.569 35.32/59.48/5.20 0.510
Models v.s. ReCoSa Win/Tie/Loss Kappa Win/Tie/Loss Kappa Win/Tie/Loss Kappa
- RED1_ReCoSa 35.79/34.38/30.63 0.477 32.90/39.58/28.52 0.623 16.90/69.31/14.79 0.497
- REDfull_ReCoSa 35.62/44.77/20.61 0.515 25.15/54.71/22.14 0.596 21.29/59.60/19.11 0.524

Table 3: Examples of responses generated by baselines and RED models on the PersonaChat dataset.

Multi-turn Dialogue History Generated Responses
A: Hi . Just chilling to john denver after my work out . Transformer: I am a cashier at the local department .

How about you ? RED1_Transformer: I like music . I love rap music .
B: Hi , just studying for my college exam . Hows it going REDfull_Transformer: I love country music . I love country music .
A: Good . What are you taking in college ? ReCoSa: I am from georgia . I am in the navy .
B: What kind of music do you like to listen to ? RED1_ReCoSa: I am a fan of 60s and 70s music .
A: John Denver . How about you ? REDfull_ReCoSa: I like all kinds of music . I love all kinds of music .
A: Scotch goes good with meat Transformer: I have a brother , he is a detective .
B: Scotch goes good with anything lol . RED1_Transformer: I have a cat named after my daughter
A: I have a brother who likes scotch REDfull_Transformer: I have a cat named gizmo . He is a big cat .
B: I am an only child . ReCoSa: I do not have any pets , I have a dog and a dog
A: I have just the one brother and 3 sisters RED1_ReCoSa: I do not have any pets
B: Do you have any pets ? I am scared of dogs . REDfull_ReCoSa: I have a dog , I love dogs

Table 4: Performance of queries of different order for five
models on the PersonaChat dataset. The best score is bolded.

Model PPL Dist-1 Dist-2

Seq2Seqs

Seq2Seq 43.04 0.0035 0.0081
RED1_Seq2Seq 42.90 0.0042 0.0110
RED2_Seq2Seq 43.01 0.0039 0.0099
RED3_Seq2Seq 42.70 0.0040 0.0098
REDfull_Seq2Seq 43.03 0.0034 0.0080

SeqAtts

SeqAtt 40.98 0.0111 0.0385
RED1_SeqAtt 40.81 0.0115 0.0411
RED2_SeqAtt 40.92 0.0102 0.0362
RED3_SeqAtt 40.56 0.0107 0.0400
REDfull_SeqAtt 40.96 0.0097 0.0334

Transformers

Transformer 40.48 0.0138 0.0559

RED1_Transformer 39.49 0.0103 0.0352
RED2_Transformer 39.45 0.0104 0.0380
RED3_Transformer 39.54 0.0106 0.0401
REDfull_Transformer 39.46 0.0121 0.0426

HREDs

HRED 44.96 0.0040 0.0105
RED1_HRED 44.02 0.0044 0.0116
RED2_HRED 44.01 0.0043 0.0123
RED3_HRED 44.46 0.0036 0.0093
REDfull_HRED 44.40 0.0033 0.0093

ReCoSas

ReCoSa 38.27 0.0066 0.0174
RED1_ReCoSa 37.89 0.0072 0.0204
RED2_ReCoSa 37.57 0.0095 0.0281
RED3_ReCoSa 37.76 0.0091 0.0272
REDfull_ReCoSa 38.07 0.0073 0.0202

Table 5: Performance of queries of different order for five
models on the JDC dataset and the bAbI dialog dataset.

JDC Dataset
Models PPL Dist-1 Dist-2

Seq2Seqs Seq2Seq 12.72 0.0035 0.0101
REDfull_Seq2Seq 11.82 0.0037 0.0110

SeqAtts SeqAtt 11.70 0.0086 0.0311
REDfull_SeqAtt 11.68 0.0051 0.0178

Transformers Transformer 10.40 0.0014 0.0027
REDfull_Transformer 10.28 0.0051 0.0140

HREDs HRED 10.90 0.0087 0.0376
REDfull_HRED 10.80 0.0091 0.0396

ReCoSas ReCoSa 10.44 0.0015 0.0029
REDfull_ReCoSa 9.43 0.0111 0.0465

bAbI Dataset
Models PPL Dist-1 Dist-2

Seq2Seqs Seq2Seq 1.21 0.0007 0.0015
REDfull_Seq2Seq 1.172 0.0007 0.0016

SeqAtts SeqAtt 1.032 0.0007 0.0020
REDfull_SeqAtt 1.025 0.0007 0.0020

Transformers Transformer 1.026 0.0007 0.0020
REDfull_Transformer 1.023 0.0007 0.0020

HREDs HRED 1.027 0.0007 0.0020
REDfull_HRED 1.026 0.0007 0.0019

ReCoSas ReCoSa 1.024 0.0007 0.0019
REDfull_ReCoSa 1.019 0.0007 0.0020



datasets, in Seq2Seq, SeqAtt and their RED versions, the encoder
and decoder components are 2-layer LSTM with 128 hidden size.
For Transformer, we use 300 dimensional embeddings and hidden
size, 2 layers and 2 attention heads. For HRED and related ranking
enhanced models, we use a 2-layer LSTMwith hidden size 128 as its
utterance level encoder and use another 2-layer LSTM with hidden
size 128 for both inter-utterance level encoder and decoder. For Re-
CoSa and related ranking enhanced models, we use a 2-layer LSTM
with hidden size 300 as its utterance level encoder, the hidden
size/layers/attention heads for both inter-utterance level Trans-
former encoder and Transformer decoder are 300/2/2 respectively.
For the JDC dataset, except for the LSTM encoder for constructing
queries representations and the following fully connected layer
in RED framework, all of the models on JDC use 512-dimensional
hidden units and 512-dimensional word embedding both for LSTMs
and Transformers. Additionally, the LSTM components reduce to
a single-layer LSTM and the layers and attention heads for Trans-
formers are 6 and 8 respectively.

Adam [9] is utilized for optimization, and the learning rate is
set to be 0.005 for Seq2Seq/SeqAtt/HRED and their related ranking
enhanced models, 0.001 for Transformer/ReCoSa and their related
ranking enhanced models. We use early stopping with a patience
of 10 on the validation set to obtain the best models.

The source code and all of the experiments can be found in
https://github.com/ying-A/RED

5.2 Experimental Results
Metric-based EvaluationWe do comparative experiments on the
three datasets to observe the differences of quantitative metrics
between the baseline models and our ranking enhanced models.
Specifically, we calculate PPL and distinct on the test datasets to
compare the generative ability of different models fairly. Results
are shown in Tables 4 and 5. On the three datasets, all RED models
outperform baselines in PPL. For the bAbI dataset, the gaps in PPL
are small, mainly because the task is relatively simpler compared
with the other two datasets, even the basic Seq2Seq model can
achieve a nearly perfect PPL close to 1. Thus the RED models
also achieve almost the same distincts with baselines. For the JDC
dataset and the PersonaChat dataset, our improvements on PPL
are significant and the vast majority of RED models get higher
distincts than baselines. Take the results on the PersonaChat dataset
for example. For PPL, all of the RED models in the five groups
achieve lower PPL than their related baseline models. It reveals that
by additionally learning a task of ranking history utterances, the
generated probabilities of the generative module can be closer to
the ground-truth distribution in the probability distribution space.
For distinct, we find that the highest distinct values are all got by
our RED models except for models in Transformer groups. It shows
that the RED models are better for generating diverse responses by
explicitly modeling dynamics in history turns.

Moreover, RED3_Seq2Seq, RED3_SeqAtt, RED2_Transformer,
RED2_HRED and RED2_ReCoSa achieve the lowest PPL in each
of their related group, REDfull_Transformer and REDfull_HRED
achieve the second-lowest PPL in each of their related group. It
shows that both local ranking methods and global ranking meth-
ods are helpful for improving generative performance. We also find

what matters most for improving generative performance is the abil-
ity to model sequential order information for original baseline mod-
els. As the ability to model the sequential dynamic flow for original
baseline models becomes weaker and weaker, the performance im-
provements (PPL decreases) brought by RED models become bigger
and bigger. The largest PPL decreases for baselines Seq2Seq(0.34),
SeqAtt(0.42), ReCoSa(0.7), HRED(0.95), Transformer(1.03) respec-
tively. Take a deep look into the phenomenon, RNN structures are
inherently capable to model sequential order. Seq2Seq and SeqAtt
use fully RNN structures to model word order information. Hierar-
chical models HRED and ReCoSa also use an utterance level RNN
to model word order information, however, the word order informa-
tion is separately modeled in each individual utterance. While the
Transformer only uses a weak positional embedding to keep order
information, thus the improvements for Transformer are larger
than other baselines.

Human Evaluation and Case Study For qualitative evalua-
tion, we use human evaluation to compare responses generated by
different models. The results are shown in Table 2. The percentage
of win, loss and tie, as compared with the baselines in terms of
informativeness/fluency/relevance, are given to evaluate the qual-
ity of generated responses by RED models. The results show that
all of the RED models achieve better performances (#win − #loss)
in the three aspects, which reveals that our RED models generate
responses with higher quality than baselines. Kappa [7] values are
presented to demonstrate the consistency of different annotators.

Table 3 presents two samples generated by RED models and
baselines. For the first example, person A first answer that he likes
the music by ‘John Denver’, and ask what B likes by an elliptical
sentence ‘how about you’. We can see that baselines Transformer
and ReCoSa only care about the utterance ‘how about you’ without
correctly understanding the logical relationship between it and
its previous history utterances, and thus generate wrong answers.
However, our RED models generate coherent answers concentrat-
ing on the current dialogue topic music. For the second example,
the utterance of the last history turn is about pets and dogs. Trans-
former gives its reply by the word ‘brother’ that appeared twice in
past history utterances, and ReCoSa generates two sentences with
inconsistent logic. Our RED models generate informative responses
about the pets. The two examples show that baselines ignore the
dynamic logical information in history turns, while RED models
give appropriate answers by learning the dynamic history structure.

5.3 Empirical Analysis
We conducted additional experiments to analyze the reasons that
the RED framework outperforms the baselines. The analysis was
conducted using the results on the PersonaChat dataset as examples.
The similar phenomenon is also observed on the other two datasets.

5.3.1 Where does the improvement comes from. To identify
where the improvement for RED models comes from, we split the
dialogue history into three groups of similar size according to their
lengths, including length less than 11, between 11 and 15, and longer
than 15 utterances. The 968multi-turn conversation instances in the
PersonaChat dataset can be constructed into 6544 history-response
pairs in total, in this way, three groups contain 1937/2431/2176

https://github.com/ying-A/RED


Table 6: PPL of queries of different order for Transformer
on PersonaChat split dataset with different history length.

Model History Length PPL ∆PPL

Transformer

<11 35.82
-11-15 40.37

>15 45.78
all 40.48

RED1_Transformer

<11 35.36 -0.46
11-15 39.63 -0.74
>15 43.83 -1.95
all 39.49 -0.99

RED2_Transformer

<11 35.72 -0.10
11-15 39.47 -0.90
>15 43.44 -2.34
all 39.45 -1.03

RED3_Transformer

<11 35.67 -0.15
11-15 39.41 -0.96
>15 43.88 -1.90
all 39.54 -0.94

REDfull_Transformer

<11 35.33 -0.49
11-15 39.52 -0.85
>15 43.88 -1.90
all 39.46 -1.02

instances respectively.The Transformer and its RED enhanced ver-
sions are evaluated on these new divided data partitions, and the
results are shown in Table 6. For each model on each data parti-
tions, we calculate their PPL and ∆PPL metrics, where ∆PPL is
the difference between each RED model and original Transformer
model under a specific history length. For example, ∆PPL in the
5-th row equals to PPL in the 5-th row minus PPL in the 1-st row.
∆PPL indicates the improvement of each RED model compares to
the baseline under different history length data partitions.

As shown in Table 6, in each block, PPL increases along with the
increasing of history length for all models, reflecting that generating
the response with longer history utterance is more difficult than
the shorter one. Longer dialogue history brings not only more
informative signals, but also more complex dynamics, which makes
it harder for response generation. As for the ∆PPL in each RED
model, e.g., RED1_Transformer, the values decrease along with the
increasing of history length, e.g., from -0.46, -0.74 to -1.95. The
phenomenon reveals that the RED framework, regardless of query
orders, is more helpful for the instance with longer dialogue history
bymodeling the order of the utterances explicitly. It makes RED able
to capture the dynamic flow easier than the original Transformer,
especially for longer dialogue history which is a tougher part in
the multi-turn dialogue generation task.

5.3.2 How does the improvement comes from. The ranking
loss for RED models is indeed a type of regularization, and it de-
mands the models learn to rank by learning better utterance repre-
sentations. Meanwhile, the enhanced representations can help gen-
eration module effectively use the dynamic information encoded
in them and generate better responses. To study whether RED
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(B) REDfull_Transformer
Figure 4: t-SNE embeddings of representations learned by
themodels for utterances from the PersonaChat test set. Em-
beddings are color coded by the position of the utterance in
the dialogue history it appears.
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Figure 5: PPL increases for 4 models (Left: Transformer and
REDfull_Transformer, Right: ReCoSa and REDfull_ReCoSa)
when applying 5 kinds of perturbations.

representations encoded dynamics well, we analyze the learned
utterance representations for RED models and baseline models.

Without loss of generality, we use the trained Transformer and
REDfull_Transformer as our two comparison models, and analyze
the representations of utterances on the PersonaChat test dataset.
For each model, we random sample 1000 representations of utter-
ances with different positional-indexes (1 to max history length)
in the history. After that, an off-the-shelf technique - t-SNE [16] is
used to reduce the representation dimensions for further visualiza-
tion. Specifically, we reduce the representations to 2-dimensional
vectors and draw themwith positional-indexes in an x-y coordinate.

It is evident that in REDfull_Transformer, see Figure 4(B), the
vectors with the same positional-index gather in a tight cluster. The
clusters form a clear sense of hierarchy according to their positional
orders, vividly showing a scene of dynamic flow. However, such
structure information is not illustrated in Transformer as in Fig-
ure 4(A), where variant labeled vectors are scattered everywhere.
It indicates that RED learned the high-level dynamic structures by
encoding this information in the utterance representations, while
traditional models do not have sufficient ability to do that.

What’s more, we also do utterance perturbation experiments
on the PersonaChat test set as implemented in Sankar’s empirical
study[21]. We first get the PPL for different models on the test set.
Then we perturb the dialogue history and record the PPL on the
perturbed test set. The PPL increases after perturbations for all of
the models are calculated and shown in Figure 5. Results show that
all of the REDfull models get larger PPL increases in most kinds
of perturbations than origin models and thus more sensitive to



history utterance perturbations. It proves that the dynamic (order)
information is more effectively used by RED models according to
the premise in [21] that the more sensitive the model to perturbations,
the stronger ability for it of modeling dynamics.

6 CONCLUSION
In this paper, we proposed a Ranking EnhancedDialogue generation
framework, namely RED, to explicitly capture the dynamics in the
dialogue history. RED consists of the regular representation encoder
module and response generation module, that have been used in
the original dialogue generation models, and an additionally novel
ranking enhanced module. In the ranking module, a learning-to-
rank task is designed for ranking dialogue history, where the former
utterance is treated as a query, and the consecutive utterances
after the query are treated as the documents. RED is a general
framework that can easily cooperate with most of the recent multi-
turn dialogue generation models. With the help of RED, we observe
the improvement in terms of both quantitative metrics and human
evaluations. Further empirical analysis demonstrates that the RED
is especially good at tackling longer dialogue history, by encoding
history dynamics into the utterance representations.
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