
RKT : Relation-Aware Self-Attention for Knowledge Tracing
Shalini Pandey

pande103@umn.edu
University of Minnesota

Twin Cities, Minnesota, USA

Jaideep Srivastava
srivasta@umn.edu

University of Minnesota
Twin Cities, Minnesota, USA

ABSTRACT
The world has transitioned into a new phase of online learning in
response to the recent Covid19 pandemic. Now more than ever,
it has become paramount to push the limits of online learning in
every manner to keep flourishing the education system. One crucial
component of online learning is Knowledge Tracing (KT). The aim
of KT is to model student’s knowledge level based on their answers
to a sequence of exercises referred as interactions. Students ac-
quire their skills while solving exercises and each such interaction
has a distinct impact on student ability to solve a future exercise.
This impact is characterized by 1) the relation between exercises
involved in the interactions and 2) student forget behavior. Tradi-
tional studies on knowledge tracing do not explicitly model both
the components jointly to estimate the impact of these interactions.

In this paper, we propose a novel Relation-aware self-attention
model for Knowledge Tracing (RKT). We introduce a relation-aware
self-attention layer that incorporates the contextual information.
This contextual information integrates both the exercise relation in-
formation through their textual content as well as student perform-
ance data and the forget behavior information through modeling
an exponentially decaying kernel function. Extensive experiments
on three real-world datasets, among which two new collections are
released to the public, show that our model outperforms state-of-
the-art knowledge tracing methods. Furthermore, the interpretable
attention weights help visualize the relation between interactions
and temporal patterns in the human learning process.

KEYWORDS
Educational DataMining, Knowledge Tracing, Relation-awaremodel,
Attention Networks
ACM Reference Format:
Shalini Pandey and Jaideep Srivastava. 2020. RKT : Relation-Aware Self-
Attention for Knowledge Tracing. In Proceedings of the 29th ACM Inter-
national Conference on Information and Knowledge Management (CIKM
’20), October 19–23, 2020, Virtual Event, Ireland. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3340531.3411994

1 INTRODUCTION
Real-world education service systems, such as massive open on-
line courses (MOOCs) and online platforms for intelligent tutoring

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’20, October 19–23, 2020, Virtual Event, Ireland
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6859-9/20/10. . . $15.00
https://doi.org/10.1145/3340531.3411994

systems on the web offers millions of online courses and exercises
which have attracted attention from the public [1, 19]. These online
systems allow students to learn and do their exercises independ-
ently, and at their own pace [11]. However, such a system requires
a mechanism to help students realize their strengths and weak-
nesses so that they can practice accordingly. In addition to helping
students, the mechanism can aid the teachers and system creators
to proactively suggest remedial material and recommend exercises
based on student needs [18]. For developing such a mechanism,
knowledge tracing (KT) is considered to be crucial and is defined as
the task of modeling students’ knowledge state over time [11]. It is
an inherently difficult problem as it is dependent on the factors such
as complexity of the human brain and ability to acquire knowledge
[28].

Figure 1 shows an example of a student solving exercises sequen-
tially. When the student encounters a new exercise (e.g. ‘e5’) she
applies her knowledge corresponding to the Knowledge Concept
(e.g., Quadratic Equations) to answer it. The mastery of a particular
KC is determined by the past interactions which have a distinct
impact on the target KC. Besides, the impact is distinct under differ-
ent circumstances. Typically, two factors account for determining
the impact of past interactions in the prediction task: (1) exercise-
relation (reflecting the relation between past exercises and the new
exercise ), and (2) the time elapsed since the past interactions. Intu-
itively, if the two exercises in the interactions are related to each
other then the performance on one affects the other. Additionally,
the knowledge gained while solving an exercise in the interaction
decays with time, which is attributed to the forget behavior of stu-
dents. It is important to use this information to contextualize the
KT models.

To model the evolution of student knowledge with interaction,
Hidden Markov Models were traditionally used in Bayesian Know-
ledge Tracing (BKT) [11] and its variants [5, 40]. Recently, the
progress in sequential modeling using deep learning has inspired
Deep Knowledge Tracing (DKT) [28], Dynamic Key-Value Memory
Network (DKVMN) [41] and Self-attentive Knowledge Tracing
(SAKT) [24] that are designed to capture long term dependencies
between interactions. Models such as [9, 17] have shown the im-
portance of explicitly incorporating the relations between KCs as
input to the KT model. In particular, [17] uses Dynamic Bayesian
Network to model the pre-requisite relations between KCs while
[9] incorporate the same in DKT model. However, they assume that
the relation between KCs is known apriori. In fact, manual labeling
of relations is labor-intensive work. To automatically estimate the
relations between exercises, [20] estimates a mapping between
each exercise and corresponding KCs and considers the exercise
belonging to the same KC as related. While, [22, 33] leverage the
textual content of exercises to model semantic similarity relation
between exercises. However, these models do not take into account

ar
X

iv
:2

00
8.

12
73

6v
1 

 [
cs

.L
G

] 
 2

8 
A

ug
 2

02
0

https://doi.org/10.1145/3340531.3411994
https://doi.org/10.1145/3340531.3411994


Figure 1: Overview of RKT model: Leftmost figure shows a student performance data and table shows textual content and
knowledge concepts of exercises which constitute the input of RKT. Middle figure shows the relation between exercises and
forget behavior of student which serve as contextual information for RKT. Rightmost figure shows that contextual informa-
tion encoded as relation coefficients informs the attention weight to revised attention weights.

temporal component which affects the importance of past inter-
actions, owing to the dynamic behavior of the student learning
process.

The temporal factors in knowledge tracing have been addressed
in [23, 27, 29]. These methods mainly focus on the time elapsed
since the last interaction with the same KC or previous interaction
without modeling the relation between exercises involved in those
interactions. However, as discussed, the previous interactions have
a distinct impact on prediction task which is attributed to both
exercise relation and temporal dynamics of the learning.

In this paper, we propose a novel Relation-aware self-attention
model for Knowledge Tracing (RKT) that adapts the self-attention
[37] mechanism for KT task. Specifically, we introduce a relation-
aware self-attention layer that incorporates the contextual inform-
ation and meanwhile, maintains the simplicity and flexibility of the
self-attention mechanism. To this end, we employ a representation
to capture the relation information, called relation coefficients. In
particular, the relation coefficients are obtained from exercise rela-
tion modeling and forget behavior modeling. The former extracts
relation between exercises from their textual content and student
performance data. While the latter employs a kernel function with
a decaying curve with respect to time to model student tendency to
forget. Our experiments reveal that our model outperforms state-
of-the-art algorithms on three real-world datasets. Additionally, we
conduct a comprehensive ablation study of our model show the
effect of key components and visualize the attention weights to
qualitatively reveal the modelâĂŹs behavior.
The contribution of our paper are:

• We argue that each interaction in the sequence has an ad-
aptive impact on future interaction, where both the relation
between the exercises and the forgetting behavior should be
taken together into consideration.

• Wedevelop amethod to learn the underlying relations between
exercises using the textual content and student performance
on the exercises which have not been explored before.

• We customize the self-attention model to incorporate the
contextual information, thus enabling a fundamental adapt-
ation of the model for KT.

• We perform extensive experiments on three real-world data-
sets and also illustrate that our model in addition to showing
superior performance, provides an explanation for its pre-
diction.

2 RELATEDWORK
2.1 Cognitive Diagnosis
Cognitive models refer to the models designed to discover latent
mastery of each student on defined knowledge points. Widely-used
approaches could be divided into two categories: one-dimensional
models and multi-dimensional models. Among these models, Rasch
model [30] (also known as 1PL IRT) is a typical one-dimensional
model and computes the probability of getting an exercise cor-
rect using logistic regression based on student’s ability and ex-
ercise (item) difficulty. To improve prediction results, other one-
dimensional models include additive factor models [7, 26] which as-
sumed KCs "additively" affect performance. These models include a
student’s proficiency parameter to account for the variability in stu-
dent’s learning abilities. Comparatively, multi-dimensional models,
such as Deterministic Inputs, Noisy-And gate model, characterized
students by a binary latent vector which described whether or not
she mastered the KCs with the given Q-matrix prior [12].

Similar to cognitive models, RKT also models the affect of past
interactions on student performance. However, modeling human
knowledge from past interaction is a complex task and we leverage
the attention mechanism to capture the complexity involved in
dynamics of past interactions for prediction task.

2.2 Knowledge Tracing
The KT task evaluates the knowledge state of a student based on
her performance data. A Hidden Markov based model, BKT, was



proposed in [11]. It models latent knowledge state of a learner as a
set of binary variables, each of which represents understanding or
non-understanding of a single concept. A Hidden Markov Model
(HMM) is used to update the probabilities across each of these bin-
ary variables, as a student answers exercises. Further extension
of BKT includes, incorporating individual student’s prior know-
ledge [40], slip and guess probabilities for each concept [5] and
the difficulty of each exercise [25]. Some approaches [34, 36] use
factorization methods to map each student into a latent vector that
depicts her knowledge state. To capture the change of student’s
knowledge evolution over time, [35] proposed a tensor factoriza-
tion method by adding time as an additional dimension. Another
line of research includes methods based on recurrent neural net-
works such as Deep Knowledge Tracing (DKT) [28], which exploits
Long Short Term Memory (LSTM) to model student’s knowledge
state. Deep Knowledge Tracing plus (DKT+) [39] is an extension of
DKT to address the issue faced by DKT such as not being able to
reconstruct the input and predicted KCs not being smooth across
the time. Dynamic Key-Value Memory Networks (DKVMN) [41]
introduced a Memory Augmented Neural Network [31] to solve KT
with key being the exercises practices and values being the mastery
of students. Recently, Self-Attentive Knowledge Tracing (SAKT)
[24] model was developed that first identifies the KCs from the
student’s past activities that are relevant to the target KC for which
performance is to be predicted. SAKT then utilizes the information
of performance on the past KCs to predict the student mastery at
the next KC.

Our method is an extension of SAKT such that we also take
into account the relations between exercises involved in the inter-
actions and time elapsed since the last interaction to inform the
self-attention mechanism.

2.3 Relation Modeling in KT
Exercise Relation Modeling: Exercise Relation Modeling has
been widely studied in the educational psychology. Some research-
ers have utilized Q-matrix to map exercises with Knowledge Con-
cepts [6, 12]. Two exercises are related if they belong to the same
KC. In addition to Q-matrix based method, recently researchers
have started to focus on deriving relations between exercises using
the content of exercises. For example, [21, 22, 33] utilize the content
of exercises to predict the relation between exercises. After predict-
ing the semantic similarity scores between the exercises [22, 33]
use these scores as attention weights to scale the importance of
the past interactions. To the best of our knowledge, incorporating
exercise relation modeling in KT is an under-explored area. To this
end, we explored methods for modeling exercise relations using
textual content of exercises and student performance data.
Forget Behavior Modeling: There has been some research ex-
ploring the forget behavior of students [10, 23]. Forget curve theory
introduced in [13] and employed in [10] which claims that student
memory decays with time at an exponential rate and the rate of
decay is determined by the strength of student cognitive abilities.
Recently, DKT-Forget [23] introduce different time-based features
in DKT model. DKT-Forgetting considers repeated and sequence
time gap, as well as the number of past trials, which is a state-of-
the-art method with temporal information. In our work, we take

Table 1: Notations

Notations Description
E total number of exercises
xi ith interaction tuple of a student
d latent vector dimensionality
e sequence of exercises solved by the student
P Positional embedding matrix
A exercise-exercise relation matrix
R relation coefficients of past interactions
x̂i ith interaction embedding
P Positional embedding matrix
l maximum sequence length
E Exercise embedding
X Interaction sequence of a student:

(x1,x2, . . . ,xi )

advantage of both exercise relation modeling and forget behavior
modeling in KT task which has not been done before.

2.4 Attention Mechanism
Attentionmechanism [37] is shown to be effective in tasks involving
sequence modeling. The idea behind this mechanism is to focus on
relevant parts of the input when predicting the output. It makes
the models often more interpretable as one can find the weights of
specific input that resulted in making a specific prediction. It was
introduced for machine translation task to retrieve the words in
the input sequence for generating next word in the target sentence.
Similarly, it is used in recommendation systems to predict the next
item a person will buy based on his history of purchase. Some
models [16, 38] have recognized that augmenting self-attention
layer with contextual information improves the performance of the
model. Such contextual information include the co-occurrence of
items for item recommendation [16] and syntactic and semantic
information of a sentence for machine translation [38]. In our task,
we use the self-attention mechanism to learn the attention weights
corresponding to the previous interaction for predicting whether a
student will provide correct answer to the next exercise. We then
augment the exercise relations and forget behavior of students to
enhance the model performance.

3 PROPOSED METHOD
Knowledge Tracing predicts whether a student will be able to an-
swer the next exercise en based on his/her previous interaction
sequences X = {x1,x2, . . . ,xn−1}. Each interaction is character-
ized by tuple xi = (ei , ri , ti ), where ei ∈ {1, . . . ,E} is the exercise
attempted, ri ∈ {0, 1} is the correctness of the student answer, and
ti ∈ R+ is the time at which the interaction occurred. For accur-
ate prediction, it is important to identify the underlying relation
between en attempted at time tn and the previous interactions. As
shown in Figure 1 the importance of a past interaction in predict-
ing whether the student will be able to answer the next exercise
correctly is determined by two factors: 1) the relation between the
exercises solved in the past interaction and the next exercise, and
2) time elapsed since the past interaction. Motivated by this, we



Figure 2: The overall architecture of RKT. We first compute the exercise relation matrix A. Then we use A to compute the
relation coefficients based on the relation between past exercises (e1, e2, . . . en−1) and the next exercise en and the time elapsed
since the interaction (∆1,∆2, . . . ,∆n−1). The relation coefficients are propagated to the transformer model which modifies the
attention weights to take into account the contextual information.

develop a Relation-aware Knowledge Tracing model which incor-
porates the relations as contextual information and propagates it
to the attention weights computed using self-attention mechanism
[37]. The updated attention weights are then used to compute the
weighted sum of the representation of the past interactions which
represents the output corresponding to the nth interaction. To learn
the parameters, we employ a binary cross entropy loss as our ob-
jective function. The mathematical notations used in this paper are
summarized in Table 1.

3.1 Exercise Representation
We learn a semantic representation of each exercise from its textual
content. For this, we exploit word embedding technique and learn
a function f : M → Rd , where M represents the dictionary of
words and f is a parameterized function which maps words to
d-dimensional distributed vectors. In the look-up layer, exercise
content are represented as a matrix of word embeddings. Then
the embedding of an exercise i , Ei ∈ Rd is obtained by taking
weighted combination of embedding of all the words present in the
text of the exercise i using Smooth Inverse Frequency (SIF) [2]. SIF
downgrades unimportant words such as but, just, etc., and keeps
the information that contributes the most to the semantics of the
exercise. Thus, the exercise embedding for an exercise i is obtained
as:

Ei =
1
|si |

∑
w ∈si

a

a + p(w) f (w), (1)

wherea is a trainable parameter, si represents the text of ith exercise,
and p(w) is the probability of wordw .

3.2 Exercise-Relation Matrix Computation
An important innovation of our model is that we explore methods
of identifying the underlying relations between exercises. Since the
relations between exercises are not explicitly known, we first infer
these relations from the data and build a exercise relation matrix,

Table 2: A contingency table for two exercises i and j.

exercise i
incorrect correct total

exercise j incorrect n00 n01 n0∗
correct n10 n11 n1∗

total n∗0 n∗1 n

A ∈ RE×E such that Ai, j represents the importance that perform-
ance on exercise j has on the performance on exercise i . We leverage
two sources of information for discovering the relations between
exercises: student’s performance data and textual content of exer-
cises. The former is used to capture the relevance of knowledge
gained in solving exercise j for solving exercise i , while the latter
captures the semantic similarity between the two exercises.

We will now describe how learner’s performance data can be
used to obtain the relevance of the knowledge gained from exercise
j to solve exercise i . We first build a contingency table as shown
in table 2 by considering only the pairs of i and j, where j occurs
before i in the learning sequence. If there are multiple occurrences
of j in the learning sequence before i , we only consider the latest
occurrence. Then, we compute the Phi coefficient which is pop-
ularly used as a measure of association for two binary variables.
Mathematically the Phi coefficient that describes the relation from
j to i is calculated as,

ϕi, j =
n11n00 − n01n10√
n1∗n0∗n∗1n∗0

. (2)

The value of ϕi, j lies between −1 and 1 and a high ϕi, j score means
students’ performance at j play an important role in deciding their
performance at i . We choose Phi coefficients among other correla-
tion metrics to compute the relation between exercises because: 1)
it is easy to interpret, and 2) it explicitly penalizes when the two
variables are not equal.



Another source of data we use for computing relation between
two exercises is the textual content of exercises which informs the
semantic similarity of two exercises. We first obtain the exercise
embedding of i , Ei and j , Ej from section 3.1, then compute the sim-
ilarity between exercises using cosine similarity of the embeddings.
Formally, similarity between exercises is calculated as:

simi, j =
EiEj

| |Ei | |2 | |Ej | |2
(3)

Finally, the relation of exercise j with exercise i is calculated as :

Ai, j =

{
ϕi, j + simi, j , if simi, j + ϕi, j > θ

0, otherwise,
(4)

where θ is a threshold that controls sparsity of relation matrix.

3.3 Personalized Relation Modeling
Here we model the contextual information to compute the relev-
ance of past interaction, represented as relation coefficients, for
predicting student performance at next exercise. Specifically, we
incorporate the exercise relation modeling and forget behavior
modeling described below at this step.
Exercise RelationModeling: This component involves modeling
the relation between exercises involved in interaction. Given the
past exercises solved by a student, (e1, e2, . . . , en−1) and the next ex-
ercise en for which we want to predict its performance, we compute
the exercise-based relation coefficients from the en th row of exer-
cise relation matrix, Aen as RE = [Aen,e1 ,Aen,e2 , . . . ,Aen,en−1 ].
Forget behavior modeling: Learning theory has revealed that
students forget the knowledge learnt with time [3, 13], known
as forgetting curve theory, which plays an important role in know-
ledge tracing. Naturally, if a student forgets the knowledge gained
after a particular interaction i , the relevance of that interaction for
predicting student performance at the next interaction should be
diminished, irrespective of the relation between exercises involved.
The challenge is to identify the interactions whose knowledge the
student has forgotten. Since students forget with time, we employ
a kernel function that models the importance of interaction with
respect to time interval. The kernel function is designed as an ex-
ponentially decaying curve with time to reduce the importance
of interaction as time interval increases following the idea from
forgetting curve theory. Specifically, given the time sequence of
interaction of a student t = (t1, t2, . . . , tn−1) and the time at which
the student attempts next exercise tn , we compute the relative time
interval between the next interaction and the ith interaction as
∆i = tn − ti . Thus, we compute forget behavior based relation coef-
ficients, RT = [exp(−∆1/Su ), exp(−∆2/Su ), . . . , exp(−∆n−1/Su )],
where Su refers to relative strength of memory of student u and is
a trainable parameter in our model.

Following [38], we also obtain revised importance of the past
interaction by simply adding the weights obtained from individual
sources of information. Thus, we compute the relation coefficients
as

R = softmax(RE + RT ), (5)

The relation coefficient corresponding to more relevant interac-
tion is higher.

3.4 Input Embedding Layer
The raw data of interactions only consists of tuple representing
exercise, correctness and time of interaction. We need to embed
this information of interactions and positions of interactions. To ob-
tain an embedding of a past interaction j , (ej , r j , tj ), we first obtain
the corresponding exercise representation using Equation (1). To
incorporate the correctness score r j , we extend it to a feature vector
rj = [r j , r j , . . . , r j ] ∈ Rd and concatenate it to the exercise embed-
ding. Also, we define a positional embedding matrix as P ∈ Rl×2d ,
to introduce the sequential ordering information of the interactions,
where l is the maximum allowed sequence length. The position
embedding is particularly important in knowledge tracing problem
because a student’s knowledge state at a particular time instance
should not show wavy transitions [39].

Afterward, we feed the inputs to RKT, and these inputs should
convey the representation of interactions and positions in the se-
quences. Thus, the interaction embedding is obtained as:

x̂j = [Eej ⊕ rj ] + Pj (6)

Finally, the input interaction sequence is expressed as X̂ =
[x̂1, x̂2, . . . x̂n ] by combining the interaction embedding E, and
the positional embedding P.

3.5 Relation-Aware Self-attention Layer
The core component of RKT is the attention structure that incor-
porates relation structure. For this, we modify the alignment score
of the attention mechanism to attend more to the relevant interac-
tions identified by the relation coefficient, R. Let α be the attention
weights learned using scaled dot-product attention mechanism [37]
such that

α j =
exp(ej )∑n−1

k=1 exp(ek )
, ej =

EenW
Q (x̂jWK )T
√
d

, (7)

where WQ ∈ Rd×d and WK ∈ Rd×d are projection matrices
for query and key, respectively. Finally we combine the attention
weights with the relation coefficients, by adding the two weights:

βj = λα j + (1 − λ)Rj , (8)

where Rj is the jth element of the relation coefficient R. We used
addition operation to avoid any significant increase in computation
cost. λ is a tunable parameter. The representation of output at the
ith interaction, o ∈ Rd , is obtained by the weighted sum of linearly
transformed interaction embedding and position embedding:

o =
n−1∑
j=1

βj x̂jWV , (9)

whereWV ∈ Rd×d is the projection matrix for value space.
Point-Wise Feed-Forward Layer: We apply the PointWise

Feed-Forward Layer (FFN) to the output of RKT by each position.
The FFN helps incorporate non-linearity in the model and considers
the interactions between different latent dimensions. It consists
of two linear transformations with a ReLU nonlinear activation
function between the linear transformations. The final output of
FFN is F = ReLU(oW(1) + b(1))W(2) + b(2), where W(1) ∈ Rd×d ,



Table 3: Dataset Details

ASSIST2012 Junyi POJ

# students 39,364 238,120 22,916
# exercises 58,761 684 2,751

# Interactions 4,193,631 26,666,117 996,240
Avg exercise record/student 107 111.99 43.47
Duration of data collection 365 days 1095 days 258 days

W(2) ∈ Rd×d are weight matrices and b(1) ∈ Rd and b(2) ∈ Rd×d
are the bias vectors.

Besides of the above modeling structure, we added residual con-
nections [14] after both self-attention layer and Feed forward layer
to train a deeper network structure. We also applied the layer nor-
malization [4] and the dropout [32] to the output of each layer,
following [37].

3.6 Prediction Layer
Finally, to obtain student ability to answer exercise en correctly,
we pass the learned representation F obtained above through the
fully connected network with Sigmoid activation to predict the
performance of the student.

p = σ (FW + b), (10)

where p is a scalar and represents the probability of student provid-
ing correct response to exercise en , and σ (z) = 1/(1 + e−z ).

3.7 Network Training
Since the self-attention model works with sequence of fixed length,
we convert the input sequence, X = (x1,x2, . . . ,x |X |), into se-
quence of fixed length l before feeding it to RKT. If the sequence
length, |X | is less than l , we repetitively add a padding to the left
of the sequence. However, if |X | is greater than l , we partition the
sequence into subsequences of length l . The objective of training is
to minimize the negative log likelihood of the observed sequence
of student responses under the model. The parameters are learned
by minimizing the cross entropy loss between p and r at every
interaction.

L = −
∑
i ∈I

(ri log(pi ) + (1 − ri ) log(1 − pi )), (11)

where I denotes all the interactions in the training set.1

4 EXPERIMENTAL SETTINGS
In this section, we present our experimental settings to answer the
following questions:
RQ1 Can RKT outperform the state-of-the-art methods for Know-
ledge Tracing?
RQ2: What is the influence of various components in the RKT ar-
chitecture?
RQ3 Are the attention weights able to learn meaningful patterns
in computing the embeddings?

1The corresponding code and dataset available at https://github.com/shalini1194/RKT

4.1 Datasets
To evaluate our model, we used three real-world datasets.

• ASSISTment2012(ASSIST2012)2: This dataset is provided
by ASSISTment online tutoring platform and is widely used
for KT tasks. We also utilized the problem bodies to conduct
our experiments.

• JunyiAcademy (Junyi)3 This dataset was collected by Jun-
yiAcademy4 in 2015 [8]. The available dataset only contains
the exercising records of students. To obtain the textual con-
tent we scraped the data from their website. Overall, this
dataset contains 838 distinct exercises and we removed exer-
cises which do not contain textual content.

• Peking Online Judge (POJ) This dataset is collected from
Peking online platform of coding practices and consists of
computer programming questions.We scraped the publicly
available data from the website 5.

For all these datasets, we first removed the students who attempted
fewer than two exercises and then removed those exercises which
were attempted by fewer than two students. The complete statistical
information for all the datasets can be found in Table 3. The code
and dataset is available at https://github.com/shalini1194/RKT.

4.2 Implementation Details
4.2.1 Word Embeddings. The first step in our method is to embed
exercise content and initializing each word of the exercise content.
All exercises are truncated to no more than 200 words. However,
mathematical exercises consists of words not found in traditional
English articles such as, news. For example it is common to find
formulas like "

√
(x) + 1" in mathematical exercise which carry im-

portant information about the exercise. Therefore, to preserve the
mathematics semantics, we transform each formula into its TEX
code features ("

√
(x)+1" is transformed to " sqrt x + 1"). After initial-

ization, each exercise is represented with sequence with vocabulary
words and TEX tokens. The model is trained by embedding each
word into an embedding vector with 50 dimensions (i.e., d = 50) by
using word2vec 6.

4.2.2 Framework Setting. We now specify the network initializa-
tions in our model. We set the model dimension in self-attention as
64 and the maximum allowed sequence length l as 50. The model is
trained with a mini-batch size of 128. We use Adam optimizer with
a learning rate of 0.001. The dropout rate is set to 0.1 to reduce
overfitting. The L2 weight decay is set to 0.00001. All the model
parameters are normally initialized with 0 mean and 0.01 standard
deviation. The value of sparcity controlling threshold, θ used in
Eq. (4) is 0.8 in our experiments. We trained the model with 80% of
the dataset and test it on the remaining. We perform 5-fold cross
validation to evaluate all the models, in which folds are split based
on students.

2https://sites.google.com/site/assistmentsdata/home/2012-13-school-data-with-
affect
3https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=1275
4https://www.junyiacademy.org/
5http://poj.org/
6https://radimrehurek.com/gensim/models/word2vec.html



4.3 Metrics
The prediction of student performance is considered in a binary
classification setting i.e., answering an exercise correctly or not.
Hence, we compare the performance using the Area Under Curve
(AUC) and Accuracy (ACC) metric. Similar to evaluation procedure
employed in [23, 28], we train themodel with the interactions in the
training phase and during the testing phase, we update the model
after each exercise response is received. The updated model is then
used to perform the prediction on the next exercise. Generally, the
value 0.5 of AUC or ACC represents the performance prediction
result by randomly guessing, and the larger, the better.

4.4 Approaches
4.4.1 Knowledge Tracing (KT). We compare our model against the
state-of-the-art KT methods.

• DKT [28] : This is a seminal method that uses single layer
LSTM model to predict the student’s performance. In our
implementation of DKT, we used norm-clipping and early
stopping to improve the performance as has been employed
in [41].

• SAKT [24]This model employs self-attention mechanism
[37] to assigns weights to the previously answered exercises
for predicting the performance of the student on a particular
exercise.

• DKVMN [41]: This is a Memory Augmented Recurrent
Neural Network based method where in the relation between
different KCs are represented by the key matrix and the
student’s mastery of each KC by the value matrix.

• DKT+Forget [23] : This is an extension of DKT method
which predicts student performance using both the student’s
learning sequence and fogetting behavior.

• EERNN [33]: This model utilizes both the textual content of
exercises and student’s exercising records to predict student
performance. They use RNN as the underlyingmodel to learn
the exercise embedding and the student knowledge repres-
entation. Furthermore, they attend over the past interactions
using the cosine similarity between the past interactions and
the next exercise.

• EKT [22]: This model is an extension of the EERNN model
which also tracks student knowledge acquisition on multiple
skills. Specifically, it models the relation between the under-
lying Knowledge Concepts to enhance the EERNN model.

5 RESULTS AND DISCUSSION
5.1 Student Performance Prediction (RQ1)
Table 4 shows the performance of all baseline methods and our
RKT model. We have the following observations:
Different kinds of baselines demonstrate noticeable performance
gaps. SAKT model shows improvement over DKT and DKVMN
model which can be traced to the fact that SAKT identifies the relev-
ance between past interactions and next exercise. DKT-Forget fur-
ther gains improvements most of the time, which demonstrates the
importance of taking temporal factors into consideration. Further,
EERNN and EKT incorporate textual content of exercises to identify
which interaction history is more relevant and hence perform bet-
ter than the those models which do not take into account these

Table 4: Performance comparison. The best performing
method is boldfaced, and the second best method in each
row is underlined. Gains are shown in the last row.

ASSIST2012 POJ Junyi

AUC ACC AUC ACC AUC ACC

DKT 0.712 0.679 0.656 0.691 0.814 0.744
SAKT 0.735 0.692 0.696 0.705 0.834 0.757

DKVMN 0.701 0.686 0.704 0.700 0.822 0.751
DKT+Forget 0.722 0.685 0.662 0.700 0.840 0.759
EERNN 0.748 0.698 0.733 0.720 0.837 0.758
EKT 0.754 0.702 0.737 0.729 0.842 0.759
RKT 0.793 0.719 0.827 0.774 0.860 0.770

Gain% 5.172 2.422 12.212 6.173 1.775 1.050

relations. RKT performs consistently better than all the baselines.
Compared with other baselines, RKT is able to explicitly captures
the relations between exercises based on student performance data
and text content. Additionally, it models learner forget behavior
using a kernel function which is more interpretable and proven way
to model human memory [13] compared to DKT+forget model.

Second, the performance gain is lowest for Junyi dataset. We
believe that a possible reason of low improvement on Junyi is that
since the number of exercises in Junyi is fairly small the relation
between exercises can be modeled by sequential models such as
RNN and self-attentionmechanism. It does not need explicit relation
learning based on the content.

We would also like to point out that, combining the model with
contextual information in RKT does not lead to any significant
increase in runtime of the model and it remains as scalable as SAKT
model. SAKT and RKT are more scalable than other sequential
models because of its parallelization capability [24].

5.1.1 Performance comparison w.r.t. interaction sparsity. One bene-
fit of exploiting the relations between interactions is that it makes
our model robust towards sparsity of dataset. Exploiting the re-
lation between different exercises can help in estimating student
performance at related exercises, thus alleviating the sparsity issue.

To verify this, we perform an experiment over student groups
with different number of interactions. In particular, we generate
four groups of students based on interaction number per user, thus
generating groups with less than 10, 100, 1000, 10000 interactions,
respectively. The performance of all the methods is displayed in
Figure 3. We find that RKT outperforms the baseline models in all
the cases, signifying the importance of leveraging relation inform-
ation for predicting performance. Also, the performance gain of
RKT for student groups with less number of interactions is more
significant. Thus, we can reach to a conclusion that RKT which
exploits the relation between interactions is effective for learning
knowledge representation of students even with less interactions.

5.2 Ablation Study (RQ2)
To get deep insights on the RKT model, we investigate the contri-
bution of various components involved in the model. Therefore,
we conduct some ablation experiments to show how each part of



Figure 3: Plot of prediction performance over different student groups based on sparsity of interaction levels. Our model, RKT
significantly outperforms every baseline.

Table 5: Ablation Study

ASSIST2012 POJ Junyi

AUC ACC AUC ACC AUC ACC

PE 0.788 0.712 0.790 0.749 0.848 0.763
TE 0.787 0.712 0.816 0.766 0.835 0.758
RE 0.755 0.696 0.686 0.710 0.835 0.763

PE+TE 0.778 0.705 0.788 0.746 0.833 0.754
PE+RE 0.759 0.699 0.676 0.700 0.832 0.757
RE+TE 0.735 0.692 0.696 0.705 0.834 0.757

PE+RE+TE 0.730 0.684 0.667 0.693 0.830 0.756
RKT 0.793 0.719 0.827 0.774 0.860 0.770

our method affect final results. In Table 5, there are seven vari-
ations of RKT, each of which takes out one or more opponents
from the full model. Specifically:PE, TE, RE refer to RKT without
position encoding, forget behavior modeling and exercise relation
modeling, respectively. PE+TE, PE+RE, TE+RE refer to removal
two components simultaneously, i.e. position encoding and forget
behavior modeling, position encoding and exercise relation model-
ing, and exercise relation modeling and forget behavior modeling,
respectively. And finally, PE+RE+TE refers to RKT that does not
model the position encoding, forget behavior modeling and exer-
cise relation modeling for interaction representation. The result in
Table 5 indeed shows many interesting conclusions.

First, the more information a model encodes, the better the per-
formance, which agrees with the intuition. Second for all datasets
removing exercise relation modeling causes the most drastic drop in
performance. This validates our argument that explicitly learning
exercise relations is important for improving the performance of
KT model. Thirdly, incorporating the forget behavior model in RKT
which of students causes more improvement in ASSIST2012 and
Junyi datasets than POJ. We hypothesize that this can be attributed
to the fact that the concepts involved in solving POJ exercises are
less diverse than those involved in high school maths course (Junyi
and ASSIST2012 dataset). As a result in majority cases the reason
of wrong answer on POJ is the confusion in the students, rather
than their forgetting behavior.

Table 6: Comparison of four exercise relation matrix com-
putation methods.

ASSIST2012 POJ Junyi

AUC ACC AUC ACC AUC ACC

Method (1) 0.755 0.700 - - 0.764 0.710
Method (2) 0.782 0.708 0.755 0.733 0.836 0.759
Method (3) 0.785 0.709 0.763 0.737 0.844 0.762
Method (4) 0.793 0.719 0.827 0.774 0.860 0.770

5.2.1 Effect of Exercise Relation matrix computation. To explore
the impact of exercise relation matrix computation, we consider
the variants of RKT that uses different settings. We explore the
following methods for computing exercise relation matrix:

(1) Previous work such as [15, 20], considered that two exercises
are related if they belong to the same KC. We also employ
this technique and build an exercise relation matrix with
boolean values such that Ai, j = 1 if i and j belong to the
same KC otherwise 0.

(2) Use only the textual content of two exercises to estimate the
relation between them. We compute the relation between
two exercises with Equation (3) only.

(3) Use the student performance data to compute the relation
between two exercises. Only Equation (2) is employed to
compute the relation between two exercises.

(4) Use both textual content and student performance data to
compute the similarity between two exercises. We compute
the relation coefficients using Equation (4).

We do not have information about the exercise-to-KC mapping for
POJ data and hence can not apply method (1) for POJ. Specifically
Table 6 summarizes the experimental results. The findings are:
Firstly, Method (1) performs the worst among all the four methods.
This can be attributed to the fact that linking exercises only based
KCs ignores the fact there exists relation among exercises which do
not belong to the same KC. Method (3) also shows performance gain
over method (2) as student performance data is a good indicator of
how relations between exercises are perceived by the students. Even
if textual content of two exercises are not similar the association



Figure 4: Attention visualization in RKT model of an example student from Junyi. We predict her performance on e15 based
on her past 15 interaction (we only show the first 4 interactions for better illustration). Right bars show the attention weights
of two RKT (blue) and SAKT (red)

(a) ASSIST2012 - SAKT (b) ASSIST2012 (c) POJ (d) Junyi
s

Figure 5: Visualization of attention weights on different datasets. Each subfloat depicts the average attention weights of dif-
ferent sequences of the corresponding datasets.

of knowledge involved in solving the two exercises could be high.
Finally, method (4) that leverages both student performance data
and exercise textual content data outperforms the other methods.

5.3 Attention weights visualization (RQ3)
Benefiting from a purely attention mechanism, RKT and SAKT
models are highly interpretable for explaining the prediction result.
To this end, we compared the attention weights obtained from
both these models. We selected one student from Junyi dataset and
obtain the attention weights corresponding to the past interactions
for predicting her performance at exercise e15. Figure 4 shows the
weights assigned by both SAKT and RKT. We see that compared
to SAKT, RKT places more weights on e2 which belongs to same
KC as e15 and have stronger relation. Since the student gave wrong
answer to e2, she has not yet mastered “Quadratic Equations". As a
result, RKT predicts that the student will not be able to answer e15.
Thus, it is beneficial to consider relations between exercises for KT.

We also performed experiment to visualize the attention weights
assigned by RKT on different datasets. Recall that at time step
ti , the relation-aware self-attention layer in our model revise the
attention weights on the previous interactions depending on the
time elapsed since the interaction and the relations between the
exercises involved. To this end, we examine all sequences and seek

to reveal meaningful patterns by showing the average attention
weights on the previous interactions.

Figure 5 shows the heatmap of attention weight matrix where
(i, j)th element represents the attention weight on jth element when
predicting performance at ith interaction. Note that when we cal-
culate the average weight, the denominator is the number of valid
weights, so as to avoid the influence of padding for short sequences.
We consider a few comparisons among the heatmaps:

• (b), (c), (d): The heatmap representing the attention weights
pertaining to different datasets reveals that recent interac-
tions are given the higher weights compared to other inter-
action. It can be attributed to the forget behavior of learning
process such that only the recent interactions can inform
the student knowledge state.

• (b) vs. (c): This comparison shows the weights assigned by
RKT on two different types of dataset. In ASSIST2012 data-
set, the exercises are sequenced for skill-building, i.e., they
are organized so that a student can master one skill first
and then learn the next skill. As a result in ASSIST2012 the
exercises adjacent to each other are related. While, in POJ
dataset, student chooses exercises based on their needs. As
a result, the heatmap corresponding to ASSIST2012 dataset
has attention weights concentrated towards the diagonal



elements, while for POJ the attention weights are spread
across the interactions.

• (a) vs. (b): This comparison shows the effect of relation in-
formation for revising the attention weights. Without rela-
tion information the attention weights are more distributed
over previous interaction, while the relation information con-
centrates the attention weights closer to diagonal as adjacent
interactions in ASSIST2012 have higher relations.

6 CONCLUSION AND FUTUREWORK
In this work, we proposed a Relation-aware Self-attention mech-
anism for KT task, RKT. It models a student’s interaction history
and predicts her performance on the next exercise by considering
contextual information obtained from its relation with the past ex-
ercises and the forget behavior of the student. The relation between
exercises is computed using the student performance data and the
textual content of exercises. The forget behavior is modeled using a
time decaying kernel function. The contextual information is then
incorporated in a self-attention layer which we call relation-aware
self-attention. Extensive experimentation on real-world datasets
shows that our model can outperform the state-of-the-art methods.
Owing to the purely self-attention mechanism RKT is interpretable.

As part of future work, we plan to model the relation between
exercises instead of computing them from the data. This can help
in predicting the relation of a new exercise. Besides, we can learn a
representation of student knowledge as an embedding and use this
embedding to track student proficiency at various KCs.

REFERENCES
[1] Ashton Anderson, Daniel Huttenlocher, Jon Kleinberg, and Jure Leskovec. 2014.

Engaging with massive online courses. In Proceedings of the 23rd international
conference on World wide web. 687–698.

[2] Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2016. A simple but tough-to-beat
baseline for sentence embeddings. (2016).

[3] Lee Averell and Andrew Heathcote. 2011. The form of the forgetting curve and
the fate of memories. Journal of Mathematical Psychology 55, 1 (2011), 25–35.

[4] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normaliza-
tion. arXiv preprint arXiv:1607.06450 (2016).

[5] Ryan SJD Baker and Kalina Yacef. 2009. The state of educational data mining in
2009: A review and future visions. JEDM| Journal of Educational Data Mining 1,
1 (2009), 3–17.

[6] Tiffany Barnes. The Q-matrix method: Mining student response data for know-
ledge.

[7] Hao Cen, Kenneth Koedinger, and Brian Junker. 2006. Learning factors analysis–a
general method for cognitive model evaluation and improvement. In International
Conference on Intelligent Tutoring Systems. Springer, 164–175.

[8] Haw-Shiuan Chang, Hwai-Jung Hsu, and Kuan-Ta Chen. Modeling Exercise
Relationships in E-Learning: A Unified Approach.

[9] Penghe Chen, Yu Lu, Vincent W Zheng, and Yang Pian. 2018. Prerequisite-driven
deep knowledge tracing. In 2018 IEEE International Conference on Data Mining
(ICDM). IEEE, 39–48.

[10] Yuying Chen, Qi Liu, Zhenya Huang, Le Wu, Enhong Chen, Runze Wu, Yu
Su, and Guoping Hu. 2017. Tracking knowledge proficiency of students with
educational priors. In Proceedings of the 2017 ACM on Conference on Information
and Knowledge Management. 989–998.

[11] Albert T Corbett and John R Anderson. 1994. Knowledge tracing: Modeling the
acquisition of procedural knowledge. User modeling and user-adapted interaction
4, 4 (1994), 253–278.

[12] JimmyDe La Torre. 2011. The generalized DINAmodel framework. Psychometrika
76, 2 (2011), 179–199.

[13] Hermann Ebbinghaus. 2013. Memory: A contribution to experimental psychology.
Annals of neurosciences 20, 4 (2013), 155.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[15] Zhenya Huang, Qi Liu, Yuying Chen, Le Wu, Keli Xiao, Enhong Chen, Haiping
Ma, and Guoping Hu. 2020. Learning or Forgetting? A Dynamic Approach for

Tracking the Knowledge Proficiency of Students. ACM Trans. Inf. Syst. 38, 2,
Article 19 (Feb. 2020), 33 pages. DOI:http://dx.doi.org/10.1145/3379507

[16] Mingi Ji, Weonyoung Joo, Kyungwoo Song, Yoon-Yeong Kim, and Il-Chul
Moon. 2019. Sequential Recommendation with Relation-Aware Kernelized Self-
Attention. arXiv preprint arXiv:1911.06478 (2019).

[17] Tanja Käser, Severin Klingler, Alexander Gerhard Schwing, and Markus Gross.
2014. Beyond knowledge tracing: Modeling skill topologies with bayesian net-
works. In International conference on intelligent tutoring systems. Springer, 188–
198.

[18] George D Kuh, Jillian Kinzie, John H Schuh, and Elizabeth J Whitt. 2011. Student
success in college: Creating conditions that matter. John Wiley & Sons.

[19] Andrew S Lan, Christoph Studer, and Richard G Baraniuk. 2014a. Time-varying
learning and content analytics via sparse factor analysis. In Proceedings of the 20th
ACM SIGKDD international conference on Knowledge discovery and data mining.
452–461.

[20] Andrew S Lan, Andrew E Waters, Christoph Studer, and Richard G Baraniuk.
2014b. Sparse factor analysis for learning and content analytics. The Journal of
Machine Learning Research 15, 1 (2014), 1959–2008.

[21] Qi Liu, Zai Huang, Zhenya Huang, Chuanren Liu, Enhong Chen, Yu Su, and
Guoping Hu. 2018. Finding similar exercises in online education systems. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 1821–1830.

[22] Qi Liu, Zhenya Huang, Yu Yin, Enhong Chen, Hui Xiong, Yu Su, and Guoping
Hu. 2019. EKT: Exercise-aware Knowledge Tracing for Student Performance
Prediction. arXiv preprint arXiv:1906.05658 (2019).

[23] Koki Nagatani, Qian Zhang, Masahiro Sato, Yan-Ying Chen, Francine Chen,
and Tomoko Ohkuma. 2019. Augmenting Knowledge Tracing by Considering
Forgetting Behavior. In The World Wide Web Conference. 3101–3107.

[24] Shalini Pandey and George Karypis. 2019. A Self-Attentive model for Knowledge
Tracing. arXiv preprint arXiv:1907.06837 (2019).

[25] Zachary A Pardos and Neil T Heffernan. 2011. KT-IDEM: Introducing item
difficulty to the knowledge tracing model. In International conference on user
modeling, adaptation, and personalization. Springer, 243–254.

[26] Philip I Pavlik Jr, Hao Cen, and Kenneth R Koedinger. 2009. Performance Factors
Analysis–A New Alternative to Knowledge Tracing. Online Submission (2009).

[27] Radek Pelánek. 2015. Modeling Students’ Memory for Application in Adaptive
Educational Systems. International Educational Data Mining Society (2015).

[28] Chris Piech, Jonathan Bassen, Jonathan Huang, Surya Ganguli, Mehran Sahami,
Leonidas J Guibas, and Jascha Sohl-Dickstein. 2015. Deep knowledge tracing. In
Advances in neural information processing systems. 505–513.

[29] Yumeng Qiu, Yingmei Qi, Hanyuan Lu, Zachary Pardos, and Neil Heffernan.
2011. Does Time Matter? Modeling the Effect of Time with Bayesian Knowledge
Tracing. EDM 2011 - Proceedings of the 4th International Conference on Educational
Data Mining (01 2011), 139–148.

[30] Steven P Reise. 2014. Item response theory. The Encyclopedia of Clinical Psychology
(2014), 1–10.

[31] Adam Santoro, Sergey Bartunov,MatthewBotvinick, DaanWierstra, and Timothy
Lillicrap. 2016. Meta-learning with memory-augmented neural networks. In In-
ternational conference on machine learning. 1842–1850.

[32] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. The journal of machine learning research 15, 1 (2014), 1929–1958.

[33] Yu Su, Qingwen Liu, Qi Liu, Zhenya Huang, Yu Yin, Enhong Chen, Chris Ding,
Si Wei, and Guoping Hu. 2018. Exercise-enhanced sequential modeling for
student performance prediction. In Thirty-Second AAAI Conference on Artificial
Intelligence.

[34] Nguyen Thai-Nghe, Lucas Drumond, Artus Krohn-Grimberghe, and Lars Schmidt-
Thieme. 2010. Recommender system for predicting student performance. Procedia
Computer Science 1, 2 (2010), 2811–2819.

[35] Nguyen Thai-Nghe, Tomás Horváth, and Lars Schmidt-Thieme. Factorization
Models for Forecasting Student Performance.

[36] Andreas Töscher and Michael Jahrer. 2010. Collaborative Filtering Applied to
Educational Data Mining. (2010).

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998–6008.

[38] Baosong Yang, Jian Li, Derek F Wong, Lidia S Chao, Xing Wang, and Zhaopeng
Tu. 2019. Context-aware self-attention networks. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 33. 387–394.

[39] Chun-Kit Yeung and Dit-Yan Yeung. 2018. Addressing two problems in deep
knowledge tracing via prediction-consistent regularization. In Proceedings of the
Fifth Annual ACM Conference on Learning at Scale. 1–10.

[40] Michael V Yudelson, Kenneth R Koedinger, and Geoffrey J Gordon. 2013. Indi-
vidualized bayesian knowledge tracing models. In International conference on
artificial intelligence in education. Springer, 171–180.

[41] Jiani Zhang, Xingjian Shi, Irwin King, and Dit-Yan Yeung. 2017. Dynamic key-
value memory networks for knowledge tracing. In Proceedings of the 26th inter-
national conference on World Wide Web. 765–774.

http://dx.doi.org/10.1145/3379507

	Abstract
	1 Introduction
	2 Related Work
	2.1 Cognitive Diagnosis
	2.2 Knowledge Tracing
	2.3  Relation Modeling in KT
	2.4 Attention Mechanism

	3 Proposed Method
	3.1 Exercise Representation
	3.2 Exercise-Relation Matrix Computation
	3.3 Personalized Relation Modeling
	3.4 Input Embedding Layer
	3.5  Relation-Aware Self-attention Layer
	3.6 Prediction Layer
	3.7 Network Training

	4 Experimental Settings
	4.1 Datasets
	4.2 Implementation Details
	4.3 Metrics
	4.4 Approaches

	5 Results and Discussion
	5.1 Student Performance Prediction (RQ1)
	5.2 Ablation Study (RQ2)
	5.3 Attention weights visualization (RQ3)

	6 Conclusion and Future Work
	References

