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ABSTRACT
Recent recommender systems have started to employ knowledge
distillation, which is a model compression technique distilling
knowledge from a cumbersome model (teacher) to a compact model
(student), to reduce inference latency while maintaining perfor-
mance. The state-of-the-art methods have only focused on making
the student model accurately imitate the predictions of the teacher
model. They have a limitation in that the prediction results incom-
pletely reveal the teacher’s knowledge. In this paper, we propose a
novel knowledge distillation framework for recommender system,
called DE-RRD, which enables the student model to learn from the
latent knowledge encoded in the teacher model as well as from the
teacher’s predictions. Concretely, DE-RRD consists of two methods:
1) Distillation Experts (DE) that directly transfers the latent knowl-
edge from the teacher model. DE exploits “experts” and a novel
expert selection strategy for effectively distilling the vast teacher’s
knowledge to the student with limited capacity. 2) Relaxed Ranking
Distillation (RRD) that transfers the knowledge revealed from the
teacher’s prediction with consideration of the relaxed ranking or-
ders among items. Our extensive experiments show that DE-RRD
outperforms the state-of-the-art competitors and achieves compa-
rable or even better performance to that of the teacher model with
faster inference time.
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1 INTRODUCTION
In recent years, recommender system (RS) has been broadly adopted
in various industries, helping users’ decisions in the era of infor-
mation explosion, and playing a key role in promoting corporate
profits. However, a growing scale of users (and items) and sophisti-
cated model architecture to capture complex patterns make the size
of the model continuously increasing [13, 25, 28, 30]. A large model
with numerous parameters has a high capacity, and thus usually
has better recommendation performance. On the other hand, it
requires a large computational time and memory costs, and thus
incurs a high latency during the inference phase, which makes it
difficult to apply such large model to real-time platform.

Motivated by the significant success of knowledge distillation
(KD) in the computer vision field, a few work [13, 25] have em-
ployed KD for RS to reduce the size of models while maintaining
the performance. KD is a model-agnostic strategy to accelerate
the learning of a new compact model (student) by transferring
knowledge from a previously trained large model (teacher) [7]. The
knowledge transfer is conducted as follows: First, the teacher model
is trained with the user-item interactions in the training set which
has binary labels – ‘1’ for observed interactions, and ‘0’ for unob-
served interactions. Then, the student model is trained with the
“soft” labels generated by the teacher model (i.e., teacher’s predic-
tions) along with the available binary labels. The student model
trained with KD has comparable performance to that of the teacher,
and also has a lower latency due to its small size [13, 25].

The core idea behind this process is that the soft labels predicted
by the teacher model reveal hidden relations among entities (i.e.,
users and items) not explicitly included in the training set, so that
they accelerate and improve the learning of the student model.
Specifically, the items ranked near the top of a user’s recommen-
dation list would have strong correlations to the items that the
user has interacted before [25]. Also, the soft labels provide guid-
ance for distinguishing the items that each user would like and the
items that each user would not be interested in among numerous
unobserved items only labeled as ‘0’ [13]. By using the additional
supervisions from the teacher model, the state-of-the-art methods
[13, 25] have achieved comparable or even better performance to
the teacher models with faster inference time.

However, there are still limitations in existing methods [13, 25].
First, the learning of the student is only guided by the teacher’s
prediction results, which is not sufficient to fully take advantage of
the knowledge stored in the teacher. This is because the prediction
results incompletely reveal the teacher’s knowledge. As illustrated
in Figure 1, the recommendation list from the teacher only shows
that a user has a similar degree of preference on the two items (0.99
and 0.98). However, latent knowledge in the teacher, which is used
to make such predictions, contains more detailed information that
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Figure 1: The existingmethods [13, 25] distill the knowledge
only based on the teacher’s predictions (b). The proposed
framework directly distills the latent knowledge stored in
the teacher (a) along with the knowledge revealed from the
predictions (b).

the user likes different aspects of the two items (marked as navy
blue and orange, respectively). In this regard, we argue that the
training process and the performance of the student can be further
improved by directly distilling such latent knowledge stored in the
teacher model. Second, they distill the knowledge from the teacher’s
predictions in a point-wise manner that considers a single item at a
time. Because the point-wise approach does not consider multiple
items simultaneously, it has a limitation in accurately maintaining
the ranking orders predicted by the teacher model [24], which leads
to degraded recommendation performance.

In this paper, we propose a novel knowledge distillation frame-
work for RS, named DE-RRD, which distills both the latent knowl-
edge stored in the teacher model (Fig. 1a) and the knowledge re-
vealed from teacher’s predictions (Fig. 1b). By learning both the
teacher’s final predictions and the detailed knowledge that provides
the bases for such predictions, the student model can be further
improved. The proposed framework consists of two methods: 1)
Distillation Experts (DE) and 2) Relaxed Ranking Distillation (RRD).
The main contributions of this paper lie in the following aspects:
Distilling latent knowledge in the teachermodel.We propose
a novel method—DE—for directly distilling latent knowledge stored
in the teacher model. Specifically, DE transfers the knowledge from
hidden representation space (i.e., the output of the intermediate
layer) of the teacher to the representation space of the student.
Due to the limited capacity, the student model cannot learn all the
knowledge in the teacher representation space. DE first introduces
an “expert”, which is a small feed-forward network, to distill the
summarized knowledge that can restore the detailed knowledge
of each entity in the teacher. However, distilling the knowledge
of all entities with a single expert intermingles the information of
weakly correlated entities and further hinders the entire distillation
process. To tackle this problem, DE adopts the multiple experts
and a novel expert selection strategy that clearly distinguishes the
knowledge that each expert distills based on the correlations among
the entities in the teacher representation space. To the best of our
knowledge, our approach is the first attempt to directly distill the
latent knowledge in the teacher model for RS. We demonstrate
its rationality and superiority through extensive experiments and
comprehensive analyses.

RelaxedRankingDistillation from the teacher’s predictions.
We propose a new method—RRD—that transfers the knowledge
from the teacher’s predictions with direct consideration of rank-
ing orders among items. Unlike the existing methods [13, 25] that
distill the knowledge of an item at a time, RRD formulates this as
a ranking matching problem between the recommendation list of
the teacher and that of the student. To this end, RRD adopts the
list-wise learning-to-rank approach [29] and learns to ensure the
student to preserve the ranking orders predicted by the teacher.
However, directly applying the list-wise approach can have adverse
effects on the recommendation performance. Since a user is inter-
ested in only a few items among the numerous total items [10],
learning the detailed ranking orders of all items is not only daunting
but also ineffective. To tackle this challenge, RRD reformulates the
daunting task to a relaxed ranking matching problem. Concretely,
RRD matches the recommendation list from the teacher and that
from the student, ignoring the detailed ranking orders among the
uninteresting items that the user would not be interested in. RRD
achieves superior recommendation performance compared to the
state-of-the-art methods [13, 25].
An unified framework. We propose a novel framework—DE-
RRD—which enables the student model to learn both from the
teacher’s predictions and from the latent knowledge stored in the
teacher model. Our extensive experiments on real-world datasets
show that DE-RRD considerably outperforms the state-of-the-art
competitors. DE-RRD achieves comparable performance to that of
the teacher with a smaller number of learning parameters than all
the competitors. Also, DE-RRD shows the largest performance gain
when the student has the identical structure to the teacher model
(i.e., self-distillation [5]). Furthermore, we provide both qualitative
and quantitative analyses to further investigate the superiority of
each proposed component. The source code of DE-RRD is publicly
available1.

2 RELATEDWORK
Balancing effectiveness and efficiency is a key requirement for real-
time recommender system (RS); the system should provide accurate
recommendations with fast inference time. Recently, the size of the
recommender model is continuously increasing, and the compu-
tational time and memory cost required for the inference are also
increasing accordingly [13, 25, 28, 30]. Due to the high latency, it
becomes difficult to apply such large recommender to the real-time
large-scale platform. In this section, we review several approaches
to alleviate this problem.
Balancing Effectiveness and Efficiency. Several methods have
adopted hash techniques to reduce the inference cost [10, 15, 16, 30].
They first learn binary representations of users and items, then con-
struct the hash table. Although exploiting the binary representation
can significantly reduce the inference costs, due to the constrained
capability, their recommendation performance is limited compared
to models that use real-values representations. In addition, several
work has focused on accelerating the inference of the existing rec-
ommenders [1, 14, 26]. Specifically, tree-based data structures [2],
data compression techniques [26], and approximated nearest neigh-
bor search techniques [4, 23] have been successfully adopted to
1https://github.com/SeongKu-Kang/DE-RRD_CIKM20
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reduce the search costs. However, they still have problems such as
applicable only to specific models (e.g., k-d tree for metric learning-
based models [12]), or easily falling into a local optimum due to the
local search.
Knowledge Distillation. Knowledge distillation (KD) is a model-
agnostic strategy to improve the learning and the performance of a
new “compact” model (student) by transferring knowledge from a
previously trained “large” model (teacher) [3, 5, 7, 22]. The student
model trained with KD has comparable performance to that of the
teacher model, and also has lower inference latency due to its small
size. Most KD methods have focused on the image classification
problem. An early work [7] matches the softmax distribution of the
teacher and the student. The predicted label distribution contains
more rich information (e.g., inter-class correlation) than the one-hot
class label, which leads to improved learning of the student model.
Subsequent methods [3, 22] have focused on distilling knowledge
from intermediate layers. Because teacher’s intermediate layers
are generally bigger than that of the student, they [3, 22] utilize
additional layers to bridge the different dimensions. Interestingly,
KD has turned out to be effective in improving the teacher model
itself by self-distillation [5].
Knowledge Distillation in Recommender System. Recently,
inspired by the huge success of KD in the computer vision field,
a few work [13, 25] have adopted KD to RS. A pioneer work is
Ranking Distillation (RD) [25] which applies KD for the ranking
problem; Providing recommendations of top-𝑁 unobserved items
that have not interacted with a user. RD jointly optimizes a base
recommender’s loss function with a distillation loss.

min
𝜃𝑠

L𝐵𝑎𝑠𝑒 + 𝜆L𝑅𝐷 (1)

where 𝜃𝑠 is the learning parameters of the student model, 𝜆 is a
hyperparameter that controls the effects of RD. The base recom-
mender can be any existing RS model such as BPR [21], NeuMF
[6], and L𝐵𝑎𝑠𝑒 is its loss function (e.g., binary cross-entropy). The
distillation loss of RD for user 𝑢 is defined as follows:

L𝑅𝐷 = −
∑︁
𝜋𝑘 ∈𝝅

𝑤𝜋𝑘 log
(
𝑃 (𝑟𝑒𝑙 = 1|𝑢, 𝜋𝑘 )

)
(2)

where 𝝅 is a ranked list of top-𝐾 unobserved items for user 𝑢
predicted by the teacher, 𝜋𝑘 is the 𝑘-th item in this ranking, and
𝑃 (𝑟𝑒𝑙 = 1|𝑢, 𝜋𝑘 ) is the relevance probability of user 𝑢 to 𝜋𝑘 pre-
dicted by the student model.𝑤𝜋𝑘 is the weight, which is computed
based on each item’s ranking from the student and the teacher, for
reflecting relative importance among top-𝐾 items.

A subsequent work Collaborative Distillation (CD) [13] first
samples unobserved items from the teacher’s recommendation list
according to their ranking; high-ranked items are more frequently
sampled, then trains the student to mimic the teacher’s predic-
tion score (e.g., relevance probability) on the sampled items. The
distillation loss of CD for user 𝑢 is defined as follows:

L𝐶𝐷 = −
( ∑︁
𝜋𝑘 ∈𝝅

𝑞𝜋𝑘 log
(
𝑃 (𝑟𝑒𝑙 = 1|𝑢, 𝜋𝑘 )

)
+ (1 − 𝑞𝜋𝑘 ) log

(
1 − 𝑃 (𝑟𝑒𝑙 = 1|𝑢, 𝜋𝑘 )

) ) (3)

where 𝝅 is a ranked list of 𝐾 unobserved items sampled from
teacher’s recommendations for user 𝑢, 𝑞𝜋𝑘 is the weight, which

is computed based on teacher’s prediction score on each item, for
reflecting relative importance among the sampled items.

In summary, the distillation loss of the existing methods makes
the student model follow the teacher’s predictions on unobserved
items with particular emphasis on the high-ranked items. In RS,
only high-ranked items in the recommendation list are matter. Also,
such high-ranked items reveal hidden patterns among entities (i.e.,
users and items); the high-ranked items in the recommendation
list would have strong correlations to the user [25]. By using such
additional supervisions from the teacher, they have achieved the
comparable performance to the teacher with faster inference time.

However, the existing methods still have room for improvement
by the following reasons: First, the student can be further improved
by directly distilling the latent knowledge stored in the teacher
model. Latent knowledge refers to all information of users, items,
and relationships among them that is discovered and stored in the
teachermodel. Such knowledge is valuable for the student because it
provides detailed explanations on the final prediction of the teacher.
Second, they transfer the knowledge from the teacher’s predictions
with a point-wise approach that considers a single item at a time.
Since the point-wise approach does not take into account multiple
items simultaneously, it has a limitation in accurately maintaining
the ranking orders in the teacher’s ranking list [24]. This can lead
to limited recommendation performance.

3 PROBLEM FORMULATION
In this work, we focus on top-𝑁 recommendations for implicit
feedback. Let U and I denote the set of users and items, respec-
tively. Given collaborative filtering (CF) information (i.e., implicit
interactions between users and items), we build a binary matrix
𝑹 ∈ {0, 1} |U |×|I | . Each element of 𝑹 has a binary value indicating
whether a user has interacted with an item (1) or not (0). Note
that an unobserved interaction does not necessarily mean a user’s
negative preference on an item, it can be that the user is not aware
of the item. For each user, a recommender model ranks all items
that have not interacted with the user (i.e., unobserved items) and
provides a ranked list of top-𝑁 unobserved items.

The knowledge distillation is conducted as follows: First, a teacher
model with a large number of learning parameters is trained with
the training set which has binary labels. Then, a student model with
a smaller number of learning parameters is trained with the help
from the teacher model in addition to the binary labels. The goal of
KD is to fully improve the inference efficiency without compromis-
ing the effectiveness;We aim to design a KD framework that enables
the student model to maintain the recommendation performance
of the teacher with a small number of learning parameters.

4 DE-RRD: THE PROPOSED FRAMEWORK
We propose DE-RRD framework which enables the student model
to learn both from the teacher’s predictions and from the latent
knowledge encoded in the teacher model. DE-RRD consists of two
methods: 1) Distillation Experts (DE) that directly transfers the
latent knowledge from the teacher, 2) Relaxed Ranking Distillation
(RRD) that transfers the knowledge revealed from the teacher’s
predictions with direct consideration of ranking orders among
items. This section is organized as follows. We first describe each



Figure 2: Illustration of DE-RRD framework. (a) Distillation Experts (DE) directly distills the teacher’s latent knowledge with
the experts and the selection strategy. (b) Relaxed Ranking Distillation (RRD) distills the knowledge from the teacher’s pre-
diction based on the relaxed ranking approach that ignores orders among the uninteresting items. Best viewed in color.

component of the proposed framework: DE in Section 4.1, RRD in
Section 4.2. Then, we explain the end-to-end optimization process
in Section 4.3. The overview of DE-RRD is provided in Figure 2.

4.1 Distillation Experts (DE)
In this section, we provide the details of DE which distills the
latent knowledge from the hidden representation space (i.e., the
output of the intermediate layer) of the teacher to the corresponding
representation space of the student. We first introduce “expert” to
distill the summarized knowledge that can restore the detailed
teacher’s knowledge of each entity. Then, we introduce a novel
expert selection strategy for effectively distilling CF knowledge that
contains information of all the entities having diverse preferences
and characteristics.

4.1.1 Expert for distillation. DE exploits “expert” to distill knowl-
edge from the teacher’s hidden representation space. An expert,
which is a small feed-forward network, is trained to reconstruct the
representation on a selected intermediate layer of the teacher from
the representation on the corresponding intermediate layer of the
student. Let ℎ𝑡 (·) denote a mapping function to the representation
space (∈ R𝑑𝑡 ) of the teacher model (i.e., a nested function up to the
intermediate layer of the teacher). Similarly, let ℎ𝑠 (·) denote a map-
ping function to the student’s representation space (∈ R𝑑𝑠 ). The
output of the mapping function can be a separate representation
of a user, an item (e.g., BPR [21]) or their combined representation
(e.g., NeuMF [6]) based on the base model’s structure and the type
of selected layer. Here, we use user𝑢 as an example for convenience.
An expert 𝐸 is trained to reconstruct ℎ𝑡 (𝑢) from ℎ𝑠 (𝑢) as follows:

L(𝑢) = ∥ℎ𝑡 (𝑢) − 𝐸
(
ℎ𝑠 (𝑢)

)
∥2 (4)

Note that in the KD process, the teacher model is already trained
and frozen. By minimizing the above equation, parameters in the
student model (i.e., ℎ𝑠 (·)) and the expert are updated.

The student model has smaller capacity compared to the teacher
(𝑑𝑠 << 𝑑𝑡 ). By minimizing the equation 4, the student learns com-
pressed information on the user’s preference that can restore more
detailed knowledge in the teacher as accurate as possible. This ap-
proach provides a kind of filtering effect and improves the learning
of the student model.

4.1.2 Expert selection strategy. Training a single expert to dis-
till all the CF knowledge in the teacher is not sufficient to achieve
satisfactory performance. The CF knowledge contains vast informa-
tion of user groups with various preferences and item groups with
diverse characteristics. When a single expert is trained to distill the
knowledge of all the diverse entities, the information of the weakly
correlated entities (e.g., users that have dissimilar preferences) is
mixed and reflected in the expert’s weights. This leads to the adul-
terated distillation that hinders the student model from discovering
some users’ preferences.

To alleviate the problem, DE puts multiple experts in parallel
and clearly distinguishes the knowledge that each expert distills.
The key idea is to divide the representation space into exclusive
divisions based on the teacher’s knowledge and make each expert
to be specialized in distilling the knowledge in a division (Fig. 2a).
The representations belonging to the same division has strong cor-
relations with each other, and they are distilled by the same expert
without being mixed with weakly correlated representations be-
longing to the different divisions. The knowledge transfer of DE is
conducted in the two steps: 1) a selection network first computes
each expert’s degree of specialization for the knowledge to be dis-
tilled. 2) DE selects an expert based on the computed distribution,
then distills the knowledge through the selected expert.

Concretely, DE has 𝑀 experts (𝐸1, 𝐸2, ..., 𝐸𝑀 ) and a selection
network 𝑆 whose output is𝑀-dimensional vector. To distill user𝑢’s
knowledge from the teacher, the selection network 𝑆 first computes
the normalized specialization score vector 𝜶𝑢 ∈ R𝑀 as follows:

e𝑢 = 𝑆
(
ℎ𝑡 (𝑢)

)
,

𝛼𝑢𝑚 =
exp

(
𝑒𝑢𝑚

)∑𝑀
𝑖=1 exp(𝑒𝑢𝑖 )

for 𝑚 = 1, ..., 𝑀
(5)

Then, DE selects an expert based on the computed distribution.
We represent the selection variable s𝑢 that determines which ex-
pert to be selected for distilling ℎ𝑡 (𝑢). s𝑢 is a𝑀-dimensional one-
hot vector where an element is set to 1 if the corresponding ex-
pert is selected for distillation. DE samples this selection vari-
able s𝑢 from a multinoulli distribution parameterized by {𝛼𝑢𝑚} i.e.,



Figure 3: Illustration of the expert selection process of DE.
During the training, s𝑢 becomes a one-hot vector and selects
the most specialized expert in the knowledge to be distilled.

𝑝
(
𝑠𝑢𝑚 = 1|𝑆, ℎ𝑡 (𝑢)

)
= 𝛼𝑢𝑚 , then reconstructs teacher’s representa-

tion as follows:
s𝑢 ∼ Multinoulli𝑀

(
{𝛼𝑢𝑚}

)
L(𝑢) = ∥ℎ𝑡 (𝑢) −

𝑀∑︁
𝑚=1

𝑠𝑢𝑚 · 𝐸𝑚
(
ℎ𝑠 (𝑢)

)
∥2

(6)

However, the sampling process is non-differentiable, which would
block the gradient flows and disable the end-to-end training. As
a workaround, we adopt a continuous relaxation of the discrete
distribution by using Gumbel-Softmax [8]. The Gumbel-Softmax
is a continuous distribution on the simplex that can approximate
samples from a categorical distribution; it uses the Gumbel-Max
trick [18] to draw samples from the categorical distribution, then
uses the softmax function as a continuous approximation of argmax
operation to get the approximated one-hot representation. With
the relaxation, the selection network can be trained by the back-
propagation.

DE gets the approximated one-hot selection variable s𝑢 by using
the Gumbel-Softmax and reconstructs the teacher’s representation
as follows:

𝑠𝑢𝑚 =

exp
( (
log𝛼𝑢𝑚 + 𝑔𝑚

)
/𝜏
)

∑𝑀
𝑖=1 exp

( (
log𝛼𝑢

𝑖
+ 𝑔𝑖

)
/𝜏
) for 𝑚 = 1, ..., 𝑀

L(𝑢) = ∥ℎ𝑡 (𝑢) −
𝑀∑︁
𝑚=1

𝑠𝑢𝑚 · 𝐸𝑚
(
ℎ𝑠 (𝑢)

)
∥2

(7)

where 𝑔𝑖 is i.i.d drawn from Gumbel(0, 1) distribution2. The extent
of relaxation is controlled by a temperature parameter 𝜏 . In the
beginning of the training, we set a large value on 𝜏 , and gradually
decreases its value during the training. As 𝜏 is decreased to 0, s𝑢
smoothly becomes one-hot vector where 𝑠𝑢𝑚 = 1 with probability
𝛼𝑢𝑚 . In other words, during the training, each expert gradually gets
specialized on certain information that has strong correlations. This
process is illustrated in Figure 3.
Discussion: Effects of expert selection. As the expert selection
is based on the teacher’s knowledge, correlations among the en-
tities in the teacher representation space are naturally reflected
in the expert selection; the user representations with very similar
preferences (i.e., located closely in the space) would be distilled by
the same expert with a high probability. This allows each expert
to be trained to distill only the knowledge of strongly correlated
entities, and thus each expert can provide better guidance that does
not include the information of weakly correlated entities.

2𝑔𝑖 = −log(−log(𝑟 )) , where 𝑟 is sampled from𝑈𝑛𝑖𝑓 𝑜𝑟𝑚 (0, 1) .

Discussion: selection vs. attention. Instead of selecting one ex-
pert, the attention mechanism (i.e., the softmax function) can be
adopted. However, we think the selection is a more appropriate
choice to distill the CF knowledge containing all the entities having
diverse preferences and characteristics. This is because the atten-
tion makes every expert involved in distilling the knowledge of
each entity. In other words, like in the case of a single expert, all
the experts and attention network are trained to minimize the over-
all reconstruction errors of all the diverse entities. By doing so,
information of weakly relevant entities gets mixed together, and
this leads to performance degrade in some user groups. We provide
experiment results to support our claims. Please refer to Section 5.3.
4.1.3 Optimization of DE. DE is jointly optimized with the base
model’s loss function in the end-to-end manner as follows:

min
𝜃𝑠 ,𝜃𝐷𝐸

L𝐵𝑎𝑠𝑒 + 𝜆𝐷𝐸 · L𝐷𝐸 (8)

where 𝜃𝑠 is the learning parameters of the student model, 𝜃𝐷𝐸 is
the learning parameters of DE (i.e., the selection network and the
experts), and 𝜆𝐷𝐸 is a hyperparameter that controls the effects of
DE. The base model can be any existing recommender (e.g., BPR,
NeuMF), and L𝐵𝑎𝑠𝑒 corresponds to its loss function. Note that the
experts are not used in the inference phase.

The loss function of DE can be flexibly defined based on the
base model’s structure and the types of hidden layer chosen for
the distillation. Concretely, for NeuMF [6], which is a state-of-
the-art deep recommender, the loss function can be defined to 1)
separately distill knowledge of users and items in a mini-batch (i.e.,∑
𝑢∈𝐵 L(𝑢) +∑

𝑖∈𝐵 L(𝑖)) or 2) distill the combined knowledge (i.e.,∑
(𝑢,𝑖) ∈𝐵 L(𝑢, 𝑖)). Also, we adopt a simple temperature annealing

schedule, which gradually decays the temperature from 𝜏0 to 𝜏𝑃 as
done in [11]: 𝜏 (𝑝) = 𝜏0 (𝜏𝑃/𝜏0)𝑝/𝑃 where 𝜏 (𝑝) is the temperature at
epoch 𝑝 , and 𝑃 is the total training epochs.

4.2 Relaxed Ranking Distillation (RRD)
We propose RRD, a new method to distill the knowledge revealed
from the teacher’s predictions with direct consideration of ranking
orders among items. RRD formulates this as a ranking matching
problem between the recommendation list of the teacher model
and that of the student model. To this end, RRD adopts the classical
list-wise learning-to-rank approach [29]. Its core idea is to define
a probability of a permutation (i.e., a ranking order) based on the
ranking score predicted by amodel, and train themodel tomaximize
the likelihood of the ground-truth ranking order. For more details
about the list-wise approach, please refer to [29].

However, merely adopting the list-wise loss can have adverse
effects on the ranking performance. Because a user is interested in
only a few items among the numerous total items [10], learning
the detailed ranking orders of all the unobserved items is not only
daunting but also ineffective. The recommendation list from the
teacher model contains information about a user’s potential pref-
erence on each unobserved item; A few items that the user would
be interested in (i.e., interesting items) are located near the top of
the list, whereas the majority of items that the user would not be
interested in (i.e., uninteresting items) are located far from the top.

Based on this information, RRD reformulates the daunting task of
learning all the precise ranking orders to a relaxed ranking matching



problem. In other words, RRD aims to match the recommendation
list from the teacher and that from the student, ignoring the detailed
ranking orders among the uninteresting items. Concretely, RRD
distills the information of 1) the detailed ranking orders among
the interesting items, 2) the relative ranking orders between the
interesting items and the uninteresting items. The overview of RRD
is provided in Figure 2b.

4.2.1 Sampling interesting/uninteresting items. The first step
of RRD is to sample items from the teacher’s recommendation list.
In specific, RRD samples 𝐾 interesting items and 𝐿 uninteresting
items for each user. As a user would not be interested in the vast
majority of items, the interesting items should be sampled from
a very narrow range near the top of the list, whereas the uninter-
esting items should be sampled from the wide range of the rest.
To sample the interesting items, we adopt a ranking position im-
portance scheme [20, 25] that places more emphasis on the higher
positions in the ranking list. In the scheme, the probability of the
𝑘-th ranked item to be sampled is defined as: 𝑝𝑘 ∝ 𝑒−𝑘/𝑇 where
𝑇 is the hyperparameter that controls emphasis on top positions.
With the scheme, RRD samples 𝐾 interesting items according to
the user’s potential preference on each item (i.e., item’s ranking)
predicted by the teacher. To sample the uninteresting items that
corresponds the majority of items, we use a simple uniform sam-
pling. Concretely, RRD uniformly samples 𝐿 uninteresting items
from a set of items that have lower rankings than the previously
sampled interesting items.

4.2.2 Relaxed permutation probability. Then, RRD defines a
relaxed permutation probability motivated by [29]. For user 𝑢, 𝝅𝒖

denotes a ranked list of all the sampled items (𝐾 + 𝐿) sorted by
the original order in the teacher’s recommendation list. r𝑢 denotes
ranking scores on the sampled items predicted by the student model.
The relaxed permutation probability is formulated as follows:

𝑝
(
𝝅𝑢1:𝐾 |r

𝑢 ) = 𝐾∏
𝑘=1

exp(𝑟𝑢𝜋𝑘 )∑𝐾
𝑖=𝑘

exp(𝑟𝑢𝜋𝑖 ) +
∑𝐾+𝐿
𝑗=𝐾

exp(𝑟𝑢𝜋 𝑗
)

(9)

where 𝑟𝑢𝝅𝑘
denotes a ranking score predicted by the student for

the 𝑘-th item in 𝝅𝑢 , 𝝅𝑢1:𝐾 denotes the partial list that contains
the interesting items. RRD learns to maximize the log-likelihood
log 𝑝 (𝝅1:𝐾 |r) for all users. The proposed permutation probability is
not affected by the detailed ranking orders among the uninteresting
items (𝐿). By maximizing the log-likelihood, the student model is
trained to locate all the interesting items (𝐾 ) higher than all the un-
interesting items (𝐿) in the recommendation list, while maintaining
the detailed ranking orders (from the teacher’s recommendation
list) among the interesting items.

4.2.3 Optimization of RRD. RRD is jointly optimized with the
base model’s loss function in the end-to-end manner as follows:

min
𝜃𝑠

L𝐵𝑎𝑠𝑒 + 𝜆𝑅𝑅𝐷 · L𝑅𝑅𝐷 (10)

where 𝜃𝑠 is the learning parameters of the student model and 𝜆𝑅𝑅𝐷
is a hyperparameter that controls the effects of RRD. The base
model can be any existing recommender, and L𝐵𝑎𝑠𝑒 corresponds
to its loss function. The sampling process is conducted at every
epoch. The loss function of RRD is defined to distill the knowledge
of users in the mini-batch: − 1

|𝐵 |
∑
𝑢∈𝐵 log𝑝 (𝝅𝑢1:𝐾 |r

𝑢 ).

4.3 Optimization of DE-RRD
The proposed DE-RRD framework is optimized in the end-to-end
manner as follows:

min
𝜃𝑠 ,𝜃𝐷𝐸

L𝐵𝑎𝑠𝑒 + 𝜆𝐷𝐸 · L𝐷𝐸 + 𝜆𝑅𝑅𝐷 · L𝑅𝑅𝐷 (11)

where 𝜃𝑠 is the learning parameters of the student model, 𝜃𝐷𝐸 is
the learning parameters of DE (i.e., the selection network and the
experts). The base model can be any existing recommender, and
L𝐵𝑎𝑠𝑒 corresponds to its loss function.

5 EXPERIMENTS
We validate the superiority of DE-RRD on 12 experiment settings
(2 real-world datasets × 2 base models × 3 different student model
sizes). We first provide extensive experiment results supporting
that DE-RRD outperforms the state-of-the-art competitors (Section
5.2). We also provide both quantitative and qualitative analyses to
verify the rationality and superiority of each proposed component
(Section 5.3). Lastly, we provide hyperparameter study (Section 5.4).

5.1 Experimental Setup
Datasets.We use two public real-world datasets: CiteULike [27],
Foursquare [17]. We remove users and items having fewer than
five ratings for CiteULike, twenty ratings for Foursquare as done
in [6, 9, 21]. Data statistics are summarized in Table 1.

Table 1: Data Statistics (after preprocessing)

Dataset #Users #Items #Interactions Sparsity
CiteULike 5,220 25,182 115,142 99.91%
Foursquare 19,466 28,594 609,655 99.89%

BaseModels.We validate the proposed framework on base models
that have different architectures and optimization strategies. We
choose a latent factor model and a deep learning model that are
broadly used for top-𝑁 recommendation with implicit feedback.

• BPR [21]: A learning-to-rank model for implicit feedback. It
assumes that observed items are more preferred than unobserved
items and optimizes Matrix Factorization (MF) with the pair-wise
ranking loss function.

• NeuMF [6]: The state-of-the-art deep model for implicit feed-
back. NeuMF combines MF and Multi-Layer Perceptron (MLP) to
learn the user-item interaction, and optimizes it with the point-
wise objective function (i.e., binary cross-entropy).

Teacher/Student. For each base model and dataset, we increase
the number of learning parameters until the recommendation per-
formance is no longer increased, and use the model with the best
performance as Teacher model. For each base model, we build three
student models by limiting the number of learning parameters. We
adjust the number of parameters based on the size of the last hid-
den layer. The limiting ratios (𝜙) are {0.1, 0.5, 1.0}. Following the
notation of the previous work [13, 25], we call the student model
trained without the help of the teacher model (i.e., no distillation)
as “Student” in this experiment sections.
Comparison Methods. The proposed framework is compared
with the following methods:



• RankingDistillation (RD) [25]: A KDmethod for recommender
system that uses itemswith the highest ranking from the teacher’s
predictions for distilling the knowledge.

• Collaborative Distillation (CD) [13]: The state-of-the-art KD
method for recommender system. CD samples items from teacher’s
predictions based on their ranking, then uses them for distilla-
tion. As suggested in the paper, we use unobserved items only
for distilling the knowledge.

Finally,DE-RRD framework consists of the following twomethods:
• Distillation Experts (DE): A KD method that directly distills
the latent knowledge stored in the teacher model. It can be com-
bined with any prediction-based KD methods (e.g., RD, CD, RRD).

• Relaxed Ranking Distillation (RRD): A KD method that dis-
tills the knowledge revealed from the teacher’s predictions with
consideration of relaxed ranking orders among items.

Evaluation Protocol. We follow the widely used leave-one-out
evaluation protocol [6, 9, 19]. For each user, we leave out a single
interacted item for testing, and use the rest for training. In our
experiments, we leave out an additional interacted item for the
validation. To address the time-consuming issue of ranking all the
items, we randomly sample 499 items from a set of unobserved
items of the user, then evaluate how well each method can rank the
test item higher than these sampled unobserved items. We repeat
this process of sampling a test/validation item and unobserved
items five times and report the average results.

As we focus on the top-𝑁 recommendation task based on im-
plicit feedback, we evaluate the performance of each method with
widely used three ranking metrics [6, 9, 10]: hit ratio (H@𝑁 ), nor-
malized discounted cumulative gain (N@𝑁 ), and mean reciprocal
rank (M@𝑁 ). H@𝑁 measures whether the test item is present in
the top-𝑁 list, while N@𝑁 and M@𝑁 are position-aware ranking
metrics that assign higher scores to the hits at upper ranks.
Implementation Details for Reproducibility.We use PyTorch
to implement the proposed framework and all the baselines, and
use Adam optimizer to train all the methods. For RD, we use the
public implementation provided by the authors. For each dataset,
hyperparameters are tuned by using grid searches on the validation
set. The learning rate for the Adam optimizer is chosen from {0.1,
0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001}, the model regularizer is
chosen from {10−1, 10−2, 10−3, 10−4, 10−5}. We set the total number
of epochs as 1000, and adopt early stopping strategy; stopping if
H@5 on the validation set does not increase for 30 successive epochs.
For all base models (i.e., BPR, NeuMF), the number of negative
sample is set to 1, and no pre-trained technique is used. For NeuMF,
the number of the hidden layers is chosen from {1, 2, 3, 4}.

For all the distillation methods (i.e., RD, CD, DE, RRD), weight
for KD loss (𝜆) is chosen from {1, 10−1, 10−2, 10−3, 10−4, 10−5}. For
DE, the number of experts (𝑀) is chosen from {5, 10, 20, 30}, MLP
is employed for the experts and the selection network. The shape
of the layers of an expert is [𝑑𝑠 → (𝑑𝑠 + 𝑑𝑡 )/2 → 𝑑𝑡 ] with relu
activation, and that of the selection network is [𝑑𝑡 → 𝑀]. We
select the last hidden layer of all the base models to distill latent
knowledge. We put the experts according to the structure of the
selected layer; For the layer where user and item are separately
encoded (i.e., BPR), we put 𝑀 user-side experts and 𝑀 item-side
experts, and for the layer where user and items are jointly encoded

(i.e., NeuMF), we put𝑀 experts to distill the combined information.
𝜏0 and 𝜏𝑃 are set to 1, 10−10, respectively. For prediction-based
KD methods (i.e., RD, CD, RRD), the number of high-raked (or
interesting) items (𝐾 ) for distillation is chosen from {10, 20, 30, 40,
50}, weight for controlling the importance of top position (𝑇 ) is
chosen from {1, 5, 10, 20}. For RRD, the number of uninteresting
items (𝐿) is set to the same with 𝐾 , but it can be further tuned. For
RD, the number of the warm-up epoch is chosen from {30, 50, 100},
the number of negative items in the dynamic weight is chosen from
{50, 100}. Also, RD and CD have additional hyperparameters for
reflecting the relative importance of the items used for distillation.
We follow the recommended values from the public implementation
and from the original papers.

5.2 Performance Comparison
Table 2 shows top-𝑁 recommendation accuracy of different meth-
ods in terms of various ranking metrics. In summary, DE-RRD
shows the significant improvement compared to the state-of-the-art
KD methods on two base models that have different architectures
and optimization strategies. Also, DE-RRD consistently outper-
forms the existing methods on three different sizes of the student
model in Figure 4. We analyze the results from various perspectives.

We first observe that the twomethods of the proposed framework
(i.e., DE, RRD) improve the performance of the student model. DE
directly distills the teacher’s latent knowledge that includes detailed
information on users, items, and the relationships among them. This
enables the student to be more effectively trained than finding such
information from scratch with a limited capacity. RRD distills the
knowledge from the teacher’s predictions based on the relaxed
ranking approach which makes the student to effectively maintain
the ranking orders of interesting items predicted by the teacher.
Unlike the existing methods (i.e., RD, CD), it directly handles the
ranking violations among the sampled items, which can lead to
better ranking performance.

Also, we observe that RRD achieves large performance gain par-
ticularly in NeuMF (𝜙 = 0.1). One possible reason is that NeuMF is
trained with the point-wise loss function (i.e., binary cross-entropy)
which considers only one item at a time. In general, it is known that
the approaches considering the preference orders between items
(e.g., pair-wise, list-wise) can achieve better ranking performance
than the point-wise approach [24]. RRD enables the model to cap-
ture the ranking orders among the unobserved items, so that it can
lead to the large performance gain. Interestingly, we observe that
the prediction-based KDmethods (i.e., RD, CD, RRD) can have an ad-
verse effect when the model size is large (NeuMFwith𝜙 = 0.5, 1.0 in
Figure 4). We conjecture that this is because when a model has suf-
ficient capacity to achieve comparable performance to the teacher,
enforcing it to exactly mimic the teacher’s prediction results can
act as a strong constraint that rather hinders its learning.

In addition, we observe that DE-RRD achieves the best perfor-
mance among all the methods in general. DE-RRD enables the
student to learn both from the teacher’s prediction and from the
latent knowledge that provides the bases for such predictions. In-
terestingly, DE-RRD also shows a large performance gain when the
student model has the identical structure to the teacher model (i.e.,
self-distillation with 𝜙 = 1.0 in Figure 4). This result shows that



Table 2: Recommendation performances (𝜙 = 0.1). Improv.b and Improv.s denote the improvement of DE-RRD over the best
baseline and student respectively. *, **, ***, and **** indicate 𝑝 ≤ 0.05, 𝑝 ≤ 0.005, 𝑝 ≤ 0.0005, and 𝑝 ≤ 0.00005 for the paired t-test
of vs. the best baseline (for RRD, DE-RRD), vs. Student (for DE) on H@5.

Dataset Base Model KD Method H@5 M@5 N@5 H@10 M@10 N@10 H@20 M@20 N@20
Teacher 0.5135 0.3583 0.3970 0.6185 0.3724 0.4310 0.7099 0.3788 0.4541
Student 0.4441 0.2949 0.3319 0.5541 0.3102 0.3691 0.6557 0.3133 0.3906
RD 0.4533 0.3019 0.3395 0.5601 0.3161 0.3740 0.6633 0.3232 0.3993

BPR
CD 0.4550 0.3025 0.3404 0.5607 0.3167 0.3746 0.6650 0.3240 0.4011
DE ** 0.4817 0.3230 0.3625 0.5916 0.3372 0.3977 0.6917 0.3441 0.4229
RRD ** 0.4622 0.3076 0.3461 0.5703 0.3220 0.3809 0.6746 0.3293 0.4074
DE-RRD *** 0.4843 0.3231 0.3632 0.5966 0.3373 0.3989 0.6991 0.3447 0.4251
Improv.b 6.44% 6.81% 6.7% 6.4% 6.47% 6.47% 5.12% 6.4% 5.98%

CiteULike
Improv.s 9.06% 9.57% 9.44% 7.66% 8.7% 8.06% 6.62% 10.02% 8.83%
Teacher 0.4790 0.3318 0.3684 0.5827 0.3457 0.4020 0.6748 0.3521 0.4254
Student 0.3867 0.2531 0.2865 0.4909 0.2670 0.3202 0.5833 0.2738 0.3436
RD 0.4179 0.2760 0.3113 0.5211 0.2896 0.3444 0.6227 0.2958 0.3696

NeuMF
CD 0.4025 0.2633 0.2979 0.5030 0.2769 0.3306 0.6053 0.2822 0.3550
DE ** 0.4079 0.2625 0.2986 0.5139 0.2766 0.3328 0.6238 0.2843 0.3607
RRD *** 0.4737 0.3086 0.3497 0.5800 0.3236 0.3847 0.6765 0.3305 0.4094
DE-RRD **** 0.4758 0.3108 0.3518 0.5805 0.3246 0.3856 0.6770 0.3312 0.4099
Improv.b 13.83% 12.6% 13.03% 11.42% 12.09% 11.95% 8.72% 11.95% 10.9%
Improv.s 23.03% 22.79% 22.8% 18.26% 21.58% 20.42% 16.07% 20.95% 19.28%
Teacher 0.5598 0.3607 0.4101 0.7046 0.3802 0.4571 0.8175 0.3882 0.4859
Student 0.4869 0.3033 0.3489 0.6397 0.3239 0.3984 0.7746 0.3338 0.4333
RD 0.4932 0.3102 0.3555 0.6453 0.3302 0.4045 0.7771 0.3391 0.4377

BPR
CD 0.5006 0.3147 0.3608 0.6519 0.3354 0.3237 0.7789 0.3440 0.4421
DE **** 0.5283 0.3344 0.3824 0.6810 0.3544 0.4316 0.8032 0.3631 0.4627
RRD ** 0.5132 0.3258 0.3722 0.6616 0.3455 0.4202 0.7862 0.3540 0.4516
DE-RRD **** 0.5308 0.3359 0.3843 0.6829 0.3565 0.4336 0.8063 0.3647 0.4647
Improv.b 6.03% 6.74% 6.51% 4.76% 6.29% 7.19% 3.52% 6.02% 5.11%

Foursquare
Improv.s 9.02% 10.75% 10.15% 6.75% 10.06% 8.84% 4.09% 9.26% 7.25%
Teacher 0.5436 0.3464 0.3954 0.6906 0.3662 0.4430 0.8085 0.3746 0.4731
Student 0.4754 0.2847 0.3319 0.6343 0.3060 0.3833 0.7724 0.3157 0.4185
RD 0.4789 0.2918 0.3380 0.6368 0.3110 0.3878 0.7761 0.3173 0.4205

NeuMF
CD 0.4904 0.2979 0.3456 0.6477 0.3156 0.3940 0.7845 0.3260 0.4293
DE * 0.4862 0.2977 0.3444 0.6413 0.3174 0.3938 0.7742 0.3278 0.4284
RRD *** 0.5172 0.3110 0.3621 0.6739 0.3321 0.4132 0.7982 0.3409 0.4450
DE-RRD **** 0.5193 0.3130 0.3641 0.6741 0.3332 0.4139 0.7983 0.3421 0.4454
Improv.b 5.89% 5.07% 5.35% 4.08% 5.58% 5.05% 1.76% 4.94% 3.75%
Improv.s 9.23% 9.94% 9.7% 6.27% 8.89% 7.98% 3.35% 8.36% 6.43%

Figure 4: Recommendation Performance on across three different student model sizes. (Red dotted line: Teacher)

it can be also used to maximize the performance of the existing
recommender.

Lastly, we provide the result of the online inference efficiency
test in Table 3. All inferences are made using PyTorch with CUDA
from Tesla P40 GPU and Xeon on Gold 6148 CPU. The student
model trained with DE-RRD achieves comparable performance
with only 10-50% of learning parameters compared to the teacher.

The smaller model requires less computations and memory costs,
so it can achieve lower latency. In particular, deep recommender
(i.e., NeuMF) which has a large number of learning parameters and
complex structures takes more benefits from the smaller model size.
On real-time RS application that has larger numbers of users (and
items) and has a more complex model structure, DE-RRD can lead
to a larger improvement in online inference efficiency.



Table 3: Model compactness and online inference efficiency.
Time (seconds) indicates the wall time used for generating
recommendation list for every user. H@5 Ratio denotes the
ratio of H@5 from DE-RRD over that from Teacher.

Dataset Base Model 𝜙 Time (s) #Params. H@5 Ratio

BPR 1.0 59.27s 6.08M 1.03
0.5 57.53s 3.04M 1.01

CiteULike
0.1 55.39s 0.61M 0.94

NeuMF 1.0 79.27s 15.33M 1.01
0.5 68.37s 7.63M 1.01
0.1 58.27s 1.52M 0.99

BPR 1.0 257.28s 9.61M 1.03
0.5 249.19s 4.81M 1.01

Foursquare
0.1 244.23s 0.96M 0.95

NeuMF 1.0 342.84s 24.16M 1.02
0.5 297.34s 12.05M 1.01
0.1 255.24s 2.40M 0.95

5.3 Design Choice Analysis
We provide both quantitative and qualitative analyses on the pro-
posed methods and alternative design choices (i.e., ablations) to
verify the superiority of our design choice. The performance com-
parisons with the ablations are summarized in Table 4.

For DE, we consider three ablations: (a) Attention (b) One expert
(large) (c) One expert (small). As discussed in Section 4.1.2, instead
of the selection strategy, attention mechanism can be adopted. We
also compare the performance of one large expert3 and one small
expert. Note that DE, attention, and one expert (large) has the exact
same number of learning parameters for experts. We observe that
the increased numbers of learning parameters do not necessarily
contribute to performance improvement ((a) vs. (c) in BPR).

We also observe that the selection shows the best performance
among all the ablations. To further investigate this result, we con-
duct qualitative analysis on user representation spaces induced by
each design choice. Specifically, we first perform clustering4 on user
representation space from the teacher model to find user groups
that have strong correlations (or similar preferences). Then, we
visualize the average performance gain (per group) map in Figure 5.
We observe that distilling the knowledge by the attention, one large
expert can cause performance decreases in many user groups (blue
clusters), whereas the selection improves the performance in more
numbers of user groups (red clusters). In the ablations (a)-(c), the
experts are trained to minimize the overall reconstruction errors on
all the diverse entities. This makes the information of weakly corre-
lated entities to be mixed together and further hinders discovering
the preference of a particular user group. Unlike the ablations, DE
clearly distinguishes the knowledge that each expert distills, and
makes each expert to be trained to distill only the knowledge of
strongly correlated entities. So, it can alleviate such problem. The
expert selection map of DE is visualized in Figure 6. We can observe
that each expert gets gradually specialized in certain user groups
that share similar preferences during the training.

For RRD, we consider two ablations: (d) and (e). The ablations
are intended to show the effects of the proposed relaxed ranking.
Concretely, we apply the list-wise loss (i.e., no relaxation) on all
the sampled items (interesting and uninteresting items) for (d), on
the top-ranked items (interesting items) for (e). Note that all the
methods use the same number of items for distillation. We observe

3We make one large expert by adopting the average pooling.
4We use 𝑘-Means clustering in Scikit-learn. 𝑘 is set to 20.

Table 4: Performance comparison for alternative design
choices on Foursquare (𝜙 = 0.1).

Base Model Design choices H@5 N@5 H@10 N@10
DE 0.5283 0.3824 0.6810 0.4316
(a) Attention 0.5019 0.3625 0.6575 0.4131

BPR
(b) One expert (large) 0.5151 0.3716 0.6733 0.4230
(c) One expert (small) 0.5136 0.3717 0.6683 0.4213
RRD 0.5132 0.3722 0.6616 0.4202
(d) Full ranking 0.4983 0.3595 0.6474 0.4080
(e) Interesting ranking 0.4814 0.3479 0.6416 0.3999
DE 0.4862 0.3444 0.6413 0.3938
(a) Attention 0.4770 0.3364 0.6364 0.3903

NeuMF
(b) One expert (large) 0.4741 0.3367 0.6341 0.3885
(c) One expert (small) 0.4740 0.3339 0.6316 0.3860
RRD 0.5172 0.3621 0.6739 0.4132
(d) Full ranking 0.4799 0.3457 0.6324 0.3949
(e) Interesting ranking 0.4641 0.3294 0.6228 0.3809

Attention One expert (large) DE (selection)

Figure 5: Performance (N@20) gain map (BPR with 𝜙 = 0.1
on Foursquare).

(a) Epoch 0 (b) Epoch 20 (c) Train Done

Figure 6: Expert selectionmapofDE. Each color corresponds
to an expert (BPR with 𝜙 = 0.1 on Foursquare).

that merely adopting the list-wise loss has adverse effects on the
ranking performance. First, (d) learns tomatch the full ranking order
among all the sampled items. Learning the detailed order among
the uninteresting items is not necessarily helpful to improve the
ranking performance, and may further interfere with focusing on
the interesting items. Also, (e), which only considers the interesting
items, shows even worse performance than Student. The list-wise
loss does not take into account the absolute ranking positions of
the items; a ranking order can be satisfied regardless of the items’
absolute positions. Since (e) does not consider the relative orders
between the interesting items and the uninteresting items, it may
push such interesting items far from the top of the ranking list.
Unlike the ablations, RRD adopts the relaxed ranking approach,
which enables the student to better focus on the interesting items
while considering the relative orders with the uninteresting items.

5.4 Hyperparameter Analysis
We provide analyses to offer guidance of hyperparameter selec-
tion of DE-RRD. For the sake of space, we report the results on
Foursquare dataset with 𝜙 = 0.1. We observe similar tendencies
on CiteULike dataset. For DE, we show the effects of two hyperpa-
rameters: 𝜆𝐷𝐸 that controls the importance of DE and the number



(a) Effects of 𝜆𝐷𝐸 and the number of experts

(b) Effects of 𝜆𝑅𝑅𝐷 and 𝐾
Figure 7: Effects of the hyperparameters. (a) DE (b) RRD.

Table 5: Effects of 𝜆𝐷𝐸 and 𝜆𝑅𝑅𝐷 in DE-RRD framework.
BPR NeuMFFoursquare

(H@5) 𝜆𝑅𝑅𝐷 𝜆𝑅𝑅𝐷
10−4 10−3 10−2 10−1 10−4 10−3 10−2 10−1

10−4 0.5081 0.5201 0.4590 0.3901 0.4774 0.4896 0.5014 0.5193

𝜆
𝐷
𝐸 10−3 0.5186 0.5276 0.4688 0.3906 0.4774 0.4858 0.4942 0.5112

10−2 0.5261 0.5308 0.4791 0.3977 0.4846 0.4868 0.4892 0.5110
10−1 0.5269 0.5308 0.4928 0.4154 0.4848 0.4881 0.4908 0.5055

of experts in Figure 7a. For RRD, we show the effects of two hy-
perparameters: 𝜆𝑅𝑅𝐷 that controls the importance of RRD and the
number of interesting items (𝐾 ) in Figure 7b. In our experiment, the
number of uninteresting items is set to the same with 𝐾 . Note that
for all graphs value ‘0’ corresponds to Student (i.e., no distillation).

Because the types of loss function of the proposed methods are
different from that of the base models, it is important to properly
balance the losses by using 𝜆. For DE, the best performance is
achieved when the magnitude of DE loss is approximately 20%
(BPR), 2-5% (NeuMF) compared to that of the base model’s loss. For
RRD, the best performance is achieved when the magnitude of RRD
loss is approximately 7-10% (BPR), 1000% (NeuMF) compared to
that of the base model’s loss. For the number of experts and 𝐾 , the
best performance is achieved near 10-20 and 30-40, respectively.
Lastly, we show the effects of combinations of 𝜆𝐷𝐸 and 𝜆𝑅𝑅𝐷 in
DE-RRD framework in Table 5. Generally, the best performance
of DE-RRD is observed in the ranges where each method (i.e., DE,
RRD) achieves the best performance.

6 CONCLUSION
This paper proposes a novel knowledge distillation framework for
recommender system, DE-RRD, that enables the student model
to learn both from the teacher’s predictions and from the latent
knowledge stored in a teacher model. To this end, we propose
two novel methods: 1) DE that directly distills latent knowledge
from the representation space of the teacher. DE adopts the experts
and the expert selection strategy to effectively distill the vast CF
knowledge to the student. 2) RRD that distills knowledge revealed
from teacher’s predictions with direct considerations of ranking
orders among items. RRD adopts the relaxed ranking approach to
better focus on the interesting items. Extensive experiment results
demonstrate that DE-RRD significantly outperforms the state-of-
the-art competitors.
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