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ABSTRACT
Graph classification, which aims to identify the category labels
of graphs, plays a significant role in drug classification, toxicity
detection, protein analysis etc. However, the limitation of scale of
benchmark datasets makes it easy for graph classification models
to fall into over-fitting and undergeneralization. Towards this, we
introduce data augmentation on graphs and present two heuristic
algorithms: random mapping and motif-similarity mapping, to gen-
erate more weakly labeled data for small-scale benchmark datasets
via heuristic modification of graph structures. Furthermore, we pro-
pose a generic model evolution framework, namedM-Evolve, which
combines graph augmentation, data filtration and model retraining
to optimize pre-trained graph classifiers. Experiments conducted on
six benchmark datasets demonstrate that M-Evolve helps existing
graph classification models alleviate over-fitting when training on
small-scale benchmark datasets and yields an average improvement
of 3∼12% accuracy on graph classification tasks.
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1 INTRODUCTION
Graph classification, or network classification, has recently at-
tracted considerable attention from different fields like bioinformat-
ics [1] and chemoinformatics [3]. For instance, in bioinformatics,
proteins or enzymes can be represented as labeled graphs, in which
vertices are atoms and edges represent chemical bonds that connect
atoms. The task of graph classification is to classify these molecular
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graphs according to their chemical properties like carcinogenicity,
mutagenicity and toxicity.

However, in bioinformatics and chemoinformatics, the scale of
the known benchmark graph datasets is generally in the range of
tens to thousands, which is far from the scale of real-world social
network datasets like COLLAB and IMDB [8]. Despite the advances
of various graph classification methods, from graph kernels, graph
embedding to graph neural networks, the limitation of data scale
makes them easily fall into the dilemmas of over-fitting and under-
generalization.

To solve the above problem, we take an effective approach to
study data augmentation on graphs and develop two graph augmen-
tation methods, called random mapping and motif-similarity map-
ping, respectively. The idea is to generate more virtual data for small
datasets via heuristic modification of graph structures. Since the
generated graphs are artificial and treated as weakly labeled data,
their availability remains to be verified. Therefore, we introduce a
concept of label reliability, which reflects the matching degree be-
tween examples and their labels, to filter fine augmented examples
from generated data. Furthermore, we introduce a model evolution
framework, named M-Evolve, which combines graph augmenta-
tion, data filtration and model retraining to optimize classifiers. We
demonstrate that M-Evolve achieves a significant improvement of
performance on graph classification.

The main contributions of our work are summarized as follows:
• We effectively utilize the technique of data augmentation on
graph classification, and develop two methods to generate effec-
tive weakly labeled data for graph benchmark datasets.
• We propose a generic model evolution framework named M-
Evolve for enhancing graph classification, which can be easily
combined with existing graph classification models.
• We conduct experiments on six benchmark datasets. Experimen-
tal results demonstrate the superiority of M-Evolve in helping
five graph classification algorithms to achieve significant im-
provement of performances.

2 METHODOLOGY
Let G = (V ,E) be an undirected and unweighted graph, which
consists of a vertex set V = {vi | i = 1, . . . ,n} and an edge set
E = {ei | i = 1, . . . ,m}. The topological structure of graph G is
represented by an n×n adjacency matrixAwithAi j = 1 if (i, j) ∈ E
and Ai j = 0 otherwise. Dataset that contains a series of graphs is
denoted as D = {(Gi ,yi ) | i = 1, . . . , t}, where yi is the label of
graph Gi . For D, an upfront split will be applied to yield disjoint
training, validation and testing set, denoted asDtrain,Dval andDtest,
respectively. The original classifier C will be pre-trained on Dtrain
and Dval.
ProblemDefinition:We explore data augmentation technique for
graph classification problem with heuristic paradigm and consider
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Figure 1: Schematic depiction of graph augmentation. Left: Open-triad motif and heuristic edge swapping. Right: An example
for graph augmentation via motif-similarity mapping; red lines is the candidates and black lines is the modified edges.

optimizing graph classifier. Specifically, we aim to update a classifier
with augmented data, which are first generated via graph augmen-
tation and then filtered in terms of their label reliability. During
graph augmentation, our purpose is to map the graph G ∈ Dtrain
to a new graphG ′ with the formal format: f : (G,y) 7→ (G ′,y). We
treat the generated graphs as weakly labeled data and classify them
into two groups via a label reliability threshold θ learnt from Dval.
Then the augmented set D ′train filtered from generated graph pool
Dpool will be merged with Dtrain to produce the training set:

Dnew
train = Dtrain + D

′
train , D ′train ⊂ Dpool . (1)

Finally, we finetune or retrain the classifier withDnew
train, and evaluate

it on the testing set Dtest.

2.1 Graph Augmentation
Graph augmentation aims to expand training data via artificially
creating more reasonable virtual data from a limited set of graphs.
In this paper, we consider augmentation as a topological mapping,
which is conducted via heuristic modification of graph structure.
In order to ensure the approximate reasonability of the generated
virtual data, our graph augmentation will follow these principles: 1)
edge modification, whereG ′ is a partially modified graph with some
of the edges added/removed fromG; 2) structure property preserva-
tion, where augmentation operation keeps the graph connectivity
and the number of edges constant. During edge modification, those
edges removed from graph are sampled from the candidate edge set
Ecdel, while the edges added to graph are sampled from the candidate
pairwise vertices set Ecadd. The construction of candidate sets varies
for different methods, as further discussed below.

2.1.1 Random Mapping. Here, consider random mapping as a
simple baseline. The candidate sets are constructed as follows:

Ecdel = E , Ecadd = {(vi ,vj ) | Ai j = 0; i , j}. (2)
Notably, in random scenario, Ecdel is actually the edge set of graph,
and Ecadd is the set of virtual edges which consist of unlinked pair-
wise vertices. Then, one can get the set of edges added/removed
from G via sampling from the candidate sets randomly:

Edel = {ei | i = 1, . . . , ⌈m · β⌉} ⊂ Ecdel ,

Eadd = {ei | i = 1, . . . , ⌈m · β⌉} ⊂ Ecadd ,
(3)

where β is the budget of edge modification and ⌈x⌉ = ceil(x).
Finally, based on the random mapping, the connectivity structure
of the original graph is modified to generate a new graph:

G ′ = (V , (E ∪ Eadd)\Edel) . (4)

2.1.2 Motif-Similarity Mapping. Graph motifs are sub-graphs
that repeat themselves in a specific graph or even among various
graphs. Each of these sub-graphs, defined by a particular pattern
of interactions between vertices, may describe a framework in
which particular functions are achieved efficiently. In this paper,
we just consider open-triad motifs with chain structures. As shown
in the left of Figure 1, open-triad ∧ai j is equivalent to length-2 paths
emanating from the head vertex vi that induce a triangle.

The motif-similarity mapping aims to finetune these motifs to
approximately equivalent ones via edge swapping. During edge
swapping, edge addition takes effect between the head and the tail
vertices of the motif, while edge deletion removes an edge in the
motif via weighted random sampling. For all open-triad motifs ∧i j
which has head vertex vi and tail vertex vj , the candidate pairwise
vertices set is denoted as:

Ecadd = {(vi ,vj ) | Ai j = 0,A2
i j , 0; i , j} . (5)

Then one can get Eadd, the set of edges added toG , via weighted ran-
dom sampling from Ecadd. For each ∧i j involving pairwise vertices
(vi ,vj ) in Eadd, we remove one edge from it via weighted random
sampling and all of these removed edges constitute Edel.

Notably, we assigns all entries in Ecadd and ∧i j with relative
sampling weights which are associated with the vertex similarity
scores. Specifically, before sampling, we compute the similarity
scores over all entries in Ecadd using Resource Allocation (RA) index
which has been proven its superiority among several local similarity
indices in [10]. For each entry (vi ,vj ) in Ecadd, the RA score si j and
addition weightwadd

i j can be computed as follows:

si j =
∑

z∈Γ(i)∩Γ(j)
1
dz
, S = {si j | ∀(vi ,vj ) ∈ Ecadd},

wadd
i j =

si j∑
s ∈S s

, Wadd = {wadd
i j | ∀(vi ,vj ) ∈ Ecadd},

(6)

where Γ(i) denotes the one-hop neighbors of vi and dz denotes
the degree of vertex z. Weighted random sampling means that
the probability for an entry in Ecadd to be selected is proportional
to its addition weight wadd

i j . Similarly, during edge deletion, the
probability of edge sampled from ∧i j is proportional to the deletion
weightwdel

i j as follows:

wdel
i j = 1 −

si j∑
s ∈S s

, Wdel = {wdel
i j | ∀(vi ,vj ) ∈ ∧i j }, (7)

which means that these edges with smaller RA scores have more
chance to be removed. Finally, the augmented graph can be obtained
via Eq. (4). It is worth noting that many other similarity indices
such as CN and Katz [10] can also be applied into this scheme.



2.2 Model Evolution
2.2.1 Data Filtration. Due to the topology dependency of graph
structured data, the examples generated via graph augmentation
may lose original semantics. By assigning the label of the original
graph to the generated graph directly during graph augmentation,
one cannot determine whether the assigned label is reliable. There-
fore, the concept of label reliability is employed here to measure
the matching degree between examples and labels.

Each graph Gi in Dval will be fed into classifier C to obtain
the prediction vector pi ∈ R |Y | , which represents the probability
distribution how likely an input example belongs to each possible
class. |Y | is the number of classes for labels. Then a probability
confusion matrix Q ∈ R |Y |× |Y | , in which the entry qi j represents
the average probability that the classifier classifies the graphs of
i-th class into j-th class, is computed as follows:

qk =
1
Ωk

∑
yi=k

pi , Q = [q1, q2, . . . , q |Y |] , (8)

where Ωk is the number of graphs belonging to k-th class in Dval
and qk is the average probability distribution of k-th class.

The label reliability of an example (Gi ,yi ) is defined as the prod-
uct of example probability distribution pi and class probability
distribution qyi as follows:

ri = pi⊤qyi . (9)
A threshold θ used to filter the generated data is defined as:

θ = argmin
θ

∑
(Gi ,yi )∈Dval

Φ[(θ − ri ) · д(Gi ,yi )] , (10)

where д(Gi ,yi ) = 1 ifC(Gi ) = yi and д(Gi ,yi ) = −1 otherwise, and
Φ(x) = 1 if x > 0 and Φ(x) = 0 otherwise.

2.2.2 Framework. Model evolution aims to optimize classifiers
via graph augmentation, data filtration and model retraining itera-
tively, and ultimately improve the performance on graph classifica-
tion task. The procedure of M-Evolve is shown in Algorithm 1.

3 EVALUATION
3.1 Experimental Setup
3.1.1 Data. We evaluate our methods on six benchmark datasets:
Mutag, PTC-MR, ENZYMES, KKI, Peking-1 and OHSU [4]. The
specifications of these datasets are given in Table 1, where bias is
the proportion of the dominant class.

3.1.2 Graph Classification Methods. Five graph classification
methods, i.e., SF [2], Graph2Vec [5], NetLSD [6], Gl2Vec [7], Diff-
pool [9], are used in the experiments. The first two are graph em-
bedding, the middle two are kernel models, and the last one is GNN
model. For all graph kernel and embedding methods, we implement
graph classification by using the following machine learning classi-
fiers: SVM based on radial basis kernel (SVM), Logistic Regression
(Log), k-Nearest Neighbors (KNN) and Random Forest (RF).

3.1.3 Parameter Settings. Each dataset is split into training, val-
idation and testing sets with a proportion of 7:1:2. We repeat 5-fold
cross validation 10 times and report the average accuracy across
all trials. For all kernel and embedding methods, the feature dimen-
sion is set to 128. We set the budget of edge modification β as 0.15.
Furthermore, the evolution iterations T is set to 5.

Algorithm 1: M-Evolve
Input: Training set Dtrain, validation set Dval, graph

augmentation function f , evolution iterations T .
Output: Evolutionary model C ′.

1 Pre-training classifier C using Dtrain and Dval ;
2 Initalize iteration = 0;
3 for iteration < T do
4 Graph augmentation: Dpool ← f (Dtrain) ;
5 For all graphs Gi in Dval classified by C , get pi ;
6 Compute probability confusion matrix Q via Eq. 8 ;
7 For all graphs Gi in Dval classified by C , get ri via Eq. 9;
8 Compute the label reliability threshold θ via Eq. 10 ;
9 For all examples (Gi ,yi ) in Dpool classified by C , compute

ri , if ri > θ , Dtrain.append((Gi ,yi )) ;
10 Get the evolutionary classifier: C ′ ← retrain(C,Dtrain) ;
11 iteration← iteration + 1 ;
12 C ← C ′ ;
13 end ;
14 return C ′;

Table 1: Dataset properties.
Collections Dataset |D | |Y | Avg.|V | Avg.|E | bias (%)

Chemical
Compounds

MUTAG 188 2 17.93 19.79 66.5
PTC-MR 344 2 14.29 14.69 55.8
ENZYMES 600 6 32.63 62.14 16.7

Brain
KKI 83 2 26.96 48.42 55.4

Peking-1 85 2 39.31 77.35 57.6
OHSU 79 2 82.01 199.66 55.7

3.2 Enhancement for Graph Classification
Table 2 reports the results of performance comparison between
evolutionary models and original models, from which we can see
that there is a significant boost in classification performance across
all six datasets. Overall, these models combined with the proposed
M-Evolve framework obtain higher average classification accuracy
in most cases and the M-Evolve achieves a 97.06% success rate on
the enhancement of graph classification. Moreover, the far-right
column gives the average relative improvement rate (Avg RIMP)
in accuracy, from which we can see that the M-Evolve combined
with motif-similarity mapping obtains the best results overall. As a
reasonable explanation, similarity mechanism tends to link vertices
with higher similarity and is capable of optimizing topological
structure legitimately, while the motif mechanism achieves edge
modification via local edge swapping, which has less effect on the
degree distribution of the graph.

Furthermore, we visualize the data distribution and the decision
boundary of models before and after model evolution, as shown
in Figure 2, to investigate how the M-Evolve framework achieves
interpretable enhancement of graph classification. Due to space
limit, we only present the visualization results of graph classifica-
tion based on these combinations (SF + {SVM, KNN }). As we can
see, there is a significant increase in the scale of dataset, indicat-
ing that graph augmentation effectively enriches the training data
and the new data distribution is more conducive to the training



Table 2: Graph classification results of original and evolutionary model.

Dataset Mapping
Graph Classification Model

Avg RIMPSF NetLSD Graph2Vec Gl2Vec DiffpoolSVM Log KNN RF SVM Log KNN RF SVM Log KNN RF SVM Log KNN RF

MUTAG

original 0.822 0.824 0.824 0.846 0.823 0.829 0.828 0.836 0.737 0.820 0.784 0.820 0.746 0.830 0.800 0.817 0.801 –
random 0.853 0.844 0.835 0.878 0.855 0.851 0.853 0.886 0.756 0.854 0.790 0.844 0.748 0.842 0.820 0.840 0.810 2.67%

motif-similarity 0.863 0.849 0.838 0.890 0.860 0.864 0.858 0.892 0.759 0.849 0.806 0.842 0.762 0.848 0.829 0.846 0.831 3.60%

PTC-MR

original 0.551 0.566 0.577 0.587 0.543 0.578 0.548 0.576 0.571 0.518 0.509 0.549 0.572 0.538 0.507 0.550 0.609 –
random 0.611 0.595 0.605 0.617 0.579 0.580 0.590 0.607 0.580 0.572 0.547 0.592 0.587 0.571 0.527 0.594 0.639 5.82%

motif-similarity 0.613 0.589 0.601 0.624 0.581 0.581 0.597 0.620 0.590 0.579 0.553 0.593 0.587 0.579 0.545 0.602 0.630 6.60%

ENZYMES

original 0.309 0.393 0.287 0.397 0.337 0.248 0.304 0.349 0.361 0.253 0.283 0.337 0.348 0.268 0.238 0.318 0.487 –
random 0.347 0.412 0.302 0.412 0.351 0.237 0.327 0.369 0.336 0.269 0.290 0.346 0.286 0.273 0.259 0.334 0.500 2.60%

motif-similarity 0.363 0.414 0.317 0.414 0.375 0.248 0.334 0.376 0.352 0.270 0.289 0.352 0.291 0.280 0.260 0.339 0.506 5.00%

KKI

original 0.550 0.500 0.520 0.517 0.548 0.524 0.512 0.496 0.549 0.527 0.524 0.552 0.538 0.502 0.526 0.502 0.523 –
random 0.606 0.544 0.554 0.622 0.599 0.535 0.553 0.562 0.580 0.568 0.594 0.574 0.556 0.508 0.544 0.544 0.586 8.10%

motif-similarity 0.605 0.559 0.561 0.649 0.618 0.550 0.558 0.582 0.587 0.590 0.603 0.632 0.574 0.524 0.597 0.582 0.612 12.07%

Peking-1

original 0.578 0.548 0.541 0.558 0.605 0.612 0.589 0.591 0.572 0.522 0.474 0.522 0.555 0.522 0.521 0.521 0.586 –
random 0.660 0.592 0.603 0.627 0.652 0.631 0.662 0.654 0.579 0.536 0.546 0.576 0.584 0.555 0.569 0.607 0.631 9.08%

motif-similarity 0.670 0.583 0.624 0.663 0.694 0.627 0.671 0.699 0.581 0.565 0.539 0.630 0.607 0.563 0.562 0.625 0.626 11.88%

OHSU

original 0.610 0.595 0.610 0.667 0.547 0.489 0.549 0.581 0.557 0.577 0.585 0.567 0.557 0.541 0.544 0.557 0.543 –
random 0.663 0.635 0.644 0.687 0.575 0.494 0.582 0.641 0.557 0.620 0.602 0.645 0.564 0.595 0.625 0.610 0.600 6.87%

motif-similarity 0.656 0.640 0.636 0.707 0.638 0.501 0.587 0.638 0.557 0.625 0.633 0.650 0.572 0.605 0.625 0.652 0.604 8.83%

Figure 2: Visualization of training data distribution and de-
cision boundaries of graph classifiers on MUTAG dataset.

of classifiers. Moreover, the decision regions of the non-dominant
class are fragmented and scattered in the original models. During
model evolution, scattered regions tend to merge, and the original
decision boundaries are optimized to smoother ones.

In summary, graph augmentation can efficiently increase the
data scale, indicating its ability in enriching data distribution. And
the entire M-Evolve framework is capable of optimizing the deci-
sion boundaries of the classifiers and ultimately improving their
generalization performances.

4 CONCLUSION
In this paper, we introduce a concept of graph augmentation in
graph structured data and present two heuristic algorithms to gen-
erate weakly labeled data for small-scale benchmark datasets via

heuristic transformation of graph structure. Furthermore, we pro-
pose a generic model evolution framework that combines graph
augmentation, data filtration and model retraining to optimize pre-
trained graph classifiers. Experiments conducted on six benchmark
datasets demonstrate that our proposed framework behaves surpris-
ingly well and helps existing graph classification models alleviate
over-fitting when training on small-scale benchmark datasets and
achieve significant improvement of classification performance.
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