
Personalized Bundle Recommendation in Online Games
Qilin Deng

Fuxi AI Lab, NetEase Games
Hangzhou, Zhejiang, China
dengqilin@corp.netease.com

Kai Wang
Fuxi AI Lab, NetEase Games
Hangzhou, Zhejiang, China

wangkai02@corp.netease.com

Minghao Zhao
Fuxi AI Lab, NetEase Games
Hangzhou, Zhejiang, China

zhaominghao@corp.netease.com

Zhene Zou
Fuxi AI Lab, NetEase Games
Hangzhou, Zhejiang, China
zouzhene@corp.netease.com

Runze Wu
Fuxi AI Lab, NetEase Games
Hangzhou, Zhejiang, China
wurunze1@corp.netease.com

Jianrong Tao
Fuxi AI Lab, NetEase Games
Hangzhou, Zhejiang, China

hztaojianrong@corp.netease.com

Changjie Fan
Fuxi AI Lab, NetEase Games
Hangzhou, Zhejiang, China

fanchangjie@corp.netease.com

Liang Chen
Sun Yat-Sen University

Guangzhou, Guangdong, China
chenliang6@mail.sysu.edu.cn

ABSTRACT
In business domains, bundling is one of the most important market-
ing strategies to conduct product promotions, which is commonly
used in online e-commerce and offline retailers. Existing recom-
mender systems mostly focus on recommending individual items
that users may be interested in. In this paper, we target at a practical
but less explored recommendation problem named bundle recom-
mendation, which aims to offer a combination of items to users. To
tackle this specific recommendation problem in the context of the
virtual mall in online games, we formalize it as a link prediction
problem on a user-item-bundle tripartite graph constructed from
the historical interactions, and solve it with a neural network model
that can learn directly on the graph-structure data. Extensive ex-
periments on three public datasets and one industrial game dataset
demonstrate the effectiveness of the proposed method. Further, the
bundle recommendation model has been deployed in production for
more than one year in a popular online game developed by Netease
Games, and the launch of the model yields more than 60% improve-
ment on conversion rate of bundles, and a relative improvement of
more than 15% on gross merchandise volume (GMV).

CCS CONCEPTS
• Information systems → Learning to rank; Recommender
systems.

KEYWORDS
recommender system; bundle recommendation; neural networks;
deep learning; graph neural networks; link prediction

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’20, October 19–23, 2020, Virtual Event, Ireland
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6859-9/20/10. . . $15.00
https://doi.org/10.1145/3340531.3412734

ACM Reference Format:
Qilin Deng, Kai Wang, Minghao Zhao, Zhene Zou, Runze Wu, Jianrong Tao,
Changjie Fan, and Liang Chen. 2020. Personalized Bundle Recommendation
in Online Games. In Proceedings of the 29th ACM International Conference
on Information and Knowledge Management (CIKM ’20), October 19–23, 2020,
Virtual Event, Ireland. ACM, New York, NY, USA, 8 pages. https://doi.org/
10.1145/3340531.3412734

1 INTRODUCTION
Recommender system, which is an effective tool to alleviate the
information overload, is widely used in modern e-commerce web-
sites and online service business, e.g., Amazon, Taobao, Netflix. The
basic goal of a recommender system is to find potentially interest-
ing items for a user. Existing recommender systems mostly focus
on recommending individual items to users, such as the extensive
efforts on collaborative filtering that directly models the interaction
between users and items.

Discounted price

Included three items

Figure 1: The Bundle GUI in the Game Love is Justice.

In addition to consuming items individually, bundles are also
ubiquitous in real-world scenarios. A bundle is a collection of items
(products or services) consumed as a whole, and it usually reflects
the frequent items which are appealing to most customers. In tra-
ditional business domains, e.g., supermarkets and offline retailers,
it often takes bundling as a critical marketing strategy to attract
customers and increase sales revenue. Moreover, the combination of
items are especially ubiquitous on online service platforms, e.g., the

ar
X

iv
:2

10
4.

05
30

7v
1

 [
cs

.I
R

]
 1

2
A

pr
 2

02
1

https://doi.org/10.1145/3340531.3412734
https://doi.org/10.1145/3340531.3412734
https://doi.org/10.1145/3340531.3412734

music playlist on Spotify, the book lists on GoodReads, the boards
of pins on Pinterest, and the game bundles on Steam.

In Figure 1, we show the bundle recommendation scenario in the
online game Love is Justice1, a popular mobile game developed by
Netease Games2, where users could impersonate specific roles and
experience beautiful antique scenes and romantic plots, and their
purchase and behavior data are extensively tracked by the game
server. Here, we give some brief introductions to the Graphical
User Interface (GUI) involved in this study. Once the user enters
the homepage of the game interface (shown in the figure), the
system will occasionally pop up a personalized discount bundle to
attract the user, or the user himself can check the discount bundle
when he wants. In addition, the items included in the bundle can
also be purchased separately, although they are not discounted.
According to our analysis of purchase statistics, more than 65% of
game revenue comes from these discounted bundles, which also
shows that it is profitable to increase the conversion rate of these
personalized bundles.

In this paper, we address the problem of bundle recommendation
in the context of online games, which aims to provide game players
with the pre-defined bundles (combination of items) they are most
likely to be interested in. Intuitively, this particular recommendation
problem can be solved by treating bundles as "items" and then
using traditional recommendation algorithms such as collaborative
filtering. However, such straightforward solutions do not work well
to capture user preference over bundles due to the following three
difficulties:

• Data sparsity and cold-start. Compared with user-item in-
teractions, user-bundle interactions are usually more sparse
due to the exponential combination characteristics of bun-
dles and limited exposure resources. And only if the user is
satisfied with the item combination or the discounted price
is attractive, the user will have a strong willingness to buy
the bundles rather than individual items, which makes the
user-bundle interaction data appear more sparse.

• Generalization over bundles. Previous item recommenda-
tion algorithms may rely on item-level content features (e.g.,
category and brand in e-commerce), and user-item collabora-
tive relationships. However, there is usually no informative
bundle-level content features in the bundle recommendation
scenario. This makes it difficult to provide the model’s gen-
eralization ability in bundle preference prediction through a
content-based model.

• Correlation within the bundles. The items within the
bundle are usually highly correlated and compatible. Com-
pared to typical item recommendation, the bundle recom-
mendation problem is more complex considering that the
user-bundle preference is a nontrivial combination of user-
item preference. And directly modeling the interaction effect
between items remains largely unexplored in the field of
recommender systems.

Building on recent progress in deep learning on graph-structured
data, we introduce a learning framework based on differentiable
message passing on the user-item-bundle tripartite interaction

1https://yujian.163.com/
2http://game.163.com/

𝒖𝟏 𝒖𝟐 𝒖𝟑

𝒃𝟏 𝒃𝟐 𝒃𝟑 𝒃𝟒

Figure 2: A toy example of a user-bundle bipartite graph
with edges representing observed user-bundle interactions.
The red arrow lines denote message passing paths.

graph constructed from historical data, and formalize the bundle
recommendation problem as the link prediction problem in the tri-
partite graph. To alleviate the sparsity of user interactions on bun-
dles, we integrate user-items interactions that provide additional
information on user interests. To account for the compositional
similarity between bundles, we derive the bundle representation
by aggregating the item representations, which provides a natural
good generalization ability over different bundles. We also model
the correlation between bundle items in the form of learnable trans-
formation parameters. Finally, we unify these improvements in
our proposed framework named BundleNet, and the multi-layer
message passing structure can capture the high-order and multi-
path interactions over the user-item-bundle tripartite graph. As
shown in Figure 2, bundle 𝑏3 can reach user 𝑢1 through the path
𝑏3 → 𝑢2 → 𝑏1 → 𝑢1, and similar for bundle 𝑏4. Moreover, com-
pared with 𝑏3, 𝑏4 is a more reliable recommendation for 𝑢1, since
intuitively there is only one path existing between 𝑢1 and 𝑏3, while
two paths connecting 𝑢1 to 𝑏4. Overall, the main contributions of
this paper are summarized as follows:

• We explore the promising yet challenging problem of bundle
recommendation in the context of online games, and provide
a practical case for the application of deep learning methods
in the industry.

• We employ a differentiable message passing framework to
effectively capture the user preferences for bundles, which
can incorporate the intermediate role of items between users
and bundles on the user-item-bundle tripartite graph.

• Extensive offline experiments on both in-game and other real-
world datasets are conducted to verify the effectiveness of the
proposed model. Further, we deploy the whole framework
online and demonstrate its effective performance through
online A/B Testing.

2 PROBLEM DEFINITION
Suppose we have users U = {𝑢𝑖 |𝑖 = 1, 2, ..., 𝑁𝑢 }, items I = {𝑖 𝑗 | 𝑗 =
1, 2, ..., 𝑁𝑖 }, and bundles B = {𝑏𝑘 |𝑘 = 1, 2, ..., 𝑁𝑏 }, where the size
of these sets is |U| = 𝑁𝑢 , |I | = 𝑁𝑖 , |B| = 𝑁𝑏 respectively, and
𝑁 = 𝑁𝑢 + 𝑁𝑖 + 𝑁𝑏 . We also have the following three interaction
graphs:

• User-Bundle Interaction. A user can have an interaction
(e.g., click, purchase) on an bundle, which is represented as

user
bundle
item

𝑢3

𝑢2

𝑢1 𝑏1

𝑏2

𝑏3

𝑖1 𝑖2 𝑖3 𝑖4

?

Figure 3: Problem Definition on the Tripartite Graph.

a binary variable in the adjacency matrix A𝑢𝑏 of the user-
bundle bipartite graph, i.e., 1 means the existence of the
interaction and 0 otherwise.

• User-Item Interaction. A user can also have an interaction
(e.g., click, purchase) on a item, which is also represented as a
binary variable in the adjacency matrix A𝑢𝑖 of the user-item
bipartite graph, i.e., 1 means the existence of the interaction
and 0 otherwise.

• Bundle-Item Interaction. Each bundle 𝑏 is usually made
up of several items, denoted as 𝑏 = {𝑖1, 𝑖2, , , , 𝑖𝑠 }, where 𝑠
denotes the bundle size (larger than 1), and each item 𝑖𝑖 in
the bundle belongs to the item set I. We consider this con-
tainment relationship between bundles and their constituent
items as the interaction relationship, just like the interaction
between users and items. Similarly, the interaction is repre-
sented as a binary variable in the adjacency matrix A𝑏𝑖 of
the bundle-item bipartite graph, i.e., 1 means the existence
of the interaction and 0 otherwise.

In the three interaction graphs discussed above, we actually
have three bipartite graphs since there are only two types of enti-
ties in each interaction graph. Based on these bipartite graphs, in
this paper, we introduce a user-item-bundle tripartite graph G =

(U,I,B, E), where U denotes user nodes, I denotes item nodes,
B denotes bundle nodes and E is the corresponding link edges be-
tween these nodes, including user-item, user-bundle, bundle-item
interactions, as illustrated in Figure 3.

The benefits that the introduction of item interaction information
can bring us are twofold. On the one hand, a user’s preference for
a bundle could be inferred to a certain extent by his preference for
items within the bundle, i.e., the preference over two bundles that
share some items may be similar. On the other hand, the bundle con-
tains the co-occurrence relationship between items, as items within
a bundle are usually gathered based on a specific theme. If the item
co-occurrence signal within the bundles can be properly utilized,
we may learn a better recommendation model for individual items.
These mutual correlations allow the performance of user-bundle
and user-item recommendations to be mutually reinforced.

Based on the constructed tripartite graphG, we define the bundle
recommendation problem as a link prediction problem on graph
G. Essentially, this problem estimates the likelihood of an edge
between a user node 𝑢 and a bundle node 𝑏 (e.g., the node 𝑢2 and
the node 𝑏2 in Figure 3), which represents how likely the user will
be interested in the bundle. Formally, given the interaction graph

G, we propose a neural recommendation optimization model to
learn an approximation function map 𝑓 as follows:

𝑝 = 𝑓 (𝑢,𝑏 |G;𝜃) (1)
Here, 𝜃 is the parameters of the neural model to be learned and

𝑝 is the predicted likelihood that the user 𝑢 matches the bundle 𝑏,
which will be specified in the following subsections.

3 METHODOLOGY
We give the formal definition of the bundle recommendation prob-
lem above, in this section, we introduce the various components of
the proposed model BundleNet in detail. The overall model frame-
work is shown in Figure 4.

3.1 Embedding Layer
Following existing research work [4, 6, 18], for a tripartite graph
G = (U,I,B, E), we define e𝑢 ∈ R𝑑 , e𝑖 ∈ R𝑑 and e𝑏 ∈ R𝑑 as the
embedding vectors of user node 𝑢, item node 𝑖 and bundle node 𝑏
respectively, where 𝑑 is the embedding size. It can be expressed as:

e𝑢 = EMBED (𝑢) , e𝑖 = EMBED (𝑖) , e𝑏 = EMBED (𝑏) (2)

Suppose we denote the one-hot feature vector for user 𝑢 as
𝑥𝑢 ∈ R𝑁 , denote the embedding matrix of users as E𝑢 ∈ R𝑁×𝑑 ,
then we can obtain the user embedding vector of 𝑢 by 𝑒𝑢 = E𝑇𝑢𝑥𝑢 .
Likewise, we can get the embedding representation of item nodes
e𝑢 , bundle nodes e𝑏 , which is omitted here. We stack these node
embeddings as the input representation for subsequent modules:

E = [E𝑢 , E𝑖 , E𝑏] (3)

3.2 Graph Propagation Layer
Inspired by recent convolutional neural networks that operate
directly on graph-structured data, we use Graph Convolutional
Networks (GCNs) [9] to process the tripartite graph data. GCN
generalizes convolutions to graphs, which can naturally integrate
both node attributes and topological structure in graphs, have
been proved to be effective in representation learning for graph-
structured data. Its propagation rule can be formulated as Z =

𝑓 (X,A), where X denotes node feature matrix (node embedding
in this work), A denotes adjacency matrix of the underlying graph
structure, and Z denotes the encoded node representation. The
single-layer propagation rule is:

Z = 𝑓 (X,A) = 𝜎 (ÂXW) (4)
Here, Â = D̃−1/2ÃD̃−1/2, with Ã = A + I and 𝐷̃𝑖𝑖 =

∑
𝑗 𝐴̃𝑖 𝑗 , and

Â can be calculated in a pre-processing step to speed up the model
training. The 𝜎 denotes an element-wise activation function such
as the ReLU(·) =𝑚𝑎𝑥 (0, ·). In our case, the adjacency matrix of the
user-item-bundle tripartite graph is constructed as follows:

A =


0 A𝑢𝑖 A𝑢𝑏

A𝑇
𝑢𝑖

0 A𝑇
𝑏𝑖

A𝑇
𝑢𝑏

A𝑏𝑖 0

 (5)

where A𝑢𝑖 , A𝑢𝑏 and A𝑏𝑖 denote the adjacency matrices of user-
item, user-bundle and bundle-item interaction graph, respectively.

aggregator

?

?

Embedding Layer Graph Convolution Layer Link Prediction Layer

user bundle item

bundle

user

item

Figure 4: An illustration of the overall model framework of BundleNet.

Note that the elements on the main diagonal are all 0, since there is
no self-loop connection edge. We can stack several layers to learn
better hidden representations (high-order interactions) for graph
nodes, with the following layer-wise propagation rule:

H𝑙+1 = 𝜎 (ÂH𝑙W𝑙) (6)
where, H𝑙 denotes input represeatation of graph nodes in the

𝑙𝑡ℎ layer, H0 = E is the embedding matrix given by formula 3,W𝑙

denotes a layer-specific trainable weight matrix, Â is defined as
above, 𝜎 denotes an element-wise activation function such as the
ReLU(·) =𝑚𝑎𝑥 (0, ·) and H𝑙+1 is the output representation matrix
in the (𝑙 + 1)𝑡ℎ layer.

The standard GCN model is widely used in homogeneous graph,
however, the tripartite graph G is actually a heterogeneous graph
containing multiple types of nodes (user, item and bundle nodes)
and multiple types of edges (user-item, user-bundle, bundle-item
edges). Inspired by the Relational Graph Convolutional Network
(R-GCN) model [16], we take the heterogeneous properties into
account for our problem, and extends the GCN model to relational
graphs, which could be considered as directed and labeled hetero-
geneous graphs. In our user-item-bundle tripartite graph setting,
we consider three kinds of relations, i.e., the user-item interaction
relation, the user-bundle interaction relation, and the bundle-item
interaction relation, which consists of six relational edge3. The prop-
agation rule for calculating the forward-pass update of an node 𝑖
in a relational graph is as follows:

h𝑙+1𝑖 = 𝜎
©­«W𝑙h𝑙𝑖 +

∑︁
𝑟 ∈R

∑︁
𝑗 ∈N𝑟

𝑖

1
𝑐𝑖,𝑟

W𝑙
𝑟h

𝑙
𝑗

ª®¬ (7)

where N𝑟
𝑖
denotes the set of neighbor indices of node 𝑖 under

relation 𝑟 ∈ R, W𝑙 ∈ R𝑑0×𝑑 denotes a trainable weight matrix.
𝑐𝑖,𝑟 is a problem-specific normalization constant that can either be
learned or chosen in advance (we use 𝑐𝑖,𝑟 = |N𝑟

𝑖
| in this work).

3.3 Link Prediction Layer
After the iterative diffusion process propagated with 𝐿 layers, we
obtain multiple representations for user node𝑢, namely {h1𝑢 , ..., h𝐿𝑢 }.
3R contains relations both in canonical direction (e.g. user->item) and in inverse
direction (e.g. item->user).

The hidden representations obtained in different layers emphasize
the messages passed over different connections or search depth in
the graph, which makes them have different contributions in reflect-
ing user preference. As such, we concatenate them to constitute the
final user representations. Likewise, we can obtain the bundle and
item representations by concatenating the bundle and item node
representations {h1

𝑏
, ..., h𝐿

𝑏
}, {h1

𝑖
, ..., h𝐿

𝑖
} learned by different layers.

h𝑢 = h1𝑢 | | · · · | |h𝐿𝑢 , h𝑖 = h1𝑖 | | · · · | |h
𝐿
𝑖 , h𝑏 = h1

𝑏
| | · · · | |h𝐿

𝑏
(8)

where | | is the concatenation operation. In our experiments, we
set 𝐿 = 2 since we found that stacking more than two convolutional
layers did not improve performance.

The introduction of item information as a bridge role can make
the model have a richer representation ability, which can be verified
from the following experiments. Here, we simultaneously model
user preferences for items and bundles, expecting their prediction
performance to be mutually reinforced. Thus, with the final repre-
sentations of users, items and bundles, we concatenate the latent
vector representations of user 𝑢 and item 𝑖 as h𝑢 | |h𝑖 , and feed them
into a two-layer fully connected network (multilayer perceptron,
MLP) to predict the preference 𝑝𝑢𝑖 of user 𝑢 to item 𝑖 , and feed
h𝑢 | |h𝑏 into another two-layer MLP to predict the preference 𝑝𝑢𝑏
of user 𝑢 to bundle 𝑏.

𝑝𝑢𝑖 = sigmoid
(
W2

𝑖 ReLU
(
W1

𝑖 [h𝑢 | |h𝑖] + b1𝑖
)
+ b2𝑖

)
(9)

𝑝𝑢𝑏 = sigmoid
(
W2

𝑏
ReLU

(
W1

𝑏
[h𝑢 | |h𝑏] + b1

𝑏

)
+ b2

𝑏

)
(10)

whereW1
𝑖
,W1

𝑏
∈ R𝑑1×2𝑑0 andW2

𝑖
,W2

𝑏
∈ R𝑑2×𝑑1 are correspond-

ing weight matrices, b1
𝑖
, b1

𝑏
∈ R𝑑1 and b2

𝑖
, b2

𝑏
∈ R𝑑2 are correspond-

ing bias, respectively.

3.4 Model Training
3.4.1 Loss Function. To train our BundleNet model, we adopt the
Bayesian Personalized Ranking (BPR) [14] loss function. As a pair-
wise learning framework, BPR is an very pervasive personalized
ranking criterion used in recommender systems and information
retrieval community. It is based on the triplets data {𝑢, 𝑝, 𝑛}, and

the semantics is that user 𝑢 is assumed to prefer positive item 𝑝

over negative item 𝑛:

𝐿𝐵𝑃𝑅 (𝑢, 𝑝, 𝑛) = − ln𝜎 (𝑝𝑢𝑝 − 𝑝𝑢𝑛) + 𝜆 | |Θ| |22 (11)
where Θ denotes model parameters. 𝐿2 regularization is applied

to prevent overfitting and 𝜆 controls the regularization strength.

3.4.2 Multi-Task Learning. By enforcing a common intermediate
representation, Multi-Task Learning (MTL) can lead to better gen-
eralization and benefit all of the tasks, if the different problems
are sufficiently related. This is obviously applicable in our scenario
whenwe consider the user’s preferences for items and bundles at the
same time. In our multi-task learning framework, we construct two
kinds of triplets, i.e., user-item triplets {𝑢, 𝑖+, 𝑖−} and user-bundle
triplets {𝑢,𝑏+, 𝑏−}, corresponding to two loss functions:

𝐿1 = 𝐿𝐵𝑃𝑅 (𝑢, 𝑖+, 𝑖−), 𝐿2 = 𝐿𝐵𝑃𝑅 (𝑢,𝑏+, 𝑏−) (12)
For triplets {𝑢, 𝑖+, 𝑖−}, we first sample a user 𝑢, then sample the

positive item 𝑖+ from the bundles which 𝑢 have interaction history
with, and a paired negative item 𝑖− from the rest of items. The simi-
lar process is performed for triplets {𝑢,𝑏+, 𝑏−}. In the experiments,
we first use user-item interaction to minimize 𝐿1 for pre-training,
and then continue training with the bundle information to mini-
mize 𝐿2 until convergence. An alternative strategy is to execute
two gradient steps in turn to minimize 𝐿1 and 𝐿2 [3].

3.4.3 Label Leakage Issue. We notice that the usual GCN-like
model has a label leakage issue when it is used to solve the link pre-
diction problem, which is also noted by [19]. Specifically, according
to the design principle of the GCN, each node aggregate all neigh-
bor information to update its self-representation. As shown in Fig-
ure 5(a), for example, when we want to predict an edge 𝑒 = (𝑢1, 𝑏2),
we have to learn the representation of both node 𝑢1 and 𝑏2. How-
ever, as the neighbor of 𝑢1, we will aggregate the information of 𝑏2
(along with 𝑏1 and 𝑏3) when we update the representation of node
𝑢1. Similarly, when we update the representation of node𝑏2, we will
also use the information of 𝑢1. This means that the model actually
tries to learn such a mapping 𝑓𝜃 (𝑒, · · ·) = 𝑒 , leading to the label
leakage issue, although it is a bit implicit in the GCN framework.
The reason for this issue is that, when applied to link prediction
problem, the usual GCN training method involves all elements of
the entire graph to participate in training simultaneously (predict
all existing edges in the graph, including 𝑒 of course).

To avoid the label leakage issue, we need to make sure that the
edge information (e.g., 𝑒 = (𝑢1, 𝑏2)) is not used when predicting
the edge itself. Although the dropout technology can alleviate this,
however, it does not essentially address the problem. Inspired by
the training strategy in [19], we adapt the usual (vanilla) full-batch
training method of GCN to themini-batch setting in the context
of link prediction, following a sampling-deleting-predict strategy.
Instead of using all edges, at each training iteration step, we pro-
ceed as follows: first, we sample a batch of edges from the training
graph (denoted as the red lines in the Figure 5(b)), then we delete
these sampled edges from the graph to ensure that they will not
participate in the neighborhood aggregation operation during the
training process. Finally, we perform the usual GCN training proce-
dure on the modified graph, but only to predict those sampled (and

deleted) edges, instead of all of the edges in the graph. With the
mini-batch training method, we observe a substantial boost in link
prediction performance, which can be observed in the compared
results in following experiments.

2020/8/19 abc 18

𝒃𝟏 𝒃𝟐 𝒃𝟑

𝒖𝟐𝒖𝟏

𝒃𝟒

𝒖𝟑

Full-batch training

𝒃𝟏 𝒃𝟐 𝒃𝟑

𝒖𝟐𝒖𝟏

𝒃𝟒

𝒖𝟑

Mini-batch training

(a) Neighbor Aggregate in GCN.

2020/8/19 abc 18

𝒃𝟏 𝒃𝟐 𝒃𝟑

𝒖𝟐𝒖𝟏

𝒃𝟒

𝒖𝟑

Full-batch training

𝒃𝟏 𝒃𝟐 𝒃𝟑

𝒖𝟐𝒖𝟏

𝒃𝟒

𝒖𝟑

Mini-batch training

(b) Mini-batch Setting for GCN.

Figure 5: The Label Leakage Issue for Link Prediction.

3.5 Model Inference
After the training is completed, in the inference stage, the test user
id 𝑢, the bundle id 𝑏 and all item ids {𝑖 |𝑖 ∈ 𝑏} within the bundle
are fed into the model. Then, we can obtain the user’s preference
prediction for the bundle 𝑝𝑢𝑏 and for the included items {𝑝𝑢𝑖 |𝑖 ∈ 𝑏}.
The final prediction of user’s preference for the bundle is:

𝑝 = 𝑝𝑢𝑏 + 1
|𝑏 |

∑︁
𝑖∈𝑏

𝑝𝑢𝑖 (13)

For a newly released bundle, we could set 𝑝𝑢𝑏 to 0, and get the
final preference prediction of the bundle just based on the user’s
prediction of the item, alleviating the cold start problem.

4 EXPERIMENTS
4.1 Datasets
we evaluate all the models on three public datasets and one indus-
trial dataset. The Steam dataset is collected from the Steam4 video
game distribution platform by [12], where each bundle consists of
several video games. The NetEase dataset, provided by the work
in [2], is crawled from the Netease Cloud Music5, which enables
users to construct the bundle (a list of songs) with a specific theme.
The Youshu dataset introduced by [3] is constructed by crawling
data from a book review site Youshu6, where each bundle is a list
of books constructed by website users. Finally, the Justice dataset is
collected from the mobile game Love is Justice developed by Netease
Games, where bundles are made up of props (virtual items) in the
game. The statistics of datasets are briefly shown in Table 1.

4.2 Baselines
• BPR [14]: This model is the basic pairwise ranking algorithm
based on implicit feedback. We learn a BPR baseline model
by user-bundle interactions, and optimize the BPR ranking
loss under the matrix factorization framework.

• BundleBPR [17]: This is a bundle BPR model which makes
use of the parameters learned through the item BPR.

4https://store.steampowered.com/
5https://music.163.com/
6https://www.yousuu.com/

Table 1: Summary Statistics of the Datasets

Datasets # users # bundles # items # user-bundle (density) # user-item (density) # bundle-item (density)

Steam 29,634 615 2,819 87,565 (0.48%) 902,967 (1.08%) 3,541 (0.20%)
Youshu 8,039 4,771 32,770 51,377 (0.13%) 138,515 (0.05%) 176,667 (0.11%)
NetEase 18,528 22,864 123,628 302,303 (0.07%) 1,128,065 (0.05%) 1,778,838 (0.06%)
Justice 25,470 234 278 117,873 (1.98%) 379,384 (5.36%) 483 (0.74%)

• DAM [3]: This model is specially designed for the bundle
recommendation, which jointly models user-bundle interac-
tions and user-item interactions in a multi-task manner.

• GCN-Bi [9]: The GCN model learned on the user-bundle
bipartite graph with usual full-batch training method.

• GCN-Bi-B [9]: The GCN-Bi model with our mini-batch
training method introduced in section 3.4.3.

• GCN-Tri: The adaptedGCN learned on our user-item-bundle
tripartite graph with usual full-batch training method.

• GCN-Tri-B: The GCN-Tri mdoel with our mini-batch train-
ing method introduced in section 3.4.3.

• BundleNet: The adapted Relational GCN model learned on
the user-item-bundle tripartite graph.

• BundleNet-B: The BundleNet model with our mini-batch
training method introduced in section 3.4.3.

4.3 Metrics
We adopt the leave-one-out evaluation in our experiments, which
has been widely used in the literature [6, 14]. For each user, we
randomly hold-out one of her bundle interactions for testing and
the remaining data for training. Since it is too time-consuming to
rank all bundles for all users during the evaluation, we followed
the common strategy [6] that randomly samples 99 bundles that
are not interacted by the user as negative samples, ranking the test
bundle among the 99 bundles. To evaluate the recommendation
performance of bundle models, we use several widely adopted
ranking metrics in information retrieval: Recall, Mean Reciprocal
Rank (MRR) and Normalized Discounted Cumulative Gain (NDCG).
Specifically, the Recall@𝐾 measures the number of positive bundles
presenting within the top-𝐾 recommendation list. The MRR@𝐾
considers the rank position of the first positive bundle for the user
within the top-𝐾 recommendation list. And the NDCG@𝐾 accounts
for the position of the positive bundles by additionally considering
the discount factor at lower ranks.

4.4 Implementation
All models were implemented in PyTorch7 with the Adam optimizer
[8]. We also employ early stopping and dropout techniques to pre-
vent over-fitting. The embedding size 𝑑 is fixed to 32 for all models.
The hidden sizes 𝑑0, 𝑑1, 𝑑2 are set to 64, 256, 128 respectively. The
batch size for edge sampling is fixed to 1024. We apply grid search
for tuning the hyper-parameters of the models: the learning rate
is tuned amongst {0.0001, 0.0005, 0.001, 0.005, 0.01}, the coefficient
of 𝐿2 regularization is searched in {10−5, 10−4, ..., 1, 101}, and the
dropout ratio in {0.0, 0.1, ..., 0.5}. The set of possible hyper-parameter

7https://pytorch.org/

values was determined on early validation tests using subsets of
the datasets that we then discarded from our analyses.

4.5 Results and Analysis
We conduct extensive experiments on the datasets with the above
benchmark methods to evaluate our model. We use 80% of the
data as training set to learn model parameters, 10% as validation
data to tune hyper-parameters and the rest 10% as test set for final
performance comparison. We repeat this procedure 10 times and
report the average ranking values, which is summarized and shown
in Table 2. We can find that our proposed method outperforms the
baselinemethods significantly in all datasets. From the experimental
result, we also have several interesting findings listed as follows:

• The models of utilizing user-item interactions always outper-
form themodels of not using this information, e.g., BundleBPR
is better than traditional BPR and GCN-Tri is better than
GCN-Bi. This result is obviously in line with our expecta-
tions and verifies the effectiveness of introducing item inter-
action in the bundle recommendation problem. This shows
that leveraging the items as bridge signal/nodes to learn the
representations of the users and/or bundles can alleviate the
data sparsity problem.

• When considering modeling the bundle recommendation as
a link prediction problem, models with mini-batch training
method introduced in section 3.4.3 always outperform the
models without using this information, e.g., the GCN-Bi-B
and BundleNet-B is better than GCN-Bi and BundleNet, re-
spectively. We think the phenomenon is caused by the label
leakage issue introduced above, and can be effectively allevi-
ated through the mini-batch training trick. We believe that
such comparison results bring us some useful inspirations,
when using the GCN-like model for link prediction tasks.

• Our proposed model BundleNet performs better than the
state-of-the-art bundle recommendationmethodDAM, which
proves the effectiveness of modeling bundle recommenda-
tion as the link prediction problem in the user-item-bundle
tripartite graph. Moreover, the BundleNet/BundleNet-B is
slightly superior than theGCN-Tri/GCN-Tri-B formost datasets,
which indicates that the heterogeneous characteristics of the
user, item and bundle nodes and their interactions usually
should not be ignored. However, in theNetEase dataset, it is a
bit worse. We guess that this is related to the characteristics
of the data set, and it is worth further exploration.

4.6 Ablation Study
In addition to the user-item-bundle tripartite graph, there are sev-
eral designs involved in our model: the Relational GCN (REL) to

Table 2: Comparison of Results (for GCN-related models, including our model BundleNet, model names with and without the
-B suffix indicate that the mini-batch training method and the normal full-batch training method is used, respectively).

Steam Youshu NetEase Justice
Recall@5 MRR@5 NDCG@5 Recall@5 MRR@5 NDCG@5 Recall@5 MRR@5 NDCG@5 Recall@5 MRR@5 NDCG@5

BPR 0.9712 0.8002 0.8437 0.5409 0.3781 0.4278 0.3532 0.2086 0.2198 0.6735 0.4707 0.5223
BundleBPR 0.9818 0.8219 0.8594 0.5912 0.3923 0.4408 0.4677 0.2765 0.3342 0.6925 0.5022 0.5482
DAM 0.9792 0.8016 0.8467 0.5996 0.4049 0.4532 0.4109 0.2424 0.2841 0.7117 0.4764 0.5349
GCN-Bi 0.9793 0.8069 0.8508 0.5753 0.3776 0.4267 0.3493 0.2037 0.2397 0.5578 0.3563 0.4061
GCN-Bi-B 0.9794 0.8106 0.8535 0.6001 0.4006 0.4503 0.4275 0.2597 0.3013 0.7427 0.4985 0.5594
GCN-Tri 0.9797 0.8012 0.8465 0.5893 0.3915 0.4408 0.3641 0.2138 0.2509 0.5718 0.3651 0.4172
GCN-Tri-B 0.9788 0.8092 0.8524 0.5924 0.3959 0.4548 0.5252 0.3231 0.3732 0.7618 0.5193 0.5797
BundleNet 0.9788 0.8108 0.8536 0.5927 0.3962 0.4452 0.3579 0.2119 0.2481 0.5754 0.3742 0.4162
BundleNet-B 0.9848 0.8859 0.9112 0.6241 0.4247 0.4668 0.5142 0.3114 0.3616 0.7705 0.5545 0.5807

account for heterogeneous properties of graph nodes, the multi-task
learning (MTL) framework to model user’s preferences for items
and bundles simultaneously, and the mini-batch training (MBT)
method to solve the label leakage issue. To evaluate the effectiveness
of these major designs, we carried out ablation studies as shown in
Figure 6. The result demonstrates that these designs show different
improvements for different datasets. For example, theMBT is cru-
cial for NetEase and Justice, while both REL andMBT is beneficial
to Steam. Meanwhile, Youshu is not very sensitive to these designs,
which means its performance improvement mainly depends on the
basic tripartite graph design.

Steam Youshu NetEase Justice
Datasets

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N
D

C
G

@
5

No REL
No MTL
No MBT
With All

Figure 6: Performance Comparison of Major Designs.

4.7 Online Deployment

Data Module

Model
Training

Historical
Interactions

(User-Item User-Bundle
Bundle-Item)

Saved Models

Model
Evaluation

Recommender
Engine

Training Module

Serving Module

Ranking Results
(Redis)

Game Logs
(Hive/Impala)

preprocessing

Training
Data

Game
Servers

Figure 7: The Overview of Bundle Recommendation Work-
flow.

The proposed recommendation model has been deployed in
production for more than one year in Love is Justice developed by
Netease Games. In this section, we briefly give some implementation
details of the bundle recommendation pipeline in the online game,
as shown in Figure 7.

• Data Module. The data module is responsible for data stor-
age and preprocessing tasks. The historical interaction data
between users and items as well as bundles within a period
of time is used to generate training data.

• Training Module. We train and update our recommendation
model on a daily basis. Since retraining the model from
scratch every time is computationally time-consuming, a
better solution is to use the previously saved model as pre-
training, and fine-tune the model on new data every day,
which leads to faster convergence of model training.

• Serving Module. Once the model is trained and verified, we
predict the preference scores, which are obtained by running
a forward inference pass over the model, of all the bundles
for all users. Then, the personalized bundles are ranked from
the highest scores to the lowest, and the result is stored into
the database for quick retrieval.

Figure 8(a) gives the online performancewithin a period of nearly
three months of the presented approach compared with a heuristic
method in production, which is a combination of handcrafted rec-
ommendation rules. We can find that our proposed method always
outperforms the heuristic method in online A/B testing. According
to our analysis of purchase statistics, the launch of the model yields
more than 60% improvement on conversion rate (CVR) of bundles
on average, and a relative improvement of more than 15% in terms
of gross merchandise volume (GMV).

For an in-depth analysis of the improvement, we calculate the
conversion rate of most representative bundles with different prices
separately. As shown in Figure 8(b) (the specific price values are
properly processed on the scale for privacy considerations), we
can find that the main reason for the improvement lies in the accu-
rate recommendation of high-priced bundles. These bundles often
contain more valuable items that are very attractive to players in-
terested in them. Different from the lower-priced bundles which
usually only contain common items, the high-priced bundles are
highly personalized which leaves room for improvement. We also
noticed that the purchase rate of low-priced bundles is higher than

0 20 40 60 80
Days

0.005

0.010

0.015

0.020

0.025

C
on

ve
rs

io
n

ra
te

Heuristics
BundleNet

(a) Comparison of Conversion Rate (from left to right arranged by date).

0 20 40 60 80
Bundle IDs

0.00

0.05

0.10

0.15

0.20

0.25

C
on

ve
rs

io
n

ra
te

Heuristics
BundleNet
Price

(b) Comparison of Conversion Rate of Bundles with Different Prices (from left to right
arranged in ascending bundle prices).

Figure 8: Online Performance of BundleNet on the Game Love is Justice.

that of middle-priced bundles. We speculate that the types of items
included in these bundles are not much different, but low-priced
bundles are more appealing in price.

5 RELATEDWORK
In the field of recommendation, there have been several efforts to
solve the problem of bundle recommendation. The List Recommen-
dation Model (LIRE) [10] solves the recommendation problem of
user-generated item lists based on a latent factor-based BPR model,
which takes into consideration users’ previous interactions with
both item lists and individual items. Embedding Factorization Model
(EFM) [2] is proposed to jointly model the user-item and user-list
interactions, which combines two types of latent factor models: BPR
[14] and word2vec [11]. Also building upon the BPR model, [12]
trys to recommend existing bundles to users on the basis of their
constituent items, as well as the more difficult task of generating
new bundles that are personalized to a user via the bundle-level
BPR model, which makes use of the parameters learned through the
item-level BPR model. Deep Attentive Multi-Task DAM [3] model de-
signs a factorized attention network to aggregate the embeddings
of items within a bundle to obtain the bundle’s representation,
while jointly model user-bundle interactions and user-item interac-
tions in a multi-task manner to alleviate the scarcity of user-bundle
interactions. Some other related efforts include [1, 5, 7, 13, 15].

6 CONCLUSION AND FUTUREWORK
In this paper, we target at a practical but less explored recommen-
dation problem named bundle recommendation. Different from the
traditional item recommendation problem, it aims to recommend a
bundle (i.e., a combination of items) rather than the individual item
to the target user. To tackle this specific recommendation problem
instance in the context of the virtual mall in online games, we high-
light the challenges and formalize it as a link prediction problem on
a user-item-bundle tripartite graph, which is constructed from the
historical interactions, and solve it within an end-to-end graph neu-
ral network framework. Extensive offline and online experiments
demonstrate the effectiveness of the presented method.

REFERENCES
[1] Moran Beladev, Lior Rokach, and Bracha Shapira. 2016. Recommender systems

for product bundling. Knowledge-Based Systems 111 (2016), 193–206.
[2] Da Cao, Liqiang Nie, Xiangnan He, Xiaochi Wei, Shunzhi Zhu, and Tat-Seng

Chua. 2017. Embedding factorization models for jointly recommending items and

user generated lists. In Proceedings of the 40th International ACM SIGIR Conference
on Research and Development in Information Retrieval. 585–594.

[3] Liang Chen, Yang Liu, Xiangnan He, Lianli Gao, and Zibin Zheng. 2019. Matching
user with item set: collaborative bundle recommendation with deep attention
network. In Proceedings of the 28th International Joint Conference on Artificial
Intelligence. AAAI Press, 2095–2101.

[4] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
workshop on deep learning for recommender systems. 7–10.

[5] Robert Garfinkel, Ram Gopal, Arvind Tripathi, and Fang Yin. 2006. Design of
a shopbot and recommender system for bundle purchases. Decision Support
Systems 42, 3 (2006), 1974–1986.

[6] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th international
conference on world wide web. 173–182.

[7] Yun He, Jianling Wang, Wei Niu, and James Caverlee. 2019. A Hierarchical Self-
Attentive Model for Recommending User-Generated Item Lists. In Proceedings of
the 28th ACM International Conference on Information and KnowledgeManagement.
1481–1490.

[8] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[9] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In International Conference on Learning Repre-
sentations (ICLR).

[10] Yidan Liu, Min Xie, and Laks VS Lakshmanan. 2014. Recommending user gener-
ated item lists. In Proceedings of the 8th ACM Conference on Recommender systems.
185–192.

[11] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems. 3111–3119.

[12] Apurva Pathak, Kshitiz Gupta, and Julian McAuley. 2017. Generating and person-
alizing bundle recommendations on steam. In Proceedings of the 40th International
ACM SIGIR Conference on Research and Development in Information Retrieval.
1073–1076.

[13] Shuyao Qi, Nikos Mamoulis, Evaggelia Pitoura, and Panayiotis Tsaparas. 2016.
Recommending packages to groups. In 2016 IEEE 16th International Conference
on Data Mining (ICDM). IEEE, 449–458.

[14] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian personalized ranking from implicit feedback. In Proceedings
of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence. 452–461.

[15] Oren Sar Shalom, Noam Koenigstein, Ulrich Paquet, and Hastagiri P Vanchi-
nathan. 2016. Beyond collaborative filtering: The list recommendation problem.
In Proceedings of the 25th international conference on world wide web. 63–72.

[16] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan
Titov, and Max Welling. 2018. Modeling relational data with graph convolutional
networks. In European Semantic Web Conference. Springer, 593–607.

[17] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[18] Le Wu, Peijie Sun, Yanjie Fu, Richang Hong, Xiting Wang, and Meng Wang. 2019.
A neural influence diffusion model for social recommendation. In Proceedings
of the 42nd international ACM SIGIR conference on research and development in
information retrieval. 235–244.

[19] Jiani Zhang, Xingjian Shi, Shenglin Zhao, and Irwin King. 2019. STAR-GCN:
stacked and reconstructed graph convolutional networks for recommender sys-
tems. In Proceedings of the 28th International Joint Conference on Artificial Intelli-
gence. AAAI Press, 4264–4270.

	Abstract
	1 Introduction
	2 Problem Definition
	3 Methodology
	3.1 Embedding Layer
	3.2 Graph Propagation Layer
	3.3 Link Prediction Layer
	3.4 Model Training
	3.5 Model Inference

	4 Experiments
	4.1 Datasets
	4.2 Baselines
	4.3 Metrics
	4.4 Implementation
	4.5 Results and Analysis
	4.6 Ablation Study
	4.7 Online Deployment

	5 Related Work
	6 Conclusion and future work
	References

