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ABSTRACT
Many recommendation systems use users’ attributes to retrieve
documents before ranking. Instead of using all attributes, this work
explores algorithms that choose a subset, in order to achieve higher
precision. We propose a model that forecasts the relevance of docu-
ments matched by each individual attribute. By restricting to top-K
attributes based on the forecast, we observed 50% reduction in la-
tency at 99th percentile on LinkedIn’s job recommendation system,
as well as increased users’ engagements.
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1 INTRODUCTION
Many real-world recommendation systems tackle the scalability
challenge with a two-step paradigm: retrieval and ranking. The
retrieval step, which we also refer to as candidate selection [6, 10],
first fetches a small subset of documents. Down the pipeline, one
or more ranking layers will further scrutinize and recommend the
most relevant ones to the users. This work focuses on improving
candidate selection, which plays a key role in scaling the systems to
millions of queries-per-second (QPS), on millions of documents. An
effective candidate selection algorithm should be able to retrieve
the most relevant documents (high recall), while leaving out the
irrelevant ones (high precision).

One common candidate selection approach is to fetch all doc-
uments with matching attribute. Upon each user’s request, we
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may first extract users’ attributes (e.g. user’s skills in job recom-
mendation, or connections in people recommendation), then fetch
documents matching with these attributes. With the help of a pre-
built index (e.g. Lucene, or key-value stores), the lookup can finish
quickly. However, this mechanism becomes slower and imprecise
as we have ever richer user information. For example, an average
job seeker on LinkedIn has dozens of skills, hundreds of connec-
tions, as well as browsing activities. Fetching with all attributes
can overwhelm the rest of the system with millons of documents,
which results in:

(1) Suboptimial recommendations. Downsteam rankers make
more mistaks when faced with a large number of irrelevant
documents.

(2) Heavy server load. Especially the slowest queries (e.g. the
99th percentile) consume heavy computation resources.

This work studies the issue of choosing a subset of user attributes
for candidate selection. The key intuition is that certain attributes
tend to match more relevant documents. For example, among the
following three skills from a hypothetical machine learning engi-
neer: Python, MS Office and tensorflow, tensorflow is likely to bring
the best matches. In comparison, MS Office and Python will dilute
the results with jobs such as business administrator or frontend
engineer. One challenge in building an algorithm that chooses be-
tween user attributes is not having annotated data. To tackle this,
we propose a machine learning model to infer from user-document
interaction data. We present a family of models that allows us to
quickly forecast the relevance of retrieved jobs for each attribute. In
production, we first use the model to rank all attributes for a given
user, then combine the top-K disjunctively for candidate selection.

This work has the following contributions: (1) To the best of our
knowledge, we present the first study on ranking user attributes for
candidate selection in recommendation systems. (2) We present a
family of models that allows us to quickly forecast the relevance for
retrieved documents matching one user’s attribute. (3) We present
empirical results for proposed models in both offline and online
setups. Our offline analysis compares the proposed model with
tf-idf on a binary classification task, and shows a 4% AUC increase.
Our online experiment on LinkedIn’s job recommendation sys-
tem observes a 50% reduction in latency at 99th percentile, 24.49%
reduction in serving cost, along with 7.6% more job applications.

2 RANKING ATTRIBUTES FOR
RECOMMENDATION RETRIEVAL

We study algorithms that rank users’ attributes. Our candidate
selection algorithm will use the ranking result to pick top user
attributes, in order to write disjunctive queries.
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Formally, suppose a userU hasN attributesAU = {a1,a2, . . . aN }

(e.g. from his/her profile or recent activities). Our candidate selec-
tion algorithmwill pick a subset of attributesA′

U = {ai1 ,ai2 . . . aiK },
by first assigning scores to each attribute, as s(a1 |U ), s(a2 |U ), . . . ,
s(aN |U ), then picking ones that have the highest scores.A′

U is then
used to generate a disjunctive query: ai1 ∪ai2 ∪ . . .∪aiK ; the query
then fetches all documents that match with any attribute among
them. The core component is the scoring function: s . We aim to
find an s that generates queries with both high precision and recall.

To illustrate with an example, suppose a user has the following
four attributes:

• title=machine learning engineer
• industry=information technology
• skill=tensorflow
• skill=Python

Suppose an algorithm assigns highest scores to skill=tensorflow and
title=machine learning engineer, our system will use it to generate
a query that retrieves all jobs that were indexed under them, with
skill=tensorflow ∪ title=machine learning engineer.

Our above definition limits the study to a family of simplistic
yet expressive candidate selection algorithms.

First, we only consider fetching documents using subsets of the
user attributes. Fetching by user attributes can quickly narrow
down the retrieval to a small subset of documents. To guide the
recommendation systems, many users also regularly update their
profiles. However, the rich user information may overly extend the
matching set. For example, on LinkedIn, users often update their job-
related information such as their skills, titles, and company. Among
them, some attributes (e.g. skill=C++ for a product manager) may
mislead the system in retrievingmany irrelevant jobs. By narrowing
down the attribute set, we can improve systems’ precision.

Second, we only consider disjunctive queries. To speed up docu-
ment retrieval, inverted indices pre-organize all documents with
their attributes, into “buckets” [21]. Disjunctive queries during re-
trieval time can be understood as fetching documents from a list of
buckets. Although the full Disjunctive Normal Form1 is supported
by the indices, we restrict our algorithm to only consider union
of atomic matching clauses. This restriction disallows expressing
blacklisting attributes (e.g. NOT seniority=3), or shrinking the scope
(e.g. title=manager AND industry=IT ). However, in practice we can
delegate to the ranking layer for handling the more complex logics.

Third, we focus on algorithms that are backed by a scoring func-
tion on individual attributes. Considering all attributes in isolation
eliminates the need to enumerate their combinations. However,
we also realize that one potential downside is being incapable of
capturing the correlations between attributes, such as skill=machine
learning is repetitive to skill=data mining.

The scoring function is the core of the family of algorithms
under study. We have considered both manual heuristics as well as
machine learning algorithms.

Manually exploring for rule-based heuristics can be overwhelmed
by the large space of possible solutions. To illustrate with an ex-
ample, although title matchings often bring precise matches, there
are many exceptions: postdocs are often not looking for another

1Disjunctive normal are disjunctions of conjunctions, which can express arbitrary
logics https://en.wikipedia.org/wiki/Disjunctive_normal_form.

post-doc position; broad titles such as manager can match a wide
variety of positions such as inventory manager and product man-
ager. Manually fixing the exceptions often quickly leads to a locally
optimal solution, where any precision increase will come at the
price of recall decrease, and vice versa.

This work presents our machine learning approach. Unlike clas-
sical machine learning algorithms, annotated data is unavailable as
gold-standard for index queries. Our work was inspired by the k-
nearest-neighbor (k-NN) retrieval algorithm described in Youtube’s
recommendation system [9]. The idea is to first define a probabilis-
tic function over documents, then leverage the index to quickly
compute the documents with the highest scores. Particularly, their
algorithm learns an embedding for each user/document, so that
closer pairs translates to higher relevance. Fetching the most rele-
vant documents then reduces to a k-NN search in the vector space.
However, the k-NN search index, which is the backbone of the
algorithm, is not directly supported by inverted indices. Inverted
indices instead optimizes for faster attribute-level retrieval.

We present a family of document relevance functions customized
for inverted index (Section 3). The probability functions can still
be trained on the user activity data. We show the functions allow
efficient forecasting for the relevance of documents associated with
each attribute. The resulting model can be viewed as an enhanced
version of tf-idf (term frequency, inverse document frequency 2),
with re-weighed tf’s.

3 FORECASTING ATTRIBUTE
EFFECTIVENESS

Our central idea for scoring attributes is to forecast the relevance
of documents retrieved using one single attribute. We normally
observe two common traits for effective attributes: they are both
trending and specific. For example, if we compare skill=tensorflow
and skill=Python for the machine learning engineer user in Section
2:

(1) The former is more trending, as many people who have
similar background would lean on skill=tensorflow when
looking for jobs.

(2) The former is also more specific, as it will match a smaller
number of jobs in the database.

By combining effective individual attributes, the overall disjunctive
query is also likely to be effective.

Formally, we define an attribute’s individual effectiveness as the
average of matched documents’ relevance.

Document relevance: For any userU , similar with the prob-
lem formulation in [9], we assume a probability function
Pr(d |U ) that measures each document d’s relevance in the
database D. Pr(d |U ) is a distribution function over all docu-
ments, representing an “extreme multi-class classification”
problem. ∑

d ∈D

Pr(d |U ) = 1 (1)

This classifier predicts the next document the user will in-
teract with, by assigning each document a probability. We
may use user’s activities as training data to tune Pr(d |U ).

2https://en.wikipedia.org/wiki/Tf-idf

Applied Research Track CIKM '20, October 19–23, 2020, Virtual Event, Ireland

2870

https://en.wikipedia.org/wiki/Disjunctive_normal_form
https://en.wikipedia.org/wiki/Tf-idf


Attribute relevance: Suppose da is the subset of documents
that match attribute a, we define the relevance of a user’s
attribute R(U ,a)(a ∈ AU ) to be the average relevance match-
ing documents retrieved by a:

R(U ,a) =

∑
d ∈da Pr(d |U )

|da |
(2)

Although theoretically any parameterization of document rele-
vance (Equation 1) leads to a valid attribute effectiveness measure
(Equation 2), the summation is expensive. Summation is especially
impractical during the candidate selection phase, where the system
has not fetched any documents. In the next sections, we constrain
Pr(d |U ) to a family of functions to allow easier aggregations over
attributes (Equation 2). This enables fast forecasting during online
serving.

3.1 Proposed Model Family
Our fundamental idea for eliminating summations is to account for
each attribute’s contribution separately. Intuitively, each document
match can be viewed as a result of multiple attribute matches.
For example, suppose the machine learning engineer mentioned in
Section 2 expresses interest in another machine learning position.
This match can be viewed as a result of several user/doc attribute
matches: including skill=Machine Learning and skill=Python. If we
can separately account for each attribute’s contribution during
offline training, it can help to relieve the computation burden during
online serving.

We introduce a hidden variable aH to capture the role each
attribute plays in a document match (Figure 1). Our generative
model describes a two-step process for finding a relevant document:

(1) Pick an attribute aH among all the user attributes, with
t(a |U ). t(a |U ) is a distribution function across users’ attribute
set AU , capturing users’ preference among attributes.

(2) Among all the documents daH that match aH , randomly pick
one to interact with, with equal probabilities.

This process defines a probability distribution over all documents.
The hidden variable allowed us to breaks down the document

relevance function into a sum of each attribute’s contribution. To
see that, note that the overall document probability is a sum over
all hidden variables’ values:

Pr(d |U ) =
∑

aH ∈AU

Pr(aH ,d |U ) =
∑

aH ∈Ad∩AU

t(aH |U )

|daH |︸    ︷︷    ︸
R̄(U ,aH )

(3)

We use R̄(U ,a) to represent attribute a’s contribution to the
document’s relevance. Because each attribute contributes positively
to a document’s relevance, each R̄(U ,a) can be seen as a lower-
bound for documents da retrieved by a:

Pr(d |U ) =
∑

aH ∈Ad∩AU

R̄(U ,aH ) ≥ R̄(U ,a) (d ∈ da ) (4)

                        …...

skill=Python skill=Tensorflowindustry=IT

0.6 0.3 0.1

(2) Among all matched 
documents daH, 
randomly pick one

(1) Pick attribute aH 
according to t(a|U)

U

aH

d

Figure 1: Generative model for choosing a job for a given
user. Each userU picks one attribute aH ; then among all the
matching docs, the user has equal probability to match each
one. Each document’s probability therefore is a sumover dif-
ferent picking paths (Equation 3). Take the highlighted doc-
ument as an example. Its probability is a sum of two compo-
nents: (1) first picking skill=Python, then picking among the
two documents matched with skill=Python; (2) first picking
Industry=IT, then picking among the six documents matched
with Industry=IT. Therefore, the probability of fetching the
highlighted document is 0.6 × 1

2 + 0.3 × 1
6 .

Therefore R̄(U ,a) is also a lower-bound for a’s attribute relevance
defined in Equation 2:

R(U ,a) =

∑
d ∈da Pr(d |U )

|da |

≥
|da |R̄(U ,a)

|da |
(Equation 4)

= R̄(U ,a) =
t(a |U )

|da |
(5)

We use R̄(U ,a) (in Equation 5) as an approximate for the attribute
relevance, which we use to rank user attributes during retrieval.

3.2 Parameterizations
We may interpret the two sets of parameters t(a |U ) and |da | as
capturing trend and specificity for each attribute, respectively.

• t favors attributes that users tend to choose. For example, the
model can learn users who have both skill=tensorflow and
skill=Python tend to choose the former, from users’ activites.

• 1
|da |

favorsmore specific attributes. For example, skill=tensorflow
may have less count than skill=Python among job postings,
therefore having a higher score.

Between them: |da | can be obtained by simply counting frequencies,
whereas we may parameterize t differently, which we will show in
the following subsections.
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Model Parameters

a skill=ML skill=C++ title=SWE ...

|da| 100 2000 500 ...

f(a) 5 3 3 ...

Online

Skill=C++ U...

softmax

t(a|U)

MLE for 
Pr(d|U)

Offline

Title=SWE

Skill=C++

Model 
parameters file

Sort keywords by

Figure 2: Production setup for attribute scoring.

3.2.1 Equal Preference Scores. In extreme, we may have no param-
eters in t , by assigning constant values. Formally,

t(a |AU ) =

{ 1
|AU |

(a ∈ AU );
0 otherwise.

Ranking attributes with the equation above is equivalent to ranking
with tf-idf, with tf being either 0 or 1 (1 if present among users’
attributes).

The fundamental issue with using tf-idf is that it only con-
siders attributes’ rareness, without considering the job seeking
trend. For example, between two attributes skill=“emacs lisp” and
skill=tensorflow, tf-idf will rank the former higher, because fewer
jobs will require such a skill.

3.2.2 Global Trend Scores. One simple parameterization is to rep-
resent the trend into a static score mapping. For example, if people
who have both tensorflow and “emacs lisp” generally prefers to
look for tensorflow jobs, the mapping can assign a higher score for
tensorflow.

Formally, we define f as a static mapping from attributes to
numerical values; t as a softmax of f :

t(a |U ) ∝ exp f (a) (a ∈ AU ) (6)

Compared with tf-idf, f can compensate for more trending at-
tributes (e.g. raising skill=tensorflow above skill=elisp).

One limitation of the formulation in Equation 6 is not consider-
ing the context’s influence on the preferences. For example, Python
may be more preferred to C++ for data science engineers, but less
preferred for infrastructure engineers. By incorporating more fea-
tures from the users, the scoring has room for improvements. We
leave the exploration as future work.

3.3 Shutterspeed – Our Production Workflow
Overview

Figure 2 shows an overview of our production implementation on
the model described in Section 3.2.2.

During offline training, we use Maximum Likelihood Estimation
(MLE) to tune the model over job application records, with back-
propagation. Formally, we search for optimal parameters Φ with:

arg max
Φ

∑
(U ,d )∈T

log Pr(d |U ;Φ) (7)

Here T is the training data containing users’ apply records where
each record (U ,d) is a userU ’s application to job d ; Pr(d |U ;Φ) is de-
fined by Equation 3 and 6. We use tensorflow [1] with mini-batches
and Adam optimizer [15] to perform this optimization. We chose
neural network software packages over traditional expectation-
maximization (EM), for the ease of use, and potential future work
on more complex t(a |U ) formulations.

The training yields two sets of parameters: frequency mapping
(a → |da |) and global trends (a → f (a)). The parameters are stored
into a dictionary, and uploaded into the online serving compo-
nent. The online serving components will rank user attributes with
Equation 5, and pick top K in generating retrieval queries.

K is an important parameter, which we refer to as shutterspeed.
The name comes from its analogy from photography, that higher
K (similar to longer exposure time) will “expose” more documents.

4 OFFLINE EXPERIMENTS
During offline experiments, we evaluate candidate selection algo-
rithms’ accuracies by comparing retrieval queries with real user
activities.

4.1 Metrics
Note that query generation is fundamentally different from many
ranking/classification tasks, in that it is difficult to establish “gold-
standard”. Ranking tasks are often formulated as binary classifica-
tion tasks. However, query generation’s output is free-form text,
whose grammar is tied to a particular retrieval system (e.g. lucene
retrieval language, v.s. numerical vectors on a k-NN search index).

The idea behind our evaluation mechanism is to treat generated
queries as “mini-classifiers”, and evaluate their accuracies. For ex-
ample, a lucene query “title:software engineer” can be treated as a
classifier that returns positive for all software engineer job postings,
and false for all other jobs. We can compare the output from “mini-
classifiers” with true/false labels in traditional ranking datasets,
and compute precision/recall metrics. Specifically, we evaluate on
a balanced set where we assign:

• Positive labels to users’ positive interactions with the system
(e.g. click/job apply);

• Negative labels to users and randomly sampled jobs that
they have not interacted with (e.g. jobs other people have
applied).

We try to get a holistic view by varying the top K in generating
queries, and compute AUC-ROC, f1 score and precision at 95%
recall. For each K , we generate a disjunctive query using the top
K keywords extracted from the member profile, using our ranking
algorithms. Intuitively, a smaller K will translate to shorter disjunc-
tion queries with lower recall, but higher precision; and vice versa.
By varying K from 1 to +∞, we are able to obtain an ROC (Receiver
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Cardinality Average # per User
Skills 35K 92.08
Titles 25K 3.2
Seniorities 10 0.94
Functions 26 0.99
Industries 147 0.97

Table 1: Distribution of user profile attributes. We aggregate
the statistics based on one day of user’s job application data.
Note that users have more than one title attribute because
they can set preferred titles on our UI.

operating characteristic) curve, as well as gauging statistical sig-
nificance. The aforementioned evaluation metrics are computed
as:

AUC-ROC The area-under-curve for the ROC curve.
f1 score The maximum f1 score by varying K .
precision at 95% recall The precision at the K which obtains

at least 95% recall. We use this metric to forecast the po-
tential precision improvements (e.g. reduced latency) when
sacrificing minimum recall (e.g. job applications).

4.2 Experimental Setup
We compare query rewriters on LinkedIn’s job recommendation
dataset. The dataset contains one day of job applications from
all LinkedIn products (search, recommendation and notifications).
We use 80% of data for model training, 10% for development, and
the remaining 10% for evaluation. The data volume is adequate
for tuning our model parameters, as well as gauging statistical
significance.

We use the following users’ profile fields as the initial attribute
sets.

Skills: a list of skills that (1) users explicitly entered, or was
endorsed (2) implied skills from other skills, e.g. tensorflow
implies mastery of Python (3) inferred skills, e.g. from text
in profile description, job title description [5].

Titles: user’s current primary position’s job title, as well as
the preference title. Preference titles are entered by users via
UI.

Seniorities: We categorize users’ seniority into their careers
into a categorical value from one to ten: one being unpaid,
ten being business owner/partner. The category is inferred
with an in-house classifier.

Functions: A coarse grouping of titles, including broad areas
such as “engineering”, “healthcare” and “sales”.

Industries: the industry of the user’s current company, e.g. IT
industry.

The statistics of the aforementioned attributes are shown in Table
1. Among the attributes, skills and titles are more finer-grained.
On average, each user has 100 attributes we use for retrieving the
candidate sets. The majority of these attributes are skills.

We compare the following methods for picking a subset of user
attributes for job retrieval.

Random: Assign random scores to attributes. Note that even
randomly picking attributes will yield better than random

Ranking Model AUC f1 score Precision at 95% recall
Random 62.89% 67.92% 52.60%
Prioritize title 70.47% 68.67% 52.73%
tf-idf 77.96% 73.50% 54.16%
Shutterspeed 81.86% 76.21% 55.03%
Table 2: Offline evaluation results for various models.

accuracies. This is because each profile attribute carries some
information on distinguishing matching documents.

Prioritize title: Still randomly assign scores to each attribute,
at the same time boosting title’s scores by a large constant
number. We use this as an example of heuristics-based sys-
tems. Titles are preferred attributes, because they often have
a stronger association with career transitions.

tf-idf: Computing the inverse document frequency for each
attribute.

Shutterspeed: The proposed model in Section 3.

4.3 Results
During our offline experiments, we try to answer the following
questions:

(1) Which attribute scoring mechanism can best distinguish
matching documents from non-matching ones?

(2) Does the trend parameter in the proposed model help to
correct tf-idf’s bias?

(3) How does the “shutterspeed” parameter K affect the recom-
mendation results?

The main comparisons are shown in Table 2. We also conducted
anecdotal analysis to compare algorithm outputs for a software
engineer in the Bay area, shown in Table 3 and Figure 3. We make
the following observations.

First, the top-K keywords chosen by the Shutterspeed model can
better distinguish relevant jobs from irrelevant ones.

Second, capturing users’ preferences can affect the ranking for
different keywords (Table 3). The tf-idf measure always prefers
rare skills/titles on the job market. In comparison, the Shutterspeed
model adjusted the ranking based on market trends. For example, it
boosts Title: Senior Software Engineer and Skill: Pattern Recognition,
also suppresses Skill:Graph Theory, Skill: Scala. However, we also
observed that the top-ranked keywords still contain keywords that
may fetch irrelevant jobs. In our case, Skill: Java Enterprise Edition
and Skill: Djangomay retrieve general backend/system development
positions that may misalign with the user’s interest. In future work,
we hypothesize that a more accurate modeling for Pr(a |U ) may
help the model make clearer decisions.

Third, setting the K properly is critical in retrieving what the
users need. In Figure 3, we illustrate the recommendations for each
choice of K . A smaller K limits the diversity of the retrieved jobs,
which in our example, fetches primarily data related engineering
positions. By loosening K , a wider range of documents can be
fetched. This will increase system recall at first (e.g. at K = 40,
the system discovered many top-ranked jobs). However, increasing
K will finally increase the system’s burden, forcing the system to
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tf-idf Shutterspeed
Skill: Graph Theory Title: Staff Software Engineer
Title: Staff Software Engineer Skill: Pattern Recognition
Skill: Information Retrieval Title: Senior Software Engineer
Skill: Algorithm Design Skill: Computer Vision
Skill: Pattern Recognition Skill: Algorithm Design
Title: Machine Learning Engineer Skill: Java Enterprise Edition
Skill: Natural Language Processing (NLP) Skill: Image Processing
Skill: Scala Skill: Django
Skill: Scalability Skill: Natural Language Processing (NLP)
Skill: Chinese Skill: Information Retrieval

Table 3: Top-10 keywords chosen by tf-idf v.s. shutterspeed model

title original k=10 k=40 k=100
Python Platform Engineer 1 1 1 1
Machine Learning Engineer 2 2 2 2
Staff Software Engineer, Data 3 6 6 4
Senior Data Engineer 4 5
Software Engineer - Timelines 5 6
Senior Manager/Director, Software En-
gineering

6 9 7

Senior Software Engineer 7 8
Sr Software Engineer 8 9 10 9
Research Data Scientist 9 10
Software Engineer- HD Maps 10
Senior Machine Learning Engineer 3 3
Machine Learning Engineer 4 4
Backend Engineer 5
Principal Engineer, Machine Learning 7 7
Applied Research Scientist, Natural
Language Processing

8 8

Staff Software Engineer, Backend 10
Senior Principal Software Engineer 5 3

(a) Altering K for a software engineer user.

title original k=10 k=40 k=100
Product Manager, Digital Commerce 1 1
Product Manager - Learning - Relevance 2 3 3 3
Founder, New Product Experimentation 3 6 4
Principal Product Manager - Tech 4 5
Software Engineer - Timelines 5 6
Project Manager - Customer Products 6 7
UX Researcher 7 8
Product Manager - Marketing Technology 8 9
Product Manager, Terminal 9 10
Senior Strategic Growth Manager 10
Product Manager, Outcomes 1 1
Senior Product Manager 2 2 2
Sr Manager, Product Management 4 5
Product Manager 5 7
Senior Growth Product Manager 6 8
Product Manager, WhatsApp 7
Product Manager 8
Product Manager, Credit 9 9
Product Manager - Reinventing 10 10
Founder, New Product Experimentation 4

(b) Altering K for a product manager user.

Figure 3: Differences in recommendations when we alter K . We illustrate the change of recommendations for two users who
are machine learning engineer and product manager, respectively. In the tables, each line represents a job. The last three
columns represent the rankings of recommendations for each choice of K . The numbers in each grid is the ranking of the job
among all the top-10 recommendations for the algorithm variant. In the above examples, lowerK ’s retrieves more focused rec-
ommendations, centered around themember’s current title. LargerK ’s will enrich the recommendations with richer title/skill
choices, however, also at the risk of diluting the results.

early-terminate (e.g. in Figure 3a, at K = 100, the system will lose
the jobs used to rank at 3rd and 4th at K = 40).

5 ONLINE EXPERIMENT
We also experimented with the shutterspeed model in a production
environment, for LinkedIn’s job recommendation system3. Our
hypothesis is that with a more restrictive candidate selection algo-
rithm, we are able to significantly improve the system’s precision,
without sacrificing recall.

We compare shutterspeed with our baseline system which em-
ployed a first pass ranker (Figure 4). Before shutterspeed, our rec-
ommendation system employed a first pass ranker (L1) serving as
a rough filtering layer. The idea behind is by using a simplistic (80
features) logistic regression, we can quickly filter a majority of ir-
relevant documents, therefore reducing server load. By design, the

3http://www.linkedin.com/jobs

classifier will have limited accuracy due to the tight time budget. In
our online experiment, we tried to replace the first pass ranker with
a tighter candidate selection layer. Compared to 1st pass ranker, a
smarter candidate selection algorithm has great advantages over
time budget. This is because query generation is done only once
per query, compared to the ranking algorithm which applies to all
the matching documents per query.

We use two K ’s to retrieve jobs in production, K1 and K2 (with
1 ≤ K1 < K2 ≤ 100), to enable a fallback mechanism. When the
smaller K1 is unable to retrieve enough jobs, we fall back to the
larger K2. At LinkedIn, we implement this mechanism via Flex
queries on Galene (LinkedIn’s in-house adaptation of lucene) [13].
When such functionality is not natively supported by the query
language, we may also consider sending two index queries per
member request. Between K1 andK2:,K2 has more influence on the
overall number of retrieved jobs, whereas K1 further controls the
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Figure 4: During online experiments, we compared the en-
hanced candidate selection layer with the legacy setup,
which used a light-weight ranker for basic filtering. The
legacy setup uses a loose candidate selection algorithm
which fetches jobs that match with two out of three match-
ing criteria: function, title or skills. We then employed a
light-weight logistic regression layer, which we refer to as
L1, to filter jobs that have a lower matching confidence. The
new setup enhanced the candidate selection layer with Shut-
terspeed, and also dropped the L1 layer. The candidate selec-
tion layer first tried to fetch documents with top 20 clauses
according to shutterspeed; it will back off to fetching with a
wider range (K = 50) if the number of matched documents
is below a threshold.

relevance of the jobs. To ensure fair comparison, we first binary-
search for K2 that retrieves the same average number of jobs with
control. With the fixed K2, we grid-search for K1 that maximizes
the ranking scores for the retrieved jobs.

We compared business metrics corresponding to precision and
recall. We conduct the comparison using our in-house A/B test-
ing framework, which randomly partitions the population into
“buckets”, and compares statistics between them. We particularly
consider the following metrics

Job applies. The total number of apply clicks divided by pop-
ulation size for each treatment. We consider this as a recall
metric, for measuring how many good jobs the system is
capable of discovering. This is also one of the key business
metrics for measuring system performance.

Latency. The average response time for each query. We con-
sider this as a precision metric, ranging from 0 (high pre-
cision) to ∞ (low precision). The majority of the system
computation time is spent on ranking every fetched job. A
smaller set of retrieval results often implies reduced com-
putation time, as well as higher precision. Latency is a key
measure for the system’s scalability. We further divide the
metrics into the following categories
p50, p90, p95, p99. We distinguish latency across different

quantiles to further understand the impact to system per-
formance. In practice, the slowest queries often have the
biggest impact on system performance, (e.g. causing garbage
collection to occur, or consuming system bandwidth).

Serving cost. We compute the overall average CPU time for
each query as a measure for serving cost. This metric often

Onsite Job Applies +7.66%
Latency
p50 -1.78%
p90 -34.72%
p95 -39.2%
p99 -38.42%
Serving Cost -24.49%

Table 4: Online ramping results

serves as a reference on how much parallel computation
resources are needed.

The A/B test was conducted between 20% and 20% of users for two
weeks4.

The experimental results are shown in Table 4. We observed a
large lift in both recall and precision metrics. The model is able to
discover jobs that the baseline system did not have time to rank. On
the other hand, the system becomes much faster, because our key-
word set reduces the number of retrieved documents significantly.
The effect is especially evident for the slowest (e.g. p99) queries.
This contributes to a significant reduction in overall serving cost.
At the time of this writeup, the proposed model had been serving
all job recommendation requests for one year.

6 RELATEDWORK
Many studies on recommendation systems focus on ranking, i.e.
determining which document is more relevant given a pool of docu-
ments. Ranking is one fundamental challenge for recommendation
systems. Theoretically, one ranker is able to power an entire recom-
mendation system, by scanning through all documents, and picking
the most relevant ones per user request. Many different models
were studied, including both linear models [20] and neural network
based models [8, 12, 19].

Today, commercial recommendation systems operate at a large
scale: serving millions of documents to millions of people. Scala-
bility becomes another challenge. Many recent work studies how
to quickly fetch an initial subset of documents before the finer-
grained ranking. One common way is to rely on an index structure.
A nightly job can pre-organize all the documents into the index, so
that the online serving becomes faster. The type of index structure
determines what optimizations are possible on top of it.

One recent trend is candidate selection on k-NN indices, which
supports vicinity based lookups by treating each document as a
vector [17]. The indices structure fits well with recent advancements
in deep learning [4, 9]. One common formulation is to represent
both users and documents as vectors, then define the relevance
functions based on distances between vectors. This formulation
reduces computing arg max for the relevance function into a k-NN
lookup. A rich set of probability functions can be used to learn the
embeddings, with advances in training techniques [11, 14, 16].

Another active research area is on top of traditional inverted
indices [6, 10]. Inverted indices have a long history of research,

4Ideally all experiments can be conducted with 50%-50% comparisons. However, in
practice the bandwidth is often limited because multiple experiments on the same
system component are running simultaneously.
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also supporting many different lookup operators [7, 13]. Several
advantages of inverted indices include:

(1) Easy to incorporate business rules (e.g. limiting retrieval
results for a certain geo-location)

(2) Easy to explain the retrieval query, especially when debug-
ging improper recommendations

(3) Able to share the infrastructure with search systems [2].
One strategy to improve the query accuracy is to implement filtering
logics during query execution, for example, with a linear model [6]
or a tree model [10]. The algorithms in [6, 10] generate complex
queries that implement the filtering logic (e.g. a score goes above a
threshold); which will apply to documents during scanning.

Thiswork studies filtering documents by cutting off query clauses,
i.e. during query generation time, before they execute. We have now
faced overly riched user information, opposite to cold-start [18]. By
shrinking down the set of user attributes to use, we can improve the
system’s precision and scalability. Ranking the keyword attributes
shares similarities with query expansion [3], where both’s goal is
to generate accurate queries. However, the fundamental difference
is all the query terms in our case are explicitly specified by the user.
As a result, certain strong signals in query expansion (e.g. similarity
with original query) do not have analogies in our setup.

This work borrows the common idea applied on k-NN indices,
and applied it to the inverted indices setup. By defining a probability
function over documents, we can leverage the inverted indices to ef-
ficiently retrieve the most relevant documents. We show (in Section
3.2.1) that the trivial form of our proposed model reduces to rank-
ing attributes with tf-idf. Further parameterizing the probability
function can help personalize the queries, and improve accuracy.

7 CONCLUSIONS
The candidate selection step scales recommendation systems by
reducing the number of documents to score. This work studies
subsetting the number of user attributes at candidate selection. We
propose amodel to rank user attributes based on the relevance of the
documents they match. By only using the top K attributes during
candidate selection, we are able to improve both precision and recall.
We demonstrated deploying the component into a real-world setup
on job recommendations at LinkedIn, where we observed 24% p99
latency reduction, along with user engagement boost.
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