
ArXivDigest: A Living Lab for Personalized Scientific Literature
Recommendation

Kristian Gingstad
University of Stavanger
k.gingstad@stud.uis.no

Øyvind Jekteberg
University of Stavanger
o.jekteberg@stud.uis.no

Krisztian Balog
University of Stavanger
krisztian.balog@uis.no

ABSTRACT
Providing personalized recommendations that are also accompanied
by explanations as to why an item is recommended is a research
area of growing importance. At the same time, progress is limited
by the availability of open evaluation resources. In this work, we
address the task of scientific literature recommendation. We present
arXivDigest, which is an online service providing personalized
arXiv recommendations to end users and operates as a living lab
for researchers wishing to work on explainable scientific literature
recommendations.

CCS CONCEPTS
• Information systems→ Recommender systems; Evaluation
of retrieval results.

KEYWORDS
Living labs; recommender systems; explainable recommendations

ACM Reference Format:
Kristian Gingstad, Øyvind Jekteberg, and Krisztian Balog. 2020. ArXivDigest:
A Living Lab for Personalized Scientific Literature Recommendation. In Pro-
ceedings of the 29th ACM International Conference on Information and Knowl-
edge Management (CIKM ’20), October 19–23, 2020, Virtual Event, Ireland.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3340531.3417417

1 INTRODUCTION
Recent years have seen an increased interest in recommender sys-
tems. Evaluation is a central aspect of research in this area, where
the need for both offline and online evaluation, as complementary
approaches, has been recognized [3, 4]. Online evaluation, however,
is challenging as it requires a live service with sufficient traffic vol-
ume, which is generally unavailable to those outside research labs of
major service providers. Living labs was proposed as an alternative,
where third-party researchers are allowed to replace components
of a live service, under certain restrictions, and have real users of
the service interact with the generated results [6]. In this paper, we
propose a living lab for scientific literature recommendation.

Academic search, as a use case, is appealing for many reasons.
Generally, data is openly available, and there is already a number of
services consolidating scientific literature and associated metadata.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’20, October 19–23, 2020, Virtual Event, Ireland
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6859-9/20/10. . . $15.00
https://doi.org/10.1145/3340531.3417417

Here, we specifically focus on providing recommendations over
papers published on arXiv,1 which has become a leading outlet
for bleeding edge research (especially for machine learning-related
work). Given the accelerating pace at which scientific knowledge
is being produced and consolidated on arXiv, it has become a real
need to provide a recommendation service that helps researchers
to keep up with the articles published there. Academic search is
also interesting from a research perspective, as it provides a fertile
ground for current research problems, including, e.g., semantic
matching to overcome vocabulary mismatches [8].

We acknowledge the multitude of related efforts in this space (cf.
Sect. 2). What makes arXivDigest unique that it aims to provide an
open service that we, researchers, would enjoy using (thereby sub-
scribing to the “eat your own dog food” principle). It is meant to be
an ongoing effort that is shaped and developed in a way that it best
serves the community’s interests. One specific example of this is
explainability. Explainable AI has been identified as an increasingly
important area of research [9, 13]. However, evaluation of explain-
able approaches represents a major bottleneck. Experimentation
with live users in commercial services is severely limited due to
scalability, quality, and ethical concerns. As such, they tend to take
a conservative stance. Conversely, most researchers appear to be
open regarding their work and research interests, which removes
the barriers and issues regarding privacy. This makes it possible
for us to complement recommendations with explanations that
users can comment on. Also, researchers can be both users and
developers in arXivDigest, and can thereby enjoy full transparency.

In particular, users subscribing to the arXivDigest service receive
personalized article recommendations, which are emailed to them
in daily/weekly digests and can also be viewed on a web interface.
Users can leave feedback on the recommendations they receive
as well as on the accompanying explanations. They can further
save favourite articles. All these interactions are registered and
used to help generate better recommendations for them in the
future. Researchers can register their own recommender system, by
requesting an API key, and get access to profile and interaction data
of users. They can then generate personalized recommendations
for users and upload these via the API. Users will then be exposed
to recommendations generated by multiple systems.

The service is available at https://arxivdigest.org/. The source
code and API documentation are published at https://github.com/
iai-group/arXivDigest.

2 RELATEDWORK
There are numerous services in the space of academic search, in-
cluding digital library search engines, such as CiteSeerX [12] or

1https://arxiv.org/

ar
X

iv
:2

00
9.

11
57

6v
1

 [
cs

.I
R

]
 2

4
Se

p
20

20

https://doi.org/10.1145/3340531.3417417
https://doi.org/10.1145/3340531.3417417
https://arxivdigest.org/
https://github.com/iai-group/arXivDigest
https://github.com/iai-group/arXivDigest
https://arxiv.org/

Figure 1: Article recommendation shown on the web interface.

SSOAR.2 There also exist services that consolidate scientific litera-
ture and associated metadata, offer API access to these, as well as
provide a range of search and recommendation services themselves.
Prominent examples include AMiner,3 Microsoft Academic Search,4
and Semantic Scholar.5 ArXiv-sanity6 is a service specifically for
arXiv, helping users to find related articles.

Benchmarking efforts using living labs include CLEF News-
REEL [7], which provided an live evaluation platform for the task of
news recommendations. The CLEF LL4IR track [11] featured prod-
uct search and web search as use cases. The OpenSearch track at
TREC [8] addressed the task of ad hoc scientific document retrieval
using CiteSeerX and SSOAR as live platforms. None of these bench-
marks offered the possibility for personalization nor for providing
explanations.

3 THE RECOMMENDER SERVICE
ArXivDigest is a scientific literature recommendation service that
provides users with personalized suggestions based on their interest
profile. By using the service, users agree to ‘donate’ the data they
generate for research purposes. Specifically, their profile informa-
tion (name, websites, and topics of interest), the recommendations
they received, and their interactions with those recommendations
are made available to experimental systems via an API (cf. Sect. 4.3).
Users can download all data stored about them from the website,
and can remove themselves entirely from the system, as per GDPR.

Below, we provide a brief overview of user-facing functionality.
• Sign-up/profile: In order to make personalized recommenda-
tions, we need to have user profiles with personal information.
Therefore, users need to register by filling out a sign-up form
where they provide basic details (name and email address), link
to their DBLP and/or Google Scholar profile, specify keywords
of interest, and choose the regularity of digest emails (daily or
weekly). Users can modify their profile any time later, view all
data associated with them, and remove themselves from the
system.

• Article recommendations: Registered users can view the ar-
ticles that are recommended to them, either in the digest emails
or on the web interface. See Fig. 1 for an example. All recom-
mendations are accompanied by an explanation. Articles can
be saved to a personal library (“liked”) to improve recommen-
dations and for easy future re-finding.

2https://www.gesis.org/ssoar/home/
3https://www.aminer.cn/
4https://academic.microsoft.com/
5https://www.semanticscholar.org/
6http://www.arxiv-sanity.com/

Figure 2: User feedback form for article recommendations.

• Topic recommendations: A natural way of representing users’
interests is via a set of topics (short natural language phrases).
We aid users in populating their profiles with additional topics
of interest, by displaying a list of topic recommendations on
the website. They can accept or reject items in the list with a
single click.

• Feedback: Users can leave feedback on the recommendations
and/or on the accompanying explanations. For article recom-
mendations, a detailed form is given, asking users about the
relevance of the recommendation, as well as about how satis-
factory, persuasive, transparent, and scrutabile they found the
explanation (the choice of particular explanation dimensions
was informed by [2]); see Fig. 2. Feedback on other aspects of
the system (bug reporting and feature requests) is free-text.

https://www.gesis.org/ssoar/home/
https://www.aminer.cn/
https://academic.microsoft.com/
https://www.semanticscholar.org/
http://www.arxiv-sanity.com/

4 THE LIVING LAB PLATFORM
ArXivDigest operates as a living lab platform, by providing a broker
infrastructure that connects researchers that have signed up for
the service (users for short) and experimental systems that provide
content recommendations (systems for short). Systems generate
personalized recommendations for all users and make these avail-
able to the broker (by uploading them via an API). The broker takes
all recommendations created for a given user, interleaves them, and
makes the top-k recommendations available to users. Further, the
broker registers user feedback (and makes it available to systems).
This process is repeated daily. Specifically, there are two types of
items that can be recommended to users: articles (i.e., arXiv papers)
and topics (i.e., keywords of interest). Articles are sent out in a
digest email and can also be viewed on the web interface. Topic
recommendations are only available via the web interface.

4.1 Evaluation Methodology
We adhere to an online evaluation methodology for information
retrieval [5]. Users are presented with a ranked list of (article or
topic) recommendations, which is a result of interleaving rankings
of multiple systems. Specifically, we employ multileaving, which is
designed to effectively compare more than two rankers at the same
time [10]. By impression we mean a combined ranking that is seen
by a user (i.e., it counts even if there is no interaction). There may be
zero to multiple user interactions associated with each impression.

The following user interactions are distinguished for article rec-
ommendations, with associated reward points in parentheses: saved
to personal library (5), clicked in email (3) or on the web (3), and
seen in email (0) or on the web (0). For topic recommendations, user
interactions (and rewards) are: accepted (1), rejected (0), refreshed
(0), and expired (0). The last two actions mean that the user has
seen the list of recommendations, but did not interact with them.

In the traditional interleaving setting, where an experimental
system is compared against a production system, the performance
of each system is measured in terms of wins/losses based on the
clicked results [8]. In our setting, interactions are not limited to
clicks and there are more than two systems that are being compared.
Thus, we introduce a new evaluation metric based on the notion of
Reward. The Reward of a system s in an interleaving I is defined as
the weighted sum of user interactions with results originating from
that system. For example, if a system in an interleaving has received
3 clicks on recommended articles, 2 of which also got saved by user,
the reward of this system would be 3 × 3 + 2 × 5 = 19. To ensure
the comparability of systems, we define Normalized Reward as the
reward of a system divided by the total reward resulting from that
impression. That is, the normalized rewards of all systems partaking
in the interleaving sum up to 1. Finally, Mean Normalized Reward
for a system over a set time period is calculated by taking the mean
of the Normalized Reward accumulated over the given period.

System performance is monitored continuously over time, with
performance indicators (#impressions and Mean Normalized Re-
ward) made available to system owners via an interactive adminis-
tration interface. For comparing a set of systems, performance is to
be measured during a designated (and sufficiently long) evaluation
period. To ensure a fair comparison across systems, our multileaver
will select systems at random for each multileaving, but systems

API

Website

InterleaverScraper

Database

End users

Digest emails

arxiv.org

Experimental systems

Figure 3: Architecture of the arXivDigest platform.

that have fewer impressions will be preferred. This way, all systems
can receive approximately the same amount of impressions.

4.2 Architecture
The main architectural components, shown in Fig. 3, are an API
connecting experimental systems with the arXivDigest service (de-
tailed in Sect. 4.3), a scraper to fetch new articles from arXiv, an
interleaver to combine results of experimental systems to recom-
mendation lists shown to end users either in digest emails or on the
web front-end, and a database back-end (MySQL).

All code (except single launching scripts) is contained in a sin-
gle Python package (arxivdigest), which makes code sharing
between the different components easy. Also, installing and updat-
ing can be handled by a standard setup script. The package contains
four modules: frontend, api, connector (to facilitate clean and
easy communication with the API, and to help reduce the amount of
code to be written for each recommender system), and core (code
for interleaving, scraping, and email services). The web front-end
and API are built using Flask7 and are deployed as WSGI applica-
tions. The scraper, interleaver, and digest emails are run as batch
processes.

4.3 The arXivDigest API
We provide a RESTful API for experimental recommender systems
to access article and user data, and to upload personalized article/
topic recommendations to be evaluated with live users. Developers
of said systems first need to request an API key. To complete the
API registration process, they further need to sign the API Terms
of Usage, which forbids storing user-specific data for more than
24 hours. At the same time, data obtained from the API may be
displayed or published in a technical or scientific context, provided
that specific individuals cannot be identified.

7https://flask.palletsprojects.com/en/1.1.x/

https://flask.palletsprojects.com/en/1.1.x/

4.4 Process for Experimental Systems
Systems are given a 2.5 hour window each day to download new
content once it has been published on arXiv and generate rec-
ommendations for all registered arXivDigest users. The specific
steps of submitting article recommendations are listed below (topic
recommendations follows analogously, but is omitted here in the
interest of space).
1. Call GET / to get the settings of the API.
2. Call GET /users?from=0 to get a batch of user IDs; the offset

may be incremented to get new batches.
3. Call GET /user_info?ids=... with the user IDs as a query

parameter, to get information about the users. Optionally, addi-
tional data based on the available user profiles may be gathered
from external services.

4. Call GET /articles to get the IDs of articles that are candi-
dates for recommendation. These are articles that have been
published on arXiv within the last 7 days, to have a sufficiently
large pool of articles to recommend from.

5. Call GET /article_data?article_id=... with the article as
a query parameter, to get information about a given article.
Optionally, additional metadata may be gathered from external
sources (e.g., from Semantic Scholar).

6. Call GET /user_feedback/articles?user_id=... with the
user IDs as a query parameter to get information about what
recommendations have already been shown to a user. These
articles should be filtered out as they will be ignored by the
platform.

7. Use the available data about users and articles to create per-
sonalized recommendations with explanations for each user.
Important parts of the explanations may be boldfaced by using
markdown-style markup (like **text**).

8. Call POST /recommendations/articles to submit the gener-
ated article recommendations in batches of the size defined by
the API settings.

9. Repeat steps 2 to 8 until all user batches have been given rec-
ommendations.

The above steps are meant to be repeated every weekday, e.g.,
by setting up some batch process. This, however, is not enforced.
Systems not submitting recommendations for certain days or users
(e.g., if no suitable matches are found) are not penalized in any
way other than receiving less ‘exposure.’ It is worth mentioning
that recommendations made for each user are pushed to a stack,
and each day the highest scoring ones are taken by the interleaver
process. This way, systems have the possibility to update their
recommendations.

5 BASELINE ARTICLE RECOMMENDER
A simple baseline recommender method has been implemented on
top of Elasticsearch, and is shipped with the arXivDigest codebase.
For a given user, it scores all candidate articles against each of the
user’s topics, using a standard retrieval method (BM25). Then, each
article receives the sum of all retrieval scores of all user topics as
its final score. The top-k highest scoring articles are selected as
recommendations. The corresponding explanations are generated
by selecting the top-3 highest scoring topics for each article and
instantiating the template “This article seems to be about [t1], [t2]

and [t3],” where [t1], [t2], and [t3] are placeholders for topic names
(and are rendered boldfaced, cf. Fig. 1).

6 CONCLUSION AND FUTURE DIRECTIONS
We have presented the arXivDigest service and platform for person-
alized scientific literature recommendation. At the time of writing,
the service is operational and already has a small user base. The
living lab platform is also up and running for researchers to deploy
their own recommendation methods. In addition to the baseline
article recommendation system presented here, a number of more
advanced article and topic recommendation approaches have been
developed and deployed by the authors of this paper, serving end
users with a diverse set of suggestions. (These experimental systems
are not discussed here, as these are not part of the core platform,
but they are linked from the arXivDigest GitHub repository.)

We see the CIKM conference as an major opportunity to talk
about our initiative and to get other researchers involved in this
project, both as contributors to the arXivDigest platform and API, as
researchers developing novel explainable recommender approaches,
and as end users using the service.

It is our hope to organize a dedicated track to scientific literature
recommendation, using arXivDigest as the living labs platform,
in the near future at an international benchmarking campaign
(possibly, as a continuation of the TREC Open Search track [8]). We
also see this platform contributing to other related efforts planned
within the community, and in particular to the idea of a Scholarly
Conversational Assistant, which has been proposed in [1].

REFERENCES
[1] Krisztian Balog, Lucie Flekova, Matthias Hagen, Rosie Jones, Martin Potthast,

Filip Radlinski, Mark Sanderson, Svitlana Vakulenko, and Hamed Zamani. 2020.
Common Conversational Community Prototype: Scholarly Conversational As-
sistant. CoRR abs/2001.06910 (2020).

[2] Krisztian Balog and Filip Radlinski. 2020. Measuring Recommendation Explana-
tion Quality: The Conflicting Goals of Explanations. In Proc. of SIGIR ’20. 329–338.

[3] Joeran Beel, Marcel Genzmehr, Stefan Langer, Andreas Nürnberger, and Bela
Gipp. 2013. A Comparative Analysis of Offline and Online Evaluations and
Discussion of Research Paper Recommender System Evaluation. In Proc. of RepSys
’13 workshop. 7–14.

[4] Florent Garcin, Boi Faltings, Olivier Donatsch, Ayar Alazzawi, Christophe Bruttin,
and Amr Huber. 2014. Offline and Online Evaluation of News Recommender
Systems at Swissinfo.Ch. In Proc. of RecSys ’14. 169–176.

[5] Katja Hofmann, Lihong Li, and Filip Radlinski. 2016. Online Evaluation for
Information Retrieval. Found. Trends Inf. Retr. 10, 1 (June 2016), 1–117.

[6] Frank Hopfgartner, Krisztian Balog, Andreas Lommatzsch, Liadh Kelly, Benjamin
Kille, Anne Schuth, and Martha Larson. 2019. Continuous Evaluation of Large-
Scale InformationAccess Systems: ACase for Living Labs. In Information Retrieval
Evaluation in a Changing World - Lessons Learned from 20 Years of CLEF. The
Information Retrieval Series, Vol. 41. Springer, 511–543.

[7] Frank Hopfgartner, Torben Brodt, Jonas Seiler, Benjamin Kille, Andreas Lom-
matzsch, Martha Larson, Roberto Turrin, and András Serény. 2015. Benchmarking
News Recommendations: The CLEF NewsREEL Use Case. SIGIR Forum 49, 2
(2015), 129–136.

[8] Rolf Jagerman, Krisztian Balog, and Maarten De Rijke. 2018. OpenSearch: Lessons
Learned from an Online Evaluation Campaign. J. Data and Information Quality
10, 3, Article 13 (Sept. 2018), 13:1–13:15 pages.

[9] Don Monroe. 2018. AI, Explain Yourself. Commun. ACM 61, 11 (oct 2018), 11–13.
[10] Anne Schuth. 2016. Search Engines that Learn from Their Users. Ph.D. Dissertation.

University of Amsterdam.
[11] Anne Schuth, Krisztian Balog, and Liadh Kelly. 2015. Overview of the Living Labs

for Information Retrieval Evaluation (LL4IR) CLEF Lab 2015. In Proc. of CLEF’15.
484–496.

[12] Jian Wu, Kyle Williams, Hung-Hsuan Chen, Madian Khabsa, Cornelia Caragea,
Alexander Ororbia, Douglas Jordan, and C. Lee Giles. 2014. CiteSeerX: AI in a
Digital Library Search Engine. In Proc. of AAAI ’14. 2930–2937.

[13] Yongfeng Zhang and Xu Chen. 2020. Explainable Recommendation: A Survey
and New Perspectives. Found. Trends Inf. Retr. 14, 1 (2020), 1–101.

	Abstract
	1 Introduction
	2 Related Work
	3 The Recommender Service
	4 The Living Lab Platform
	4.1 Evaluation Methodology
	4.2 Architecture
	4.3 The arXivDigest API
	4.4 Process for Experimental Systems

	5 Baseline Article Recommender
	6 Conclusion and Future Directions
	References

