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ABSTRACT
In this paper, we showcase jigsaw, a system that is able to shape
unstructured text into structured tables for user-defined schemas.
In short, to structure text into tables, jigsaw leverages the lexico-
syntactic structure imposed by linguistic annotations (e.g., part-of-
speech, named entities, temporal and numerical expressions) on nat-
ural language text. We describe how challenging knowledge-centric
tasks such as question answering, summarization, and analytics
can be greatly simplified with the help of jigsaw.
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1 INTRODUCTION
Structured information present in the form of tables is invaluable
for knowledge-centric tasks such as question answering, summa-
rization, and analytics. However, most of the tabular information
present on the Web or within documents is manually curated. To
manually assemble tables is a labor-intensive process that involves:
going through multiple documents relevant to the query; spotting
relevant fact-bearing sentences; and finally tabulating the key facts.
In this work, we demonstrate how jigsaw automates this process of
tabulating information from text in a query-driven manner, within
seconds, and at scale across millions of documents.

jigsaw structures text into tables with the help of the lexico-
syntactic structure imposed by linguistic annotations. Nowadays,
large document collections can be reliably annotated for part-of-
speech tags, named entities, temporal, and numerical expressions.
In a nutshell, jigsaw structures text into tables in three steps. First,
the user defines the schema of the table to be generated from the
document collection by specifying a structured query pattern con-
sisting of word sequences and annotations. Second, based on this
structured query pattern we leverage gyani [8], our indexing in-
frastructure for annotated documents, to extract text regions that
match the structured query pattern and helps jigsaw put together
an initial raw table. Third and finally, jigsaw operates on the initial
raw table as input and performs linking of near-duplicate rows, res-
olution of null values using the document context, and computes
a final table to be presented to the user.
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![google |google inc. |google llc], ![acquired |takeover |bought], {!ORG, ?TIME, ?MONEY}
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NO. SCORE ORG TIME MONEY

1. 0.721 motorola mobility [2014, 2014] [$ 2.22× 108 , $ 1.95× 1010]

2. 0.057 boston dynamics [2013, 2013] [$ 1.20× 109 , $ 3.60× 109 ]

3. 0.036 youtube [2006, 2006] [$ 1.00× 109 , $ 1.50× 109 ]

4. 0.014 skybox imaging [2014, 2014] [$ 2.78× 108 , $ 8.33× 108 ]

5. 0.008 redwood robotics [2004, 2004] [$ 2.00× 105 , $ 4.00× 105 ]

6. 0.007 quickoffice [2012, 2012] [$14.99× 100 , $14.99× 100 ]

7. 0.006 gecko design [2014, 2014] [$ 1.00× 109 , $ 1.00× 109 ]

8. 0.006 imperium [2013, 2013] [$ 4.50× 106 , $ 1.50× 107 ]

9. 0.005 makani power [2013, 2013] [$ 1.90× 1010, $ 1.90× 1010]

10. 0.005 nortel [2011, 2011] [$ 4.50× 109 , $ 4.50× 109 ]

Figure 1: An example table generated by jigsaw for the query con-
cerning acquisitions made by Google from the Gdelt document col-
lection. The structured query contains the bindings for which the
resulting table is populated using the indexed document collection.
The table can then be used to generate popular information objects
such as entity carousels and structured snippets.

Our system jigsaw [9], is able to generate structured tables from
unstructured documents given a schema as an input. jigsaw offers
the capability to present partial, paraphrased, and redundant knowl-
edge spread across millions of documents into structured tables.
This ability allows us to perform knowledge-centric analytics over
large document collections; a capability that was only possible over
relational data present in traditional database management systems.
In this work, we demonstrate jigsaw’s capability to structure text
into tables and describe three use cases that can benefit from it,
namely: question answering, summarization, and analytics.

Organization. The remainder of the article is structured as fol-
lows. In Section 2, we describe the internal architecture of jigsaw
and the query language that is offered to the user to describe the
table’s schema. In Section 3, we describe the data, software, and
hardware setup of our system jigsaw. In Section 4, we describe the
applications of question answering, summarization and analytics
that will benefit from jigsaw’s capabilities. Finally, we conclude the
article with a survey of prior art and a summary of the capabilities
that jigsaw offers to the research community.

2 JIGSAW ARCHITECTURE
To generate structured tables from text documents jigsaw lever-
ages the lexico-syntactic structure that annotations help impose on
natural language text. We first describe, in brief, the data model and
indexes that allow us to perform structured search over the anno-
tated document collection. Second, we describe the query language
that allows the user to define the schema of the table to be gener-
ated from text documents. Third and finally, we explain how the
initial raw table is shaped into the final table by linking redundant
rows, resolving null values, and computing representative rows.
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NO. SCORE ORG TIME MONEY

1. 0.721 motorola mobility [2014, 2014] [$ 2.22× 108 , $ 1.95× 1010]

2. 0.057 boston dynamics [2013, 2013] [$ 1.20× 109 , $ 3.60× 109 ]

3. 0.036 youtube [2006, 2006] [$ 1.00× 109 , $ 1.50× 109 ]

4. 0.014 skybox imaging [2014, 2014] [$ 2.78× 108 , $ 8.33× 108 ]

5. 0.008 redwood robotics [2004, 2004] [$ 2.00× 105 , $ 4.00× 105 ]

Figure 2: Overview of jigsaw. The figure shows how the text documents are annotated and the indexing units that are stored in our index-
ing infrastructure. Furthermore, an example query shows how to define the table schema that simultaneously defines that structure of the
sentences to retrieve from the annotated document collection. The table generated from the document collection is shown at the end.

2.1 Annotated Document Model and Indexes
To perform structured search over text we take the assistance of
semantic annotations, such as part-of-speech, named entities, tem-
poral, and numerical expressions, that modern natural language
processing (NLP) tools can deliver with reliable accuracy. To repre-
sent the semantic annotations that mark up the word sequences,
we arrange them in a series of layers (see Figure 2). We begin with
the word layer that contains the sequence of words along with
their positions in the document. Building on the word layer, we
place annotations that share the same semantics in different layers
with positional information that indicate what word sequences
they adorn. For instance, in Figure 2, money annotates the word se-
quence over a billion dollars spanning the positions [8, 11] and
is placed in the named entity (NE) layer. Based on this data model,
we create a set of five indexes that store combinations of word
sequences and annotations. First, we create n-gram and skip-gram

indexes that store unigrams, bigrams, trigrams, and skip-grams
(within a window of ten words) derived from the word layer. Addi-
tionally, for these indexing units we create n-gram and skip-gram

dictionaries that store their collection and document frequencies.
Second, we create annotation indexes for each annotation type in
the different layers. Next, we create indexes that stores combina-
tions of n-grams and annotations. To this end, we create our third
and fourth index types: 2-stitch indexes that stores ordered combi-
nations of n-grams and annotations and 2-fragment indexes that
stores aligned combinations of n-grams and annotations. Fifth and
finally, we create a direct index that stores the entire representation
of the layered-document model. Example of each of the indexing
units in the five types of indexes is illustrated in Figure 2. With the
help of these indexes we can locate sentences that correspond to
the structured query pattern that defines the table schema.

2.2 QUERY Operators
We now describe the query operators that help define the schema of
the table to be generated from the document collection. To simplify
the description of the table schema, we present a declarative query
language over annotated text for table generation. A typical query
for table description consists of word sequences, annotations, or a
combination of both. In short, the query specifies the structure of
the text region (which can be span a few words, sentences, or para-
graphs) to search in the document collection(s). We next describe

the key operators that assist in specifying this structure of the text
region as well as the table. Figure 2 shows an example query that
generates a table for acquisitions made by Google.

Binding Operators specify the word sequences and annota-
tions that must be matched in our annotated data model to form
the attributes of the table. The !ℓ operator is a compulsory bind-
ings operator that specifies that the annotation ℓ must occur in the
structure of the text region. Whereas, the ?ℓ operator is a relaxed
bindings operator that relaxes the match of the annotation ℓ when
its occurrence is not found in the text region. When, the value can
not be spotted the ?ℓ bindings operator results in a null value
to be filled in the cell value for that attribute. Markers such as
the union, wildcard, and multiplicity help specify additional seman-
tics to the binding operators. The union marker (|) helps specify
disjunctive semantics to multiple word sequences or annotations
specified with the same binding operator. For instance, the binding
?[united states | us ] looks for either the word sequence united
states or us in the sentence; if none is found the cell value is filled
with null. The wildcard marker ∗ specifies variable-length gaps
to be expressed in the bindings for word sequences. For example,
?⟨invested in ∗ company ⟩matches and places the word sequences
between invested in and company as cell values. The multiplic-
ity marker ×{m,n} specifies the minimum and maximum times
an annotation can occur in a sequence. For instance, the binding
sequence ⟨google acquired, org×{1,3}⟩ retrieves sentences that
contain the word sequence google acquired and one or more but
less than or equal to 3 mentions of an organization.

Stack Operator ⊕ allows the user to attach semantics to word
sequences when querying for text regions. For instance, with the
binding ?2006 we will retrieve text regions that contain 2006 both
as a numerical and as a temporal expression. However, with the
binding ?(2006⊕time) we restrict the match to those text regions
that contain the mention of 2006 as a temporal expression.

Order and Unorder Operators help specify the order in which
its arguments are matched to retrieve text regions for table genera-
tion. The order operator ⟨•⟩ helps specify schemas for asymmetric
relationships. For instance, ⟨?google, ?[acquired | bought], ?org⟩
retrieves text regions that match all the bindings in the specified or-
der. The unorder operator {•} helps specify schemas for symmetric
relationships. For instance, {?person, married, ?person} disregards
the order among the bindings during their retrieval.
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Figure 3: GUI for jigsaw. The user can specify the table schema to be generated from the text documents in the search bar. The figure displays
the table generated from the query ⟨![google], ![bought |takeover], {!org, ?date}⟩ from the New York Times news archive. The resulting table
additionally contains the sources which help derive the rows of the table. Hovering above the source cells reveals the text snippets as tooltips.

Assembling theTable.We leverage our indexing infrastructure
gyani to retrieve text regions that correspond to the structured
query pattern. gyani helps us create an initial raw table containing
attributes (columns) that correspond to the bindings. While each
row in the raw table contains the cell values corresponding to each
retrieved text region. Next, we describe the various operators that
help shape the final table to be presented to the user.

2.3 LINK Operators
We consider cell values in the tables to be of two types: text and
numbers. Text cell values will arise when bindings for annotations
are obtained from the word, part-of-speech, and named entity layer.
While, the numerical cell values will arise when bindings for anno-
tations are obtained from the time and number layers. Note that
all resolved values for numerical and temporal expressions are
modeled as intervals in their respective layers.

LINK Operators define how the redundant rows in the raw table
will be linked together. This is done by computing an average of
surface, contextual, and semantics based similarities among the cell
values between two rows. First, we compute the surface level simi-
larity as an edit-distance based similarity between text values and
equality between numerical values. Second, we compute contextual
similarity by using the Jaccard coefficient over the bag-of-words
derived from the source text region for text values and interval over-
laps for numerical values. Third, we compute semantic similarity
based on how frequently words in the text-based cell values co-
occur in the entire corpus. Semantic similarity for numerical values
is computed using Jaccard-overlap of intervals that model uncer-
tainty indicated by textual modifiers (e.g., in the numerical expres-
sion around a billion dollars, "around" is a textual modifier).
These similarities compute a score indicating a degree of similarity
between the raw rows. A threshold on the similarity value can be
set by the user that considers two raw rows as being near duplicates.

Local null Value Resolution. The ?ℓ binding operator may
result in null cell values. We use a set of three techniques to re-
solve these null values, namely: scoping, proximity, and semantic
redundancy. In all the null value resolution techniques, we make
an estimate from the document in which the text region resides. In
the scoping technique, we take the most frequent annotation as an
estimate. In the proximity technique, we take the annotation that
lies closest to the matched text region within the document. In the
semantic redundancy technique, we take the most frequent anno-
tation in their respective semantic models for making an estimate.
Depending on query intent, certain null resolution techniques
work better than others. If the query is entity oriented then the
proximity based technique performs well as it functions like a co-
reference resolution method. However, if the query is event related
then the semantic redundancy performs better.

2.4 ANALYSIS Operators
We next discuss the operators that help to shape the final table. The
ANALYSIS operators allow us to flatten a group of linked rows, score
the representative rows, and rank them.

FLAT Operator takes a set of linked raw rows and computes a
representative row to be added to the final table. This can be done
in two ways: piecing together a representative row or selecting the
most similar row from the set. By piecing together a representative
row, we select the attribute value from the set of raw rows that is
the most similar to remaining values in the set. By doing this for
all the table attributes, we can construct the representative row to
be part of the final table. Alternatively, we can select a row that is
most similar to the others in its entirety to be part of the final table.
However, with the piecewise construction of the representative row,
we can resolve those null values, which could not be estimated
using the local null resolution technique, with the help of the other
linked rows. We refer to this as global null resolution.
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Table 1: Statistics for the semantically annotated document collections.

collection size (gb) #documents #words #sentences #part-of-speech #named entity #time #numbers

nyt 49.7 1,855,623 1,058,949,098 54,024,146 1,058,949,098 107,745,696 15,411,681 21,720,437
wikipedia 156.0 5,327,767 2,807,776,276 192,925,710 2,807,776,276 444,301,507 97,064,344 82,591,612
gigaword 193.6 9,870,655 3,988,683,648 181,386,746 3,988,683,648 517,420,195 72,247,124 102,299,554
gdelt 296.2 14,320,457 6,371,451,092 297,861,511 6,371,451,092 640,812,778 94,009,542 104,964,085

Table 2: Sizes of indexes and dictionaries in Gigabytes (GB).

index type nyt wikipedia gigaword gdelt

n-gram dictionaries 4.54 19.80 10.50 19.04
skip-gram dictionary 14.40 25.70 21.30 29.30
n-gram indexes 45.90 126.30 154.40 234.80
skip-gram index 56.10 180.80 203.60 289.00
annotation indexes 2.39 7.65 9.33 16.03
2-fragment indexes 6.30 23.10 24.16 36.84
2-stitch indexes 141.00 473.00 542.40 677.10
direct index 18.80 44.80 52.40 82.30

SCORE Operator assigns a score to the representative rows using:
support (equal to the ratio of number of linked raw rows to total
number of raw rows) of the row and its novelty among the other
rows in the final table.

RANK Operator assigns a ranking to the rows of the final table.
We provide two ways of ranking: by the generated scores and by av-
erage inverse length of text regions supporting a representative row.

3 JIGSAW IMPLEMENTATION
Our indexing infrastructure gyani and jigsaw were both imple-
mented in Java from scratch. The graphical user interface (GUI)
for the system is also implemented in Java using the JavaFX GUI
framework. We instantiate our indexing infrastructure in HBase,
a distributed and extensible record store that runs on our Hadoop
cluster of twenty server-grade machines. We create our indexes
and dictionaries for four different document collections: the New
York Times Annotated corpora [2], the Fifth Edition of English Gi-
gaword [3], Gdelt news archive [1], and the English Wikipedia [4].
The details of the four semantically annotated document collections
and their index sizes are given in Tables 1 and 2 respectively.

4 APPLICATIONS
We now discuss three use cases that will benefit from jigsaw’s
table generation capabilities.

Question Answering. Users interacting with search systems
are no longer interested in going through long lists of documents
to find answers to their queries. Most users’ queries nowadays
are directly answered by structured snippets [5], knowledge pan-
els [10], and entity carousels [13]. However, most state-of-the-art
information retrieval (IR) systems can only present such informa-
tion elements derived from resources that are already structured,
for example, in the form of lists, tables, and Wikipedia infoboxes.
Data in the form of tables models all the possible information ob-
jects [7] that can be derived from text documents. Structured tables
obtained from jigsaw present a summary of important information
drawn from multiple documents. For example, the table shown
in Figure 1 contains acquisitions made by Google extracted from
the Gdelt news archive. From this table, we can generate entity
carousels for the query google acquisitions by taking the org

column and displaying entities relevant for the query. Furthermore,
we can generate structured snippets by taking a row (e.g., ⟨ youtube,

[2006, 2006], [$ 1.00 × 10
9
, $ 1.50 × 10

9
]) ⟩) and displaying the

shortest evidence that helped generate the row.
Summarization. Structured tables present a summary of im-

portant information drawn from multiple documents. Moreover,
with jigsaw’s capability to generate tables, we can link facts from
different document collections thus offering to contextualize the
information from multiple points of view. For instance, by gen-
erating tables for the same schema from Wikipedia and the New
York Times news archive we can help link facts mentioned in the
encyclopedia with fine granular information of events present in
the news articles.

Analytics. In order to derive any meaningful insight from mas-
sive amounts of textual data, a preprocessing step is required to
format the data so that it can be processed by machine learning
methods. Often, this representation is in the form of a table. With
jigsaw’s capabilities we can quickly assimilate facts and figures in
the form of tables that allow for complex machine learning models
to discover insights (e.g., outlier detection).

5 RELATEDWORK
We now discuss related systems that precede jigsaw in providing se-
mantic and structured search capabilities over annotated document
collections. [6] provides a combined search capability over knowl-
edge graphs and document collections with a query language that
allows searching for keyword queries along with semantic classes
and entities. [11, 12] take a different approach to semantic search, by
linking entities in text to knowledge graphs. Thereafter, the authors
provide analytic visualizations to be created on frequency of entities
with document’s publication date. [14] propose a LOAD graph rep-
resentation of annotated document collection for enabling semantic
search. In contrast to these approaches, our data model can accom-
modate any kind of semantic annotation as well as provide the
flexibility to create structured tables for any user-defined schema.

REFERENCES
[1] The GDELT Project. https://www.gdeltproject.org/.
[2] The NYT Corpus. https://catalog.ldc.upenn.edu/LDC2008T19.
[3] English Gigaword. https://catalog.ldc.upenn.edu/LDC2011T07.
[4] Wikipedia: The Free Encyclopedia. https://www.wikipedia.org/.
[5] Structured Snippets in Google Web Search. https://ai.googleblog.com/

2014/09/introducing-structured-snippets-now.html.
[6] Bast H. et al. 2014. Semantic Full-Text Search with Broccoli. In SIGIR’14.
[7] Culpepper J. S. et al. Research Frontiers in Information Retrieval: Report from

the Third Strategic Workshop on Information Retrieval in Lorne (SWIRL 2018).
SIGIR Forum 52, 1 (2018), 34–90.

[8] Gupta D. and Berberich K. GYANI: An Indexing Infrastructure for Knowledge-
Centric Tasks. In CIKM’18.

[9] Gupta D. and Berberich K. JIGSAW: Structuring Text into Tables. In ICTIR’19.
[10] Henry J.W. 2013. Providing Knowledge Panels with Search Results. US Patent

App. 13/566,489.
[11] Hoffart J. et al. AESTHETICS: Analytics with Strings, Things, and Cats. In

CIKM’14.
[12] Hoffart J. et al. STICS: Searching with Strings, Things, and Cats. In SIGIR’14.
[13] Hong P. J. et al. 2018. Related Entities. US Patent App. 15/798,175.
[14] Spitz A. et al. EVELIN: Exploration of Event and Entity Links in Implicit Networks.

In WWW’17.

Demonstration CIKM '20, October 19–23, 2020, Virtual Event, Ireland

3404

https://www.gdeltproject.org/
https://catalog.ldc.upenn.edu/LDC2008T19
https://catalog.ldc.upenn.edu/LDC2011T07
https://www.wikipedia.org/
https://ai.googleblog.com/2014/09/introducing-structured-snippets-now.html
https://ai.googleblog.com/2014/09/introducing-structured-snippets-now.html

	Abstract
	1 Introduction
	2 JIGSAW Architecture
	2.1 Annotated Document Model and Indexes
	2.2 QUERY Operators
	2.3 LINK Operators
	2.4 ANALYSIS Operators

	3 JIGSAW Implementation
	4 Applications
	5 Related Work
	References



