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ABSTRACT
Aiming at better representing multivariate relationships, this pa-
per investigates a motif dimensional framework for higher-order
graph learning. The graph learning effectiveness can be improved
through OFFER. The proposed framework mainly aims at acceler-
ating and improving higher-order graph learning results. We apply
the acceleration procedure from the dimensional of network motifs.
Specifically, the refined degree for nodes and edges are conducted
in two stages: (1) employ motif degree of nodes to refine the adja-
cency matrix of the network; and (2) employ motif degree of edges
to refine the transition probability matrix in the learning process.
In order to assess the efficiency of the proposed framework, four
popular network representation algorithms are modified and exam-
ined. By evaluating the performance of OFFER, both link prediction
results and clustering results demonstrate that the graph repre-
sentation learning algorithms enhanced with OFFER consistently
outperform the original algorithms with higher efficiency.
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1 INTRODUCTION
Network representation learning has been widely applied. The gen-
eral idea of network representation learning is to convert nodes
into vectors. By generating the structural information as well as
node attributes together, network representation learning meth-
ods traverse the network structure to lower-dimensional vector
space [4]. The mechanism behind this is that directly connected
node pairs are generally similar in the corresponding vector space,
which leads to pairwise relationships that can be well represented
in the corresponding low-dimensional vector space [10].

One of the most typical characteristics of network structure
is that multivariate relationships can be profiled by higher-order
structures [7, 11]. However, in the corresponding low-dimensional
vector space, such multivariate relationships are barely represented
due to the limitation of vectors. Real-world networks consist of
various complex relationships, in which most entities are in multi-
variate relationships with others [2, 5]. Comparing with pairwise
relationships, multivariate relationships are even more significant
but complicated. For the previous methods, weights of edges are
applied to evaluate the strength of pairwise relationships, but lack
the ability to evaluate multivariate ones. Based on the network
motif structures, multivariate relationships can be formulated and
measured. Some previous studies realize that motif structure can
help with network representation learning [8], but the underlying
reasons are not studied. Meanwhile, the feasibility of motifs is not
discussed as well.

Driven by the significance of multivariate relationships, we pro-
pose OFFER (mOtiF dimensional Framework for nEtwork Represen-
tation learning) to enhance the abilities of network representation
learning algorithms. This framework can be customized in choosing
proper motifs when representing the network. We define two met-
rics based on the custom motifs: motif degree and motif edge degree.
We refine the network adjacency matrix by motif degree of nodes,
to help reduce the differences of node degrees that are introduced
by higher-order structures. Then, we refine the learning process by
employing the motif degree of edges, to strengthen the multivariate
relationships in the network representation. The proposed method
is examined in terms of link prediction and clustering. In summary,
the contributions of this paper include:

• The design of motif dimensional framework for net-
work representation: We propose a motif dimensional
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framework to enhance the current network representation
algorithms in formulating multivariate relationships. En-
hanced by the proposed framework, the entities with multi-
variate relationships can be represented.

• The discovery of the correlation between motif struc-
tures and multivariate relationships: The mechanism of
OFFER makes it possible to reinforce strong relationships
as well as multivariate relationships, thus it is universally
applicable for such kind of network representation methods.

• The efficiency of OFFER: The experimental results show
that the enhanced methods generally lead to superior net-
work representation performance. All enhanced methods
outperform their original network representation algorithms
with higher accuracy in both prediction and clustering capa-
bilities.

2 MODEL DESIGN
To characterize the frequent multivariate relationship structure in
the network, we use the most common three-order triangle motif.

Definition 2.1. Network Motif. For the graph G = (V ,E), the
network motifM is a special subgraph structure in G that satisfies
three characteristics: low-order nature, high-frequency nature, and
real mapping nature.

Specifically, the low-order nature means that the order ofM is
generally not high (not over 8). The high-frequency nature means
that the frequency of M in the real network is much higher than
that of the corresponding random network. The real mapping na-
ture means thatM can always find the actual meaning in the real
network. Because of these natures ofM , especially the real mapping
nature, motifs can be used to characterize specific multivariate re-
lationship structures in the real network. Among various network
motifs, triangle motifs are more popular, because they are widely
present in various real networks and have a strong reality mapping.

To characterize motif features on network nodes or edges, we
define the motif degree of each node and edge.

Definition 2.2. Motif Node Degree (MND). For a given motif
M , NDM (i) represents the motif degree of node i , and NDM (i) = n
means node i is involved in a number of n motifs.

Definition 2.3. Motif Edge Degree (MED). For a given motifM ,
EDM (i, j) represents the motif degree of edge (i, j), and EDM (i, j) =
n means edge (i, j) is involved in a number of n motifs.

Figure 1 illustrates these two concepts. The formula on the right
represents the triangle motif degree information of the correspond-
ing nodes (green) and edges (red) on the left. Comparing with

Figure 1: An example to explain triangle MND and MED.

Figure 2: The framework of OFFER.

traditional node degree, MND and MED better reflect various net-
work attributes such as significant network connectivity, robust-
ness, and centrality. We refer to the analysis method using motif
degree information instead of traditional degree information as the
“motif-dimensional analysis method”.

We define a motif-biased adjacency matrixAM forG to refine the
total network. This matrix is constructed based on MND. To ensure
network connectivity, we define AM as shown in Equation (1).

AM (i, j) =


1, if (i, j) ∈ E , EDM (i, j) = 0
0, if (i, j) < E
1 + EDM (i, j )

|VM |
, if (i, j) ∈ E , EDM (i, j) , 0

(1)

Wherein, |VM | represents the number of nodes inM .
The general framework is shown in Figure 2. For a real network,

OFFER first calculates its MND and MED matrix. Then, OFFER
converts them into an appropriate network representation matrix,
such as AM . Finally, OFFER deploys the improved network rep-
resentation learning algorithm. As an example, for the network
representation learning algorithm based on the transition prob-
ability matrix P , OFFER refine the learning process in network
representation by using MED. Consequently, this will lead to a fact
that edges with larger EDM (i, j) will achieve more learning weight.
That is, if we denote the neighbor nodes of i as id neiдhbor (i), then
the probability from node i to node j is shown in Equation (2).

Ptrans (i, j) =
EDM (i, j)∑

x ∈neiдhbor (i) EDM (i,x)
(2)

3 EXPERIMENTS
3.1 Data Sets
Four network datasets are selected for performance evaluation of
link prediction, and these datasets includeWiki1, Routers2, Twit-
ter3, and Facebook4. The records in these datasets can be used to
generate undirected and unweighted networks. For the clustering
scenario, we use Twitter social dataset andRouters dataset. Mean-
while, we also use two new datasets, namely, Hamsterster5 and
Openflights6. Both have higher network density to show strong
1http://nrvis.com/download/data/soc/soc-wiki-Vote.zip
2http://nrvis.com/download/data/tech/tech-routers-rf.zip
3http://networkrepository.com/rt-twitter-copen.php
4http://networkrepository.com/ego-facebook.php
5http://networkrepository.com/soc-hamsterster-vote.php
6http://networkrepository.com/inf-openflights.php
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(a) Precision (b) Recall (c) Accuracy

(d) Specificity (e) F1-score (f) AUC

Figure 3: Six indicators comparison in four networks.

universality of our method in various network environments. Basic
properties of these networks are shown in Table 1. Wherein, |V |
is the number of nodes, |E | is the number of edges, max (d) is the
max node degree, d̄ is the average node degree and ρ is the density.

In these network environments, triangle motifs have different
realistic mapping meanings, which also represent different multi-
variate relationships. In social networks (Facebook, Twitter, Ham-
sterster), they are employed to represent ternary closures. In Open-
flights, they correspond to connecting flights. As for Routers, they
represent the routing structures of network devices. Due to the
realistic significance, we specifically make statistics of triangle mo-
tif distributions among the above-mentioned datasets and their
corresponding random networks (shown in Figure 4).

3.2 Evaluation Metrics
Link Prediction. We use cosine similarity in the link prediction
based on previous work [1], wherein the cosine similarity of two
vectorsX ,Y is calculated by the following formula:CosSim(X ,Y ) =
®x · ®y/∥x ∥ · ∥y∥.

Table 1: The statistic information of experimental datasets

Network |V | |E | max (d) d̄ ρ

Wiki 889 2914 102 6.5556 0.007383
Routers 2113 6632 109 6.2773 0.002972
Twitter 761 1029 37 2.7043 0.003558
Facebook 2888 2981 769 2.0644 0.000715

Hamsterster 2426 16630 273 13.7098 0.005654
Openflights 2939 15677 242 10.6682 0.003631

Six metrics (AUC, Accuracy, Precision, Recall, Specificity, and
F1-score) are employed to verify the performance of link prediction:
AUC reflects the overall performance of the proposed model, which
refers to the area under ROC (Receiver Operating Characteristic)
curve. Accuracy reflects the right prediction results ratio of the
total samples, which is calculated by Accuracy = (TP +TN )/(TP +
TN +FP +FN ). Precision reflects how many of the prediction pos-
itive results are positive samples, defined as Precision = TP/(TP +
FP). Recall evaluates the recognition ratio of the positive sam-
ple, defined as Recall = TP/(TP + FN ). Specificity evaluates the
recognition ratio of the negative sample, defined as Speci f icity =
TN /(TN+FP). F1-score is calculated based on Precision and Recall,
defined as: F1-score = (2×Precision×Recall)/(Precision+Recall).

Clustering. Herein, we use SC (Silhouette Coefficient) to eval-
uate the clustering results. SC is proposed with the combination

Figure 4: The triangle motif numbers in 6 datasets.



Figure 5: Silhouette coefficient of the four networks.

of cohesion and separation. A higher SC value reflects better clus-
tering results. Specifically, SC equals avg{s(i)}, wherein, s(i) is
the SC of sample i and it can be calculated by s(i) = [b(i) −
a(i)]/max{a(i),b(i)}. Among them, a(i) refers to the average dis-
tance of sample i to other samples, which is considered as the
evaluation metric for cohesion degree within the cluster. Corre-
spondingly, b(i) refers to the average distance of sample i and all
the nodes in another cluster that i does not belong to. It is widely
used to evaluate the separation degree between clusters.

3.3 Results and Discussions
Figure 3 shows the experimental results of link prediction in the
four datasets. We used DeepWalk [6], Node2vec [3], LINE [9], Spec-
tral [12], which are popular algorithms in research and engineering
to optimize. The corresponding optimization algorithm is named
Mo-DeepWalk, Mo-Node2vec, Mo-LINE, Mo-Spectral.

Figure 3 (a)-(d) shows experimental results of four first-level
indicators (Precision, Recall, Accuracy and Specificity). It has
been observed that enhanced algorithms consistently yield superior
performance. Meanwhile, the performance of these four metrics is
close to each other. For example, in Wiki, Mo-DeepWalk outper-
forms DeepWalk by about 4% for all four metrics. As for three other
enhanced algorithms, more than 3% performance gain is found.

Figure 3 (e)-(f) shows experimental results of two second-level
indicators: F1-score and AUC. F1-score can explore the balance
of Precision and Recall. AUC avoids converting prediction prob-
abilities into categories, and is not sensitive to whether the sample
categories are balanced. The figure shows that the proposed motif
dimensional network representation learning has consistently im-
proved all of the original algorithms. Such finding also indicates that
the motifs represented the multivariate relationship can improve
network representation. The improvement is significant on Wiki
and Twitter. The observation demonstrates that OFFER effectively
improves the performance of the link prediction.

Figure 5 shows the SC value comparison of the four enhanced
algorithms against the original algorithms. It can be seen that in the
four networks, the enhanced algorithms outperform with higher
SCs. The mechanism of OFFER is that it can capture multivariate
relationships. Among them, the clustering results of DeepWalk,

Node2vec, and Spectral generally perform better than LINE does.
This may be due to 2 labels used in the experiments, whereas LINE
is usually applied for scenarios with more labels.

4 CONCLUSION AND FUTUREWORK
In this work, we propose a framework called OFFER to enhance
the performance of network representation algorithms. We take
four network representation algorithms as examples for optimiza-
tion, including DeepWalk, Node2vec, LINE, and Spectral Clustering.
And link prediction is employed to verify the performance of the
enhanced network representation. Experimental results show that
all enhanced algorithms outperform the original ones. Limitation
of the OFFER framework includes its only focus on the network
structure characteristics and its refinement of the learning process.
Besides, only the triangle motif has been applied to represent multi-
variate relationships in the experiments, while higher-order motifs
can capture relationships among more entities. But the price is a
more complicated calculation and choosing a more suitable motif.

Multivariate relationships with higher-order embedding mech-
anism proposed in this work can be applied to graph topology
inference is significant and interesting. Moreover, identifying a
matching motif for a certain network also worth further investi-
gation. Therefore, enhancing network representation learning of
multivariate relationships is foreseeable future work.
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