
Towards Inferring Queries from Simple and Partial Provenance

Examples

Amir Gilad
Tel Aviv University

amirgilad@mail.tau.ac.il

Yuval Moskovitch
University of Michigan
yuvalm@umich.edu

Abstract

The field of query-by-example aims at inferring
queries from output examples given by non-expert
users, by finding the underlying logic that binds the
examples. However, for a very small set of examples,
it is difficult to correctly infer such logic. To bridge
this gap, previous work suggested attaching expla-
nations to each output example, modeled as prove-
nance, allowing users to explain the reason behind
their choice of example. In this paper, we explore the
problem of inferring queries from a few output exam-
ples and intuitive explanations. We propose a two
step framework: (1) convert the explanations into
(partial) provenance and (2) infer a query that gen-
erates the output examples using a novel algorithm
that employs a graph based approach. This frame-
work is suitable for non-experts as it does not require
the specification of the provenance in its entirety or
an understanding of its structure. We show promis-
ing initial experimental results of our approach.

1 introduction

With the growing interest in data science and the
ubiquity of data in recent years, the need for
tools that allow non-expert users to interact with
databases becomes crucial. Different approaches
have been proposed to facilitate manners in which
non-expert users can query the database, including
natural language interfaces [9] and query by example
[12, 1], where the user provides the system output
examples in order to obtain a query that produces

the same output. In this paper we focus on an al-
ternative approach, based on the use of explanations
for output examples. This notion relies on the per-
ception that providing a small number of output ex-
amples, along with explanations may be more intu-
itive and easier for users than solely providing many
output examples. These explanations encapsulate in-
formation on the query structure which significantly
reduces the number of examples needed to infer the
intended query.

Example 1.1. Consider the Microsoft Academic
Database (MAS) [10]. An instance with a similar
schema is depicted in Figure 1. Also consider the
query returning all conferences in the database area
and authors from Tel Aviv University (TAU) who
published papers in these conferences (shown as a
Conjunctive Query in Figure 3). A user who does not
know how to formulate it can input a few examples of
outputs and explain their rational. For instance, the
two output examples can be “SIGMOD, Alice” and
“CIKM, Bob”, and their respective explanations say-
ing that Alice published the papers “X” and “Y” in
SIGMOD, which is a database conference, and that
Bob published the paper “Z” in CIKM which is also
a database conference, and both are from Tel Aviv
University.

The idea of inferring queries from provenance was
first proposed in [5, 6]. A key property of any
provenance based solution is its level of detail. In
[6] we studied provenance polynomials, trio, positive
Boolean expressions, and why-provenance, each cor-
responds to an explanation with a different granular-

1

ar
X

iv
:2

00
8.

08
98

9v
1 

 [
cs

.D
B

] 
 2

0 
A

ug
 2

02
0



ity. We showed that consistent conjunctive queries
can be inferred, even when given only a few output
examples and their provenance. A notable prove-
nance model that is missing in [6] is that of lineage [4]
where the explanation of an output tuple t is the set
of input tuples’ annotations that contribute to the
generation of t.

Example 1.2. Consider again the database de-
picted in Figure 1 and the query from Example 1.1.
The lineage of the tuple “SIGMOD, Alice” is the
set of tuples annotated (in the prov. column) by
o2, a2, p1, p2, w1, w2, c2, dc2 and d1. Note that this set
depicts two different ways to obtain the output, one
using the fact that she published “X” and the other
that she published “Y”.

Providing precise and “full” provenance as expla-
nations may be tedious or even impossible for non-
expert users, and requires an understanding of the
schema. A more likely non-expert explanation would
be partial. For instance, a more natural explana-
tion for the output “SIGMOD, Alice” from Exam-
ple 1.1 may contain only the tuples o2, a2, p1, c2 and
d1. Moreover, a major barrier in the usability of
the provenance based query inference approach, is
that formulating explanations into provenance, even
in a partial form, may be a challenging task for non-
expert users. To this end we propose a two phase
framework. Given a small set of output examples
along with informal explanations, we first convert
these explanations into (partial) provenance. Then,
we infer a query that generates each output example
from its corresponding provenance.

In this paper we describe our ongoing work toward
a solution for the problem of inferring queries based
on examples with intuitive explanations. We propose
to use values as explanation, and leverage techniques
developed in previous work [11] for the first part. The
basic idea is to identify the tuples that contain the
values given as explanations using a similarity score.

Example 1.3. Consider again the database shown in
Figure 1 and the output example ’SIGMOD, Alice’.
A possible explanation may contain values such as
‘Tel Aviv University’, ‘Alice’, “X”, “Y”, ‘SIGMOD’,
and ‘Databases’. These values would then be mapped
to the tuples o2, a2, p1, p2, c2, d1, respectively.

Rel. org
oid oname

o1 1 UMICH
o2 2 TAU

Rel. author
aid aname oid

a1 3 Carol 1
a2 4 Alice 2
a3 5 Bob 2

Rel. domain conf
cid did

dc1 10 18
dc2 11 18

Rel. pub
wid cid ptitle pyear

p1 6 11 “X...” 2014
p2 7 11 “Y...” 2014
p3 8 10 “Z...” 2007

Rel. writes
aid wid

w1 4 6
w2 4 7
w3 5 8
w4 3 6

Rel. conf
cid cname

c1 10 CIKM
c2 11 SIGMOD

Rel. domain
did dname

d1 18 DB

Figure 1: DB instance

The second part of the proposed solution is infer-
ring queries from output examples and partial lin-
eage. An essential question that arises within this
notion of partial provenance, is how partial is the
provenance. Possible characterization of the expla-
nation’s form may include the presence or absence
of projected tuples or join tuples. In this paper, we
describe our results for joinless lineage–e.g, lineage
with missing join tuples. We start with this frag-
ment since it allows for intuitive explanations, and
it overcomes an inherent limitation of the mapping
component where some tuples in the lineage are ab-
sent in the mapping values function range. For in-
stance, there is no value in Example 1.3 that can be
mapped to the tuples w1 and w2, although it is part
of the provenance of the intended query, as shown in
Example 1.2. Other possible forms of partial lineage
are left for our ongoing and future work.

Related Work Query-by-example [2, 12, 11], is
the problem of inferring queries based on output ex-
amples given by the user. Along side these works,
various models of provenance have been proposed in
the literature [7, 4, 3]. Recent work [5, 6] has explored
the case where a small number of positive examples
are provided, coupled with explanations for these ex-
amples in the form of provenance. These assume that
outputs with multiple explanations are separated into
individual ones and either are given in full, or are

2



Outupt Full Prov. Partial Prov.

SIGMOD, Alice
o2, a2, p1, p2, w1,
w2, c2, dc2, d1

o2, a2, p1, c2, d1

EDBT, Bob
o2, a3, p3, w3,
c1, dc1, d1

o2, a3, p3, c1, d1

Figure 2: prov-example

q(cname, aname) :- author(aid, aname, oid),
writes(aid, wid), pub(wid, cid, ptitle, pyear),
conf(cid, cname), domain_conf(cid, did),
domain(did, dname), oname = ‘TAU’, dname = ‘Databases’

Figure 3: Intended query

missing mention of duplicate uses of the same tuple
in an explanation. Our approach attempts to fill in
the gap focusing on the lineage formalism [4], which
was not included in [6], and thus relaxes the desider-
ata of the explanations, allowing for missing tuples
and unseparated explanations for the same output.

2 Initial Results

We first describe our initial results for the query infer-
ence phase. We formally define the problem of query
inference from partial lineage and present a novel al-
gorithm for the joinless lineage case. We then briefly
discuss our approach for provenance extraction.

2.1 The Query Inference Problem

We use the foundations laid in [6] to define the prob-
lem of inferring queries by lineage. As in [6], we focus
on Conjunctive Queries (CQ). An assignment of a CQ
Q with respect to a database D is a mapping of the
relational atoms of Q to tuples in D that respects
relation names. The input to the problem is a set
of output tuples, each with its (possibly partial) lin-
eage. The lineage is given as a set of input tuples
identifiers. We use (I,O) to denote a pair of output
example O and it’s lineage I (i.e., a set of input tuple
identifiers). As a simple example, consider the table
in Figure 2, referring to the annotation of the tuples
in Figure 1. The output column along with the Full
Prov. column forms an example where the first and
seconds rows can be denoted by (I1, O1) and (I2, O2).
The Partial Prov. column depicts examples of partial
lineage for the same outputs.

We can then define the notion of consistency with
respect to an output example and (partial) lineage,

conf pub writes author

orgdomain conf domain

(a) Join graph of the query

c2 p1 w1 a2

o1

dc2

d1 p2 w2

(b) Prov. graph of row 1
Figure 4: (a) Query join graph in Figure 3, (b) prove-
nance graph of row 1 in Figure 2

and introduce our problem statement. Intuitively, we
look for a query whose output contains the example
output, and for each output tuple, its provenance is
“reflected” in the computation of the tuple by the
query.

Definition 2.1 (adapted from [6]). Given an (I,O),
a database D, and a CQ Q, we say that Q is consis-
tent with respect to the example if there exists S ⊆ D
such that O ∈ Q(I ∪ S) and I ⊆ lin(Q|O(I ∪ S)),
where lin(Q|O(I ∪ S)) is the lineage of the tuple O
according Q evaluated on I ∪ S.

The provenance specified in the explanation can
be partial but has to be a part of the assignment
and cannot includes irrelevant tuples. A partial ex-
planation is any non-empty subset of the lineage of
the output. For example, consider the the partial ex-
planation, I, shown in the Partial Prov. column in
the first row in Figure 2. The query in Figure 3 is
consistent w.r.t. it since we have S = {w1, dc2} such
that (SIGMOD,Alice) ∈ Q(I ∪S) and I is a partial
explanation.

We refer to a set of pairs (I,O) as a prov-example.
Given a CQ Q, we say that Q is consistent with re-
spect to this prov-example if it is consistent with each
one of the (I,O) pairs it contains. A consistent query
can be very general, in fact we showed in [6] that there
exists a set of (I,O) examples with an infinite number
of non-equivalent consistent queries. A major factor
influencing the number of consistent queries is the
length of the query, and in particular, the number of
self-joins allowed. Therefore, a natural desideratum
is a small number of joins. We utilize the concept of
join graph for conjunctive queries [8]. In a join graph
every two atoms joined together in the CQ are joined
by an edge . For instance, the join graph of the query
in Figure 3 is depicted in Figure 4a. We say that a
query is connected if its join graph is connected.

3



Definition 2.2. A consistent query Q with respect to
a given prov-example is consistent-minimal if (1) Q is
consistent and connected, and (2) for every query Q′

such that Q′ is consistent and connected, the number
of nodes in the join graph of Q is smaller or equal to
the number of nodes in the join graph of Q′.

Intuitively, consistent-minimal queries are more
natural as they offer a concise reason for the given
output according to the explanation. To demon-
strate, consider the following query
q(cname, aname) :- author(aid, aname, oid),

writes(aid, wid1), pub(wid1, cid, ptitle1, pyear1),

writes(aid, wid2), pub(wid2, cid, ptitle2, pyear2),

conf(cid, cname), domain_conf(cid, did),

domain(did, dname), oname = ‘TAU’, dname = ‘Databases’

It is consistent but not minimal. Conversely, the
query depicted in Figure 3 is consistent-minimal. Our
goal is then to find a consistent-minimal query given
a prov-example.

2.2 Provenance Graph

Given a pair (I,O) where I = {t1, . . . , tn}, its prove-
nance graph GP = (VP , EP ) is defined as follows.
VP are the tuple annotations and EP = {{ti, tj} |
∃A,B. ti.A = tj .B}, i.e., there is an edge between
each two tuples who share a constant, including self
edges (e.g., the tuple R(1, 1) would have a self edge).
The provenance graph of the first row of the prov-
example in Figure 2 is shown in Figure 4b. We next
establish the connection between the join and prove-
nance graphs through the concept of graph homo-
morphism.

Definition 2.3. Let GJ = (VJ , EJ) be a query join
graph and GP = (VP , EP ) a provenance graph of an
(I,O). A graph homomorphism between GJ and GP

is a function h : VJ → VP such that (1) (h(u), h(v)) ∈
EP if (u, v) ∈ EJ , particularly, for every variable
shared by u, v at index i, h(u), h(v) share a constant
at the same index, (2) u, h(u) have the same relation
name, and (3) if v ∈ VJ has a projected variable at
index i to the head of Q at index j, then h(v) has
the same constant at index i as the constant of O at
index j.

Example 2.4. Reconsider the join graph GJ in Fig-
ure 4a and the provenance graph GP in Figure 4b.
An homomorphism h : VJ → VP is h(conf) = c2,
h(author) = a2, h(pub) = p1, h(writes) = w1,
h(org) = o2, h(domain) = d1, h(domain conf) =
dc2.

Given a set of homomorphisms H = {h1, . . . , hk}
between a join graph GJ and a provenance graph GP ,
we say that H covers GP if

⋃
h∈H h[VJ ] = VP . Let

Q be a CQ with a join graph GJ , let (O, I) be a row
of a prov-example with a provenance graph GP . We
can show that.

Proposition 2.5. There exists a set H of homomor-
phisms from GJ to GP that covers GP iff Q is con-
sistent with respect to (O, I).

Proof. Suppose we have a set of homomorphisms H
that covers GP , so every h ∈ H maps all the nodes
of GJ to some of the nodes of GP such that Def-
inition 2.3 holds. It is enough to show that every
h ∈ H is equivalent to an assignment of the prove-
nance tuples to Q that produces the otuput tuple,
since

⋃
h∈H h[VJ ] = VP so all provenance tuples are

used for some assignment to Q. Condition (1) in
Definition 2.3 defines that if two atoms share a vari-
able, the two tuples to which they are mapped to also
share a constant in the same index. Condition (2)
says that all homomorphisms map atoms to tuples
with the same relation name, and finally condition
(3) says that the mapping produces the output tu-
ple. Thus, every h ∈ H is essentially an assignment
to Q. Similarly for the other direction, assume Q is
consistent, then it uses all of the provenance tuples to
generate the output tuple. Every assignment defines
a homomorphism that maps the join graph GJ to the
provenance graph GP such that Definition 2.3 holds.
Denote these homomorphisms by H. Since Q uses all
provenance tuples, H covers GP .

For instance, the query in Figure 3 is consistent
w.r.t. the prov-example in Figure 2 since there are
two homomorphisms that map its join graph in Fig-
ure 4a to the provenance graph of the first row in
Figure 4b. One is described in Example 2.4.

From Proposition 2.5 it follows that given a pair
(I,O) and a query Q such that (1) Q has the smallest

4



connected join graph and (2) there is a set of homo-
morphisms from the join graph of Q to the graph of
(I,O) that covers it, then Q is consistent-minimal.
We use this observation when inferring queries as we
show next.

2.3 Homomorphism Based Algorithm

We start by presenting a solution for the case where
a prov-example includes full lineage, and then relax
this solution to account for joinless lineage. The in-
put to the algorithm is a prov-example Ex and the
database schema graph, and it consists two parts as
follows.

The first step of the algorithm is finding the pro-
jected attributes of the query. To this end, we gen-
erate a list of candidates from each row of Ex. The
candidates Ci of the row (Oi, Ii) are the attribute
of the subset of relation names of tuples in Ii that
share a common constant with Oi. The algorithm
then intersect the candidates of the projection to get
the projected attributes

⋂
i Ci.

Example 2.6. Reconsider the first row of the prov-
example shown in Figure 2. The output values ‘SIG-
MOD’ and ‘Alice’ are searched in the provenance tu-
ples. Since the tuples annotated by c2, a2 are the only
ones that contain them, they are the candidates from
the first row. In the same process, we get the tu-
ples c1, a3 from the second row. For each output at-
tribute, we intersect the attributes that are candidate
for projection, e.g., {conf.cname}∩{conf.cname} =
{conf.cname} for the first attribute.

At a high level, the main idea of the second step of
the algorithm is to generate all possible join graphs,
and for each such graph, search for a set of homomor-
phisms that covers the provenance graph of each one
of the rows in Ex. When such a set is found the
corresponding query is returned. The join graphs
generation is done in a growing size order, which
guarantees that the first graph satisfying the cover-
age condition is minimal. In fact, as shown in [6],
if a consistent query exists, it must be of length at
least d and at most k + d · n, where k is the num-
ber of attributes of the output tuple, d is the number
of distinct relations in the provenance, and n is the

number of tuples in the largest provenance set. Thus,
we consider only graphs with a least d nodes and at
most k + d · n that satisfy essential conditions for
a consistent-minimal query: (1) they are connected,
and (2) they include exactly the same relation names
appearing in the provenance of each one of the rows
in Ex. Finally, the algorithm adds selection condi-
tions, by inspecting possible values for constants in
each attribute according to the tuples in the prov-
example. For attributes that take a single value, it
assigns a constant in the query.

Example 2.7. Reconsider the prov-example in Fig-
ure 2 with the Full Prov. column and the schema
of the database in Figure 1. The provenance graph
of the first row is depicted in Figure 4b. The algo-
rithm finds the candidates for projection which are
conf .cname and author.aname in both rows. We
then start generating join graphs. We consider only
connected graphs, that include all the relations ap-
pearing in the prov-example with at least 7 nodes, as
the number of distinct relations in the prov-example.
The only graph that fits this description is given in
Figure 4a. As shown in Section 2.2, there is a set of
homomoprphisms that covers the provenance graph
of each one of the rows in the prov-example. Finally,
the algorithm adds constants and returns the query
in Figure 3.

Joinless lineage We next present a heuristic to
account for joinless lineage, a fragment of partial lin-
eage where join relations containing only foreign keys
is missing from the lineage. More formally, suppose
{t1, t2, t3, . . . , tk} ⊆ I constitute a full assignment
present in the provenance set of an output tuple O.
Assume the relation of t1 is joined with the relation
of t3 in the schema by a join table t2 such that the
attributes of the table of t2 are only the primary keys
of t1 and t3, then I \ {t2} is an acceptable explana-
tion. This fragment is particularly appealing since
it allows for intuitive explanations while nicely pre-
serving the information encapsulated in the lineage.
In this case, the algorithm will “complete” the expla-
nation by finding the missing tuples. We are given
a prov-example where the provenance I in each row
contains all tuples except join relations that connect

5



two tuples ti, tj that are present in I. We add a pro-
cedure after finding the projection attributes, that
checks whether the provenance graph GP of each row
is connected. If not, there is a gap of size one between
two tuples ti and tj (this can be detected by finding
the shortest path between them in the schema graph).
We then look for a relevant tuple to connect ti and
tj (with relations Ri and Rj resp.) through another
relation Rv. This is done by querying the database
to get the tuple tv.

Example 2.8. Consider the prov-example in Figure
2 with the Partial Prov. column. We find that the
provenance graph is not connected, and specifically,
that a2 and p1 do not share a constant and their re-
lations, according to the schema, are connected by the
writes table, so we query the writes relation in Fig-
ure 1, with the aid of a2 and the wid of p1. The result
is the tuple w1 so we add it to the provenance. We
do the same for c2 and d1 to find dc2. In the second
row, we add the tuples w3 and dc1 and then continue
to the graph generation step to find the query.

2.4 From Values to Provenance Tu-
ples

To allow users to easily formulate explanations, we
assume that the initial explanation is composed of
individual values, and the values are then mapped to
tuples in the database. The challenge is finding tu-
ples that most resemble the intended tuples. We will
draw on works such as [11] and use a value similar-
ity score that compares the values inputted by the
user and the tuples in the database. The score of
a tuple t w.r.t an inputted value v can be defined
as score(t, v) = maxt[a]sim(t[a], v), i.e., the maxi-
mum similarity between a cell value in t, t[a], and
the value v. The sim function can be changed ac-
cording to the context, e.g., string similarity or L1

norm for numbers. In our implementation, we have
used a greedy approach so that if a cell contains a
string that exactly matches the inputted string, we
return it immediately.

Example 2.9. Reconsider our running example with
the output examples depicted in Figure 2. An expla-
nation for Alice, SIGMOD may be ‘TAU’, ‘Alice’,

Figure 5: Runtime breakdown for query inference
from prov-example with two rows. The red bars are
the time to extract the provenance tuples from the
given values, the blue bars are the time to get the
missing join tuples, and the green bars are the time
to infer the query from the completed prov.

‘X’, ‘Y’, ‘SIGMOD’, ‘Databases’. The values would
then be mapped the tuples o2, a2, p1, p2, c2, d1 since
these are the tuples most similar to the inputted val-
ues as they have an attribute that is identical to them.
For example, a2[aname] = Alice.

3 Experiments

We have implemented our algorithm in Python 3.6
with an underlying database engine in MySQL 5.7,
and performed a preliminary evaluation of our ap-
proach. Particularly we assessed the queries inferred
by the algorithm using joinless provenance, and mea-
sured the runtimes for different queries. For the first
stage for inferring tuples from values we used the SQL
‘LIKE’ function for strings. We evaluated queries 1–9
(Table 1 depicts three of the queries) with the MAS
dataset [10]. The examples consisted of two output
examples and their provenance values.

We observed that the inferred queries contained
additional filters that were not included in the origi-
nal query but are present in the prov-example. The
reason for that is the small number of examples given
as input. This observation raises the need for inter-
activity in the system, that presents optional selec-
tion criteria and allows the user select or refine them
based on the desired actual query. Apart from these
additional filters, the algorithm inferred all queries
correctly from a set of two rows. This is due to its
greedy approach of trying the smaller join graphs first
the returning the first query that has a set of homo-
morphisms that covers all provenance graphs.

The runtimes of the algorithm are shown in log-

6



Table 1: Queries used in the experiments
Num. Query

1 SELECT author.name FROM writes, pub, conf,
author WHERE writes.pid = pub.pid AND
writes.aid = author.aid AND pub.cid = conf.cid
AND conf.name LIKE ’SIGMOD’;

2 SELECT pub.title FROM conf, domain conf,
pub, domain pub, domain WHERE conf.cid =
domain conf.cid AND conf.cid = pub.cid AND
domain conf.did = domain.did AND pub.pid
= domain pub.pid AND domain.name LIKE
’Databases’;

3 SELECT author.name FROM writes, pub, conf,
author WHERE writes.pid = pub.pid AND
writes.aid = author.aid AND pub.cid = conf.cid
AND conf.name LIKE ’SIGMOD’ AND pub.year
¿ 2005;

4 SELECT author.name FROM writes, pub, conf,
author WHERE writes.pid = pub.pid AND
writes.aid = author.aid AND pub.cid = conf.cid
AND conf.name LIKE ’SIGMOD’ AND pub.year
¿ 2005 AND pub.year ¡ 2015;

5 SELECT author.name FROM author, writes,
conf, domain conf, pub, domain pub, domain
WHERE author.aid = writes.aid AND writes.pid
= pub.pid AND conf.cid = domain conf.cid AND
conf.cid = pub.cid AND domain conf.did = do-
main.did AND pub.pid = domain pub.pid AND
domain.name LIKE ’Databases’;

6 SELECT org.name FROM writes, pub, do-
main conf, domain, author, org, conf, do-
main pub WHERE writes.pid = pub.pid
AND writes.aid = author.aid AND pub.pid
= domain pub.pid AND pub.cid = conf.cid
AND domain conf.did = domain.did AND
domain conf.cid = conf.cid AND author.oid =
org.oid AND pub.year ¿ 2005 AND domain.name
LIKE ’Databases’;

7 SELECT author.name FROM writes, pub, conf,
author, org WHERE author.oid = org.oid AND
writes.pid = pub.pid AND writes.aid = au-
thor.aid AND pub.cid = conf.cid AND conf.name
LIKE ’VLDB’ AND org.name LIKE ‘Tel Aviv
University’;

8 SELECT conf.name FROM org, author, writes,
conf, pub, WHERE org.oid = author.oid AND
author.aid = writes.aid AND writes.pid =
pub.pid AND conf.cid = pub.cid AND pub.year
= 2005;

9 SELECT pub.year FROM author, writes, org,
pub WHERE author.aid = writes.aid AND au-
thor.oid = org.oid AND writes.pid = pub.pid
AND org.name LIKE ‘IBM’;

scale in Figure 5. The stage that was most costly
was inferring the initial provenance tuples from the

database. The next stage was finding the connect-
ing join tuples. Here the queries are more focused
so this stage is faster. The last stage of inferring
the query from the provenance using our homomor-
phism algorithm is usually very fast. However, the
more complex query 6 (shown in Table 1) contains
7 joins took 9 seconds to infer. Since more joins are
involved, the algorithm had to inspect more complex
homomorphisms and, thus, took longer to find the
query join graph and check its consistency.

4 Open problems and future
work

We have presented an initial solution for the prob-
lem of inferring queries based on output examples
with partial explanations represented as values from
the database. The problem requires extensive inves-
tigation, which is the subject of our on-going work.
In particular we consider other, more relaxed vari-
ants of explanations. This problem calls for different
techniques that are prevalent in the field of query-
by-output where column mappings are performed to
match an attribute in the output to an attribute in
one of the database tables. We also consider a natural
language based implementation for the explanations.

References

[1] A. Bonifati, R. Ciucanu, and S. Staworko. In-
teractive join query inference with jim. PVLDB,
7(13), 2014.

[2] A. Bonifati, R. Ciucanu, and S. Staworko.
Learning join queries from user examples. ACM
Trans. Database Syst., 40(4), 2016.

[3] P. Buneman, S. Khanna, and W. Tan. Why and
where: A characterization of data provenance.
In ICDT, 2001.

[4] Y. Cui, J. Widom, and J. L. Wiener. Tracing
the lineage of view data in a warehousing envi-
ronment. ACM Trans. Database Syst., 2000.

7



[5] D. Deutch and A. Gilad. Qplain: Query by ex-
planation. In ICDE, 2016.

[6] D. Deutch and A. Gilad. Reverse-engineering
conjunctive queries from provenance examples.
In EDBT, 2019.

[7] T. J. Green, G. Karvounarakis, and V. Tannen.
Provenance semirings. In PODS, 2007.

[8] D. V. Kalashnikov, L. V. Lakshmanan, and
D. Srivastava. Fastqre: Fast query reverse en-
gineering. In SIGMOD, 2018.

[9] F. Li and H. V. Jagadish. Constructing an inter-
active natural language interface for relational
databases. Proc. VLDB Endow., 2014.

[10] MAS. http://academic.research.

microsoft.com/.

[11] F. Psallidas, B. Ding, K. Chakrabarti, and
S. Chaudhuri. S4: Top-k spreadsheet-style
search for query discovery. In SIGMOD, 2015.

[12] Y. Shen, K. Chakrabarti, S. Chaudhuri, B. Ding,
and L. Novik. Discovering queries based on ex-
ample tuples. In SIGMOD, 2014.

8

http://academic.research.microsoft.com/
http://academic.research.microsoft.com/

	1 introduction
	2 Initial Results
	2.1 The Query Inference Problem
	2.2 Provenance Graph
	2.3 Homomorphism Based Algorithm
	2.4 From Values to Provenance Tuples

	3 Experiments
	4 Open problems and future work

