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ABSTRACT
Increasing aggregate diversity (or catalog coverage) is an important

system-level objective in many recommendation domains where

it may be desirable to mitigate the popularity bias and to improve

the coverage of long-tail items in recommendations given to users.

This is especially important in multistakeholder recommendation

scenarios where it may be important to optimize utilities not just

for the end user, but also for other stakeholders such as item sellers

or producers who desire a fair representation of their items across

recommendation lists produced by the system. Unfortunately, at-

tempts to increase aggregate diversity often result in lower recom-

mendation accuracy for end users. Thus, addressing this problem

requires an approach that can effectively manage the trade-offs be-

tween accuracy and aggregate diversity. In this work, we propose

a two-sided post-processing approach in which both user and item

utilities are considered. Our goal is to maximize aggregate diversity

while minimizing loss in recommendation accuracy. Our solution

is a generalization of the Deferred Acceptance algorithm which

was proposed as an efficient algorithm to solve the well-known

stable matching problem. We prove that our algorithm results in a

unique user-optimal stable match between items and users. Using

three recommendation datasets, we empirically demonstrate the

effectiveness of our approach in comparison to several baselines. In

particular, our results show that the proposed solution is quite ef-

fective in increasing aggregate diversity and item-side utility while

optimizing recommendation accuracy for end users.
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1 INTRODUCTION
Much of the early research in recommender systems has been fo-

cused on improving the accuracy of personalized recommendations.

These efforts have led to a number of effective recommendation

algorithms and strategies. In recent years, however, more attention
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has been focused on key objectives other than accuracy that may

also have a bearing on the overall satisfaction of users as well as

other possible stakeholders of the underlying system. One of these

key objectives is recommendation “diversity”.

Broadly speaking, two notions of diversity have been explored

in the context of recommendation: individual diversity and aggre-
gate diversity. Individual diversity reflects the ability of the recom-

mender systems to recommend a broad range of items to individual

users (for example, items ranging over multiple categories, or span-

ning both popular items as well as niche items). This ability is

often measured as a function of the dissimilarity of items in each

recommendation list provided to users. Improving individual rec-

ommendation diversity is an important objective since it can lead

to higher user satisfaction and helps reduce the “filter bubble” effect

[21] affecting many personalized systems.

Aggregate diversity, on the other hand, measures the ability of

the system as a whole to recommend a wide selection of items. This

is an important system-level objective that ensures a fair oppor-

tunity for most items to be recommended. Increasing aggregate

diversity helps mitigate the popularity bias by increasing the cover-

age of niche or less popular items. It also promotes fairness from the

perspective of other stake-holders such as sellers or suppliers who

need to have a guarantee that the system provides a fair coverage

of their items across recommendation lists. Aggregate diversity is

often measured as a function of the number or the ratio of items that

are recommended to users relative to the set of all items available

across all suppliers.

In this paper we focus primarily on aggregate diversity especially

as an objective related to item side of the recommendation scenario.

In particular we are interested in a two-sided framework that can

produce a balanced match between items and users taking into

account both user utilities (reflected in recommendation accuracy)

as well as item utilities (reflected in aggregate diversity).

As with other beyond-accuracy objectives, there is often a trade-

off between aggregate diversity and personalization or recommen-

dation accuracy: approaches that try to increase aggregate diversity

generally do so at the cost of accuracy degradation. A variety of

approaches have been proposed to manage this trade-off including

optimization approaches using network flow models on the bipar-

tite user-item graph [2, 3, 5] as well as re-rankingmethods involving

utilizing the dual recommendation perspective of recommending

(matching) items to appropriate users [28]. These approaches gener-

ally try to balance the diversity-accuracy trade-offs either by trying

to optimize for recommendation accuracy while imposing certain

constraints on the items, or by using multi-criteria optimization

where both accuracy and diversity are optimized individually and

the trade-off is controlled through appropriate parameter settings.
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We introduce a more principled two-sided approach to managing

the diversity-accuracy trade-off that takes into account both user

and item utilities. User utilities are maximized when the ranking

accuracy of the recommendation lists are maximized. Item utili-

ties, on the other hand, are maximized when the item is matched

with the most suitable list of users. We view the problem as an

assignment problem where the goal is to distribute items to each

user’s recommendation list of size k , such that both user and item

utilities are maximized and where each item is subject to a capacity

constraintC (i.e. can be recommended at mostC times). We propose

a generalization of a well-known and efficient algorithm for solving

the two-sided stable matching problem adapted to recommenda-

tion context. Specifically, we extend the Deferred Acceptance (also
known as Gale-Shapely) algorithm [15] used to solve the college

admission problem. In this problem, given a set of students and set

of colleges with quotas the goal is to find the best (stable) matching

possible based on the ranking preferences of the two groups. In our

case, the ranking preferences for the user-side and the item-side are

specified based on user and item utility functions, respectively. The

algorithm then automatically finds the best stable match possible

subject to item cap constraints.

We show that the proposed algorithm is user-optimal (maximizes

user utilities) subject to the cap constraint. But the algorithm also at-

tempts to maximize item utilities while maintaining a stable match

(when there is a symmetry between user and item preferences),

and this, in turn, results in higher overall aggregate diversity. From

a practical perspective, our proposed algorithm provides added

flexibility as a post-processing approach because it can be used

in conjunction with any top-N recommendation algorithm that

can generate preference rankings for users and items. In our ex-

periments, we empirically demonstrate the effectiveness of our

approach in comparison to several baselines and using different

underlying recommendation algorithms. Our results show that our

approach is effective in increasing aggregate diversity and item-side

utility while maintaining or improving recommendation accuracy

for end users.

2 RELATEDWORK
As noted earlier, improving individual recommendation diversity

has been shown to lead to better user satisfaction [18, 23] and

to reduce the “filter bubble” effect [21] affecting many personal-

ized systems. It is also an important consideration for reducing

popularity bias [22, 29] that affects many collaborative recom-

mender systems. There has been an extensive research in develop-

ing methods for increasing individual diversity and in understand-

ing the trade-offs between diversity and recommendation accuracy

[11, 12, 24, 27, 30, 31]. Other related notions affecting the quality

of recommendations to end users, such as novelty and serendipity,

have also been extensively explored [1, 19].

Increasing aggregate diversity, on the other hand helps mitigate

the popularity bias by increasing the coverage of items recom-

mended from the long-tail [4, 9, 22, 29]. In prior work, aggregate

diversity has been referred to using different terms including as

“sales diversity” [14, 17, 20, 28], “catalog coverage”, or simply “cov-

erage” [19]. In this paper we use the term “aggregate diversity” to

broadly encompass these other representations of the concept.

In [2, 6] a graph-theoretic approach has been used to increase

aggregate diversity and also maintaining accuracy. Specifically, [6]

formulated the recommender system as a subgraph selection prob-

lem from a supergraph generated by any recommender system in a

bipartite graph of users and items. Then, they solved this problem

using a Minimum-cost network flow approach. In their approach a

similar constraint has been used to limit the number of times each

item can be recommended. Their goal is not to strictly satisfy this

constraint but to penalize the recommendations that try to deviate

from this constraint. Our approach and methodology is completely

different from theirs. First, the mentioned constraint will be always

satisfied completely in the resulting re-ranked recommendations.

Secondly, the stable matching proposed in this paper is a simple

and efficient (polynomial time complexity) method both in terms

of implementation and ease of understanding. Besides that, our

problem is a two-sided recommendation where utilities of both

users and items are incorporated into the model. However, in their

approach only user-side utilities are considered.

Another line of works which has been proposed recently by

[8] is to consider the objectives of different multistakeholders in

the system. For example, in any recommender system three stake-

holders can be defined: consumers, providers and the platform for

these two to be connected. Good examples of such platforms are

job recommendation and item recommendation in Amazon. In each

of these platforms the consumers and providers are separated from

the platform and the utility of both parties are important [7]. Very

recently [26] has formulated this problem using an integer linear

programming approach. Their goal is to maximize utility of both

consumers and providers using an optimization method. Our ap-

proach is similar in terms of overall goals. However, in our problem

we incorporate the utility of items in to the optimization while they

only consider the item utility as a constraint on the optimization

that needs to be satisfied. In other words, they do not take into

account the ranking preferences of items over users as we do it in

our method. In addition to that, our algorithm is completely differ-

ent and draws on well-established Gale-Shapely algorithm [15] for

the stable matching problem. The proposed method in this paper

is computationally more effective than the integer programming

approach.

3 BACKGROUND AND PROBLEM
DEFINITION

In a typical recommender system there are two types of entities:

Users and Items. Personalization is the main feature of recom-

mender systems allowing the system to match users with items

that are consistent with those users’ preferences. A recommender

system can be viewed as a bipartite graph G = (U,I, µ), whereU
is the set of all users, I is the set of all items and µ is the set of edges
represented as user-items pairs (u, i). The goal of a recommender

system is to rank the items such that preferred items by each user

appear higher in the ranking. The top N items in the ranking are

then presented to the user as recommendations. For our purposes,

we do not make any assumptions about which underlying algo-

rithm is used to rank the items, but assume that such a ranking can

be produced. We denote the preference ordering of user u on all



items in I based on the recommender system ranking by ≻u . We

say user u prefers items i1 to i2 if i1 ≻u i2.
The preference ordering can be used to define the notion of

user utility. As we shall see in the following, we use Normalized

Discounted Cumulative Gain (NDCG) to measure user utilities,

however, other ranking measures can also be used for this purpose.

In the typical recommendation setting, the goal is usually to max-

imize user utilities. However, a single-minded focus on user utilities

without considering the utility of items may result in an unfair or

uneven distribution of items among all the recommendation lists. In

reality, there are often few popular items that receive the lion share

of user attention in the system. Especially in collaborative recom-

mender systems, the abundance of user feedback on popular items

results in recommendations that are biased towards these items,

perpetuating the popularity bias. Thus, one-sided recommender

systems (that are focused solely on maximizing user utilities, tend

to produce a power law distribution of recommended items and an

unfair platform for most of the items to compete with a few popular

items. This, in turn, may reduce the incentive to participate on the

part of many sellers or producers.

Ideally, the distribution of recommended items should be uni-

form with maximum entropy. However, since the user preferences

are concentrated over a small set of items, any attempts to “flatten”

the distribution of items in recommendations will result in signif-

icant loss in accuracy and personalization effectiveness. Ideally,

we would like to maximize the entropy of item distribution across

recommendations while minimizing accuracy loss.

One way to control the entropy of item distribution is to impose

a constraint C over the capacity of items (the number of times

each item can be recommended ni ). This is the approach taken

in several prior methods that aim to increase aggregate diversity

while optimizing user utilities [6]. This approach,however, ignores

potentially relevant information available on the item side of the

recommendation platform. Just as user preference rankings of items

can be used as the basis for user-side utility function to provide the

most relevant items to users, a dual notion of item utility can be

used to represent the best match between each item and a ranked

list of users. Indeed, increasing aggregate diversity in a brute-force

fashion does not necessarily mean that each item is matched with

the most appropriate set of users.

Our goal in this work is to automatically achieve a balance be-

tween accuracy and aggregate diversity that takes into account

both user and item utilities. Specifically, our approach re-ranks the

recommendations for users by maximizing both user and item util-

ities subject to a capacity constraint ni ≤ C in such a way to create

a stable match between users and items. We do so by extending the

well-known Gale-Shapely or Deferred Acceptance algorithm [15]

in order to handle the many-to-many matching problem which is

required in the context of recommender systems. In the following

we provide a more formal statement of the problem and in the next

section we present the details of our algorithm and discuss some of

its properties.

User Utility:

We use Normalized Discounted Cumulative Gain (NDCG) as

the basis for defining our notion of utility. NDCG is a well-known

measure of ranking quality in information retrieval which measures

the gain of each item based on the change in the ranking position of

the item in a ranked list of items. Given the ranking preference of a

user ≻u and her recommendation list L, the Discounted Cumulative

Gain (DCG) is defined as:

DCG(L, ≻u ) =
∑
i ∈L

rel(i, ≻u )
loд2(i + 1)

(1)

Relevance scores can be defined in a small range of values such

as rel = (0, rmax ). The relevance score of each item for user u is

defined based on its ranking position in ≻u :

rel(i, ≻u ) =
rank−1(i, ≻u )

rmax
(2)

where the numerator is the reversed ranking position of item i in
user u’s ranking preference ≻u .

Given a user ranking preference order ≻u and any other item

ranking L, the gain in user u’s utility relative to L is defined as:

NDCGu (L) =
DCG(L, ≻u )
IDCG(u) (3)

where IDCG(u) is the ideal DCG of user u in which the relevance

scores for all items in equation 1 is equal to the maximum value

rel(i) = rmax .

In a one-sided recommendation setting the problem can be for-

mulated as a user utility optimization problem subject to certain

constraints. Specifically, for each user u a recommendation list is a

set of user-item pairs µu . The user-side utility of the matching µu
is computed using NDCGu (µu ). Therefore, given the item capacity

C and set of all the matchings (recommendations) µ = {⋃u ∈U µu }
the problem formulation would be as follows:

maximize

µ
UtilityU (µ)

subject to ni ≤ C, i ∈ I.
(4)

where UtilityU (µ) = NDCGU (µ) and ni is the number of times

item i is recommended.

As noted earlier, however, our goal is to optimize both user and

item utilities.

Item Utility:

Similar to user-side utility, the item utility is defined by an item-

side version of NDCG . Given an item i ranking preference ≻i over
all the users, the gain in item i’s utility given a matching µi =
{(u, i), (u ′, i), ...} is defined as follows:

UtilityI (µi ) = NDCGi (µi ) =
DCG(µi , ≻i )
IDCG(i) (5)

Similar to equation 3, the idealDCG for item i is denoted by IDCG(i).
In a two-sided recommendation the problem can be defined as

simultaneously optimizing utilities of users and items:

maximize

µ

(
UtilityU (µ), UtilityI (µ)

)
subject to ni ≤ C, i ∈ I.

(6)

It is important to note that there is an asymmetry between rank-

ing preferences of items and those of users. This means that utilities



of each side is derived independently and are not necessarily con-

sistent with each other. For example, if user u prefers item i the
most, it does not always hold that in item i’s preference ordering,
u is the highest ranked user, i.e.,

{∀i ′ ∈ I : (i ≻u i ′)} ⇍⇒ {∀u ′ ∈ U : (u ≻i u ′)} (7)

Therefore, finding a matching that maximizes the utility of one side

does not necessarily maximize the utility of the other side. Popular-

ity bias increases this asymmetry and this makes the simultaneous

optimization of both sides very difficult requiring an intelligent

way to manage the trade-off point between the two utilities.

4 STABLE MATCHING AND DEFERRED
ACCEPTANCE ALGORITHM

In the previous section we formulated the assignment problem such

that the utilities of both user and item sides are considered. In this

section, we introduce an efficient solution to this problem and show

the correctness of the algorithm.

The Deferred Acceptance (also known as Gale-Shapely) algo-

rithm [15] is a well-knownmethod for solving the college admission

problem. In this problem, given a set of students and set of colleges

with quotas the goal is to find the best matching possible based on

the ranking preferences of the two groups. Gale-Shapely’s method

is based on the key notion of a “stable match”.

In the recommendation context, a matching µ is said to be unsta-

ble if there exists another matching µ ′ where both utilities of users

and items have increased in µ ′ compared to µ. In other words, if

i ≻u i ′ and u ≻i u ′ and also {(u, i ′), (u ′, i)} ∈ µ, then µ is unstable

because both u and i can be better matches for each other and

therefore both user and item utilities are higher in µ ′. A matching

µ is stable if no such unstable match exist for every pair of matches

{(u, i), (u ′, i ′)} ∈ µ. Gale and Shapely showed that a stable match

always exists and the Deferred Acceptance algorithm always finds a

stable match. The output of this algorithm is a one-to-many match-

ing where each college will be matched to many students based on

their quotas. The ingenuity of the Gale-Shapely’s method is in this

intuitive strategy of solving a combinatorial optimization problem.

The input to the Deferred Acceptance Algorithm is a fully-

connected directed bipartite graph connecting users and items.

There are directed edges in each direction between user and item

nodes. There is a preference ranking for each node on each side of

this graph. The algorithm begins to match user-item pairs starting

from one side of the bipartite graph (here we assume it starts from

the user side). A user u is matched with an item i in increasing

order of her rankings. At a given rank k , two situations are possible.
First, item ik (kth item in user’s ranking) may not be currently

matched with any user. In this case, a match (u, ik ) is created. On
the other hand, item ik may already be part of a match with another

user v . In this case if ik prefers v over u, then user u’s next ranked
item is considered since the current match (v, ik ) is more stable.

Otherwise, it is replaced with the more stable match (u, ik ) and
user v is considered again for subsequent matches. This process is

repeated until all users are matched with items. This would be the

one-to-one matching of Deferred Acceptance algorithm.

We extend this algorithm by allowing themembers of each side to

have more than one matching. This way each user can be matched

Algorithm 1:MMDA: Many-to-Many Deferred Acceptance

Input: The ranking preference of users and items: {≻u and ≻i :
∀u ∈ U and i ∈ I}; k : recommendation list size for

each user; ci : item caps.

Output: User-Item Matching µ
1 µ ← ∅
2 for u ∈ U do
3 Su ← ∅
4 end
5 while {∃u | |µu | < k} do
6 i ← Top (≻u < Su )
7 µu ← µu ∪ i
8 Su ← Su ∪ i
9 if |µi | > ci then

10 Φi ← sort
−1(µi ) subject to ≻i .

11 µi ← µi \ {∀u ∈ µi | rank(u ∈ Φi ) > ci }
12 end
13 end
14 return µ

to many items and hence receive these items as recommendations.

We introduce the cap for items as a constraint to limit the number of

times an item can be matched (recommended) to users. Therefore,

the combinatorial challenge of this problemwould be to find the best

matching that cannot be improved further (no other matching exist

that would be better off for both sides). We call this algorithm the

Many-to-Many Deferred Acceptance (MMDA) algorithm (see Algo-

rithm 1). Next, we introduce the notation that is required for this

algorithm. Two functions are used to work with preference rank-

ings in the algorithm. The first function is Top (≻u < Su ) which
returns the top-ranked item i from ≻u where i does not belong
to Su . The second function is [sort−1(µi ) , subject to ≻i ] which
reverse sort (or rank) the items in µi based on ranking preferences

in ≻i .
The algorithm starts with µ set to empty set. Also, for each user

we initialize an empty set to Su for the set of selected items by u.
As we iterate over users’ preference rankings ≻u in the main loop

of the algorithm (line 5), we add items to Su . The main while-loop

continues until we assign k items to each user’s matching set µu .
This makes sure that we have recommended at least k item to each

user. Next at line 6, we set item i as the top preferred item in user

u’s ranking which has not yet been selected. At line 7 we assign

item i to the user u’s matching and also, adding i to the selected

items of this user Su . At line 9, we check to see whether any of

the item constraints are violated. If so, we should find the ranked

list (subject to ≻i ) of assigned users to item i and, reject the least
preferred user for item i by removing it from the assigned users µi
to item i . Next, we discuss the observations and theorems that are

followed by MMDA.

Observation 1. Once item i is assigned to a user u, in later itera-
tions of the algorithm either the assignment (u, i) remains the same
or it gets better (u ′, i) where u ′ ≻i u. In other words, the utility of
each item’s assignment is monotonically non-decreasing.



Observation 2. On the other hand, individual users’ utilities get
worse over later iterations of the algorithm. Users always start with
their best options and in case of rejections they look for less preferred
items in their ranking preference.

Theorem 3. MMDA always finds a stable matching.

Proof. (by contradiction). Let’s assume there is an assignment

which makes µ from algorithm 1 unstable. Therefore, by definition

there should be an unstable assignment for users u and u ′ and
items i and i ′, where all of the followings are true: u ≻i u ′, u ≻i u ′,
(u, i) < µ, (u, i ′) ∈ µ, and (u ′, i) ∈ µ.

Since u prefers i , according to the observation 2 the algorithm

should assign i before assigning i ′ to u. Now, there can be two

possible cases for u ′:
Case 1: u ′ is assigned to i in a previous iteration. At this point,

u first selects i . Now, i should decide between u ′ and u. Based on

observation 1 items always choose the better user according to their

ranking preferences. Therefore, µ rejects the previous assignment

(u ′, i) and accept the new assignment (u, i). This contradicts the
assumption that {(u, i ′), (u ′, i)} ∈ µ.
Case 2: u ′ is assigned to i after u selecting item i and matched with

it in (u, i). Since, by definition i prefers u to u ′, then i will remain

matched with u contradicting the instability assumption. □

Theorem 4. MMDA is user-optimal.

Proof. (by contradiction). Let’s assume that the output µ of al-

gorithm 1 is not user-optimal. Therefore, there should exist another

matching µ ′ where at least a pair of assignments is different so

that UtilityU (µ ′) > UtilityU (µ). We can represent the difference

between µ and µ ′ is as follows:

µ = {(u, i), (u ′, i ′)} ∪ {µ ∩ µ ′}
µ ′ = {(u, i ′), (u ′, i)} ∪ {µ ∩ µ ′}

In the following, we show that if µ ′ exists with a greater user utility

satisfying the constraint ni ≤ C , then there is a contradiction. To

show this we consider two cases:

Case 1: (i ≻u i ′). If user u prefers item i more than i ′, then the

user-side utility of µ is greater than µ ′ and therefore µ is more

user-optimal than µ ′.
Case 2: (i ′ ≻u i). In this, case assuming that there is a competition

betweenu andu ′, useru ′ should also be more interested in i ′. There
can be two cases with respect to the preferences of item i ′: either
u ≻i′ u ′ or u ′ ≻i′ u. Again we break down these two cases.

Case 2.1: Our assumptions are: i ′ ≻u i , i ′ ≻u′ i , u ≻i′ u ′. Based
on these assumptions for this case i ′ prefers u over u ′ and also u
prefers i ′ over i . Then by definition the existence of assignment

(u, i) ∈ µ, makes µ unstable. Which contradicts with theorem 3.

Case 2.2: (u ′ ≻i′ u). Since, i ′ ≻u′ i is true as an assumption, then

both user and item utilities are greater for µ than µ ′. □

Note that there may be many stable matchings but there is only

one user-optimal stable matching (given that we assume users

make the first selection of items in their ranking preferences over

items). Also, in the situation where too many users (more than

the cap) are interested in one item users who are not preferred

by that item will be rejected in order to maintain the stability of

the match. In the experiments we show how aggregated user and

item utilities increase with each given iteration of the algorithm.

The monotonicity of the utilities provides empirical evidence of the

correctness of this algorithm.

The computational complexity of the MMDA isO(n×m×k loд k)
where n andm are the number of users and items in the system.

The worst-case scenario is when every user should go over all of

his/her ranking preferences ofm items at most and each time sort

the items in µi where |µi | = k is the recommendation list size.

Controlling utility of each side can be done using item caps.

MMDA strictly tries to satisfy the items’ capacity constraint which

is the only parameter of this algorithm. However, there is a limit to

the increase of item-side utility if the algorithm is user-optimal. To

go beyond this limitation the item-optimal version of this algorithm

can be used where items start selecting users first based on their

preferences.

5 EXPERIMENTS
In the previous section we proved that the MMDA algorithm is both

stable and user-optimal. In this section we provide further empirical

evidence for the effectiveness of the algorithm using three different

data sets and under different conditions. In our experiments the

resulting recommendations are evaluated for each side in isolation.

On the user side, we use traditional evaluation metrics for accuracy

and individual diversity of recommendations, while on the item-

side we measure changes in item utilities. We also use standard

metrics such as the Gini-index to measure changes in aggregate

diversity (see Section 5.3). First, we show the impact of MMDA

re-ranking on each of the user and item sides by measuring various

metrics. Secondly, we show the effectiveness of MMDA in dealing

with user-item utility trade-offs. Also, we illustrate the impact of

setting different capacity values for items.

5.1 Datasets
In our analysis we used three publicly available datasets. The first

dataset is MovieLens 1M (ML)
1
, a specific dataset for movie recom-

mendation which is widely used in Recommender system’s domain.

ML contains 6,040 users and 3,702 movies and 1M ratings. Sparsity

of ratings in this dataset is about 96%.

Two other datasets used in our experiments are from Amazon

categories [16]: Amazon Books and Amazon Movies. The original

Amazon books contains 2.5Musers and about 1M items (books). Due

to huge sparsity of this dataset we have randomly selected a subset

of dataset in which each user has rated at least 20 items and each

item has received at least 20 ratings. The resulting dataset reduced

to 10K users and 9K items. The same process has been applied to

the Amazon Movies dataset. Our sampled dataset contains 6.5K

users and 6K items. The sparsity of the ratings are 72.3% and 98.5%

for Amazon books and Amazon movies, respectively.

5.2 Experimental Settings
MMDA is a post processing method which re-ranks the previously

generated recommendations. We use two well-known collaborative

filtering methods: User-based kNN [25] and Non-negative Matrix

Factorization (NMF) [10, 13] as the underlying algorithms to gener-

ate the initial rankings. Utility of users are defined based on item

1
https://grouplens.org/datasets/movielens



rankings from these recommendations. On the other hand, utility

of items can either be explicitly defined by item sellers, or they can

be implicitly derived by recommending users to items [28]. Since,

the seller preferences were not available to us, we used the implicit

approach to define the item utilities.

For each dataset and recommendation method we first generated

recommendations and then using the MMDA re-ranking method

and predefined constraints (different caps can be used for each item)

we generated the final recommendations. The results are shown

in total of 6 tables (Tables 1 through 6) corresponding to different

dataset and recommender combinations.

We split the data into training, validation and testing sets with

80/10/10 percent ratios. For each dataset, we have tuned the pa-

rameters of base recommendation methods so that the accuracy

(precision) is the maximized over the validation set. The parame-

ters of the recommender methods used in our experiments are as

follows. In MovieLens dataset we set the number of neighbors to

10 in User-based kNN. Also, in same dataset the number of latent

factors is set to 40 when using NMF. For the Amazon datasets (both

books and movies) we set the number of neighbors to 40 for kNN

and the number of latent factors is set to 400 in NMF.

We used two baseline re-ranking methods to compare to our

approach.

Bayesian Re-ranking (BR) [28]: Another re-ranking method

specifically designed to increase catalog coverage. Given the score

of each user-item pair s(u, i), the BR re-scoring is defined by:

sBR (u, i) = s(u, i)
( ∑
u′∈U

s(u ′, i)
)−α

(8)

We have tuned the only hyper-parameter of this method α using

grid search. Not all the values of α produce desired results. For

example, setting values larger than 0.01 does not change neither

precision, nor gini-index.

Bi-criteria optimizationusing network-flow (NetFlow) [6]:
We introduced this paper in the related work section. This method

tries to optimize for two objectives: minimum discrepancy and max-

imum relevance and formulates the objective as [λ×discrepancy(H )
−µ×relevance(H )] (whereH stands for hyper-graph that is the orig-

inal recommendations). We have tuned the two parameters (λ and

µ) such that to obtain maximum accuracy at the various values of

aggregate diversity (Gini-index in our experiments, see section 5.3).

This is exactly the same approach that we used for tuning the pa-

rameters of our method. The hyper-graph used in our experiments

include all the recommended items available in the catalog and

their corresponding scores obtained from the recommender system

(either NMF or user-based kNN).

5.3 Evaluation Metrics
Accuracy-based measures of utility:

User-side Utility (Precision@k): We use precision to measure the

accuracy of re-ranked results. Precision@k is the average of fraction
of relevant items in each user’s recommendation list Lu .

Precision@k =
1

|U|
∑
u ∈U

|Lu ∩ Tu | (9)

Figure 1: Amazon Movies: Utilities of both sides at each iter-
ation of the MMDA, item cap=15, base recommender=NMF.

Figure 2: Amazon Movies: Utilities of both sides given vari-
ous item caps c in MMDA.

Figure 3: Amazon Movies: Precision@10 and Gini-index
given various item caps c in MMDA.

where k = |Lu | is the recommendation list size and Tu is the user

u’s test set.

Aggregate Diversity Measures:

Gini-Index: This is the measure of fair distribution of items into

recommendation lists of all the users. The ideal (maximum fairness)



case is when this distribution is uniform. The Gini-index of uniform

distribution is equal to zero and so smaller values of Gini-index are

desired.

Gini =
1

|I |

|I |∑
k=1

(2k − |I| − 1) × p(ik |L), (10)

where L is the set of all the recommendations for users and p(ik |L)
is the probability of the k-th least recommended item being drawn

from the recommendation lists in L:

p(i |L) = |{u ∈ U|i ∈ Lu }|∑
j ∈I |{u ∈ U|j ∈ Lu }|

(11)

Catalog coverage is another widely used metric defined as the

fraction of all the items that has been recommended at least once in

all recommendation lists. Although, it used extensively as a measure

of aggregate diversity, it is not a reliable measure. The main reason

is that it is prone to noise. In a typical recommendation dataset, you

would find thousands of users. Just by recommending an item once,

it is not actually considered as covered. In that sense, Gini-index

is much more reliable and more difficult metric to optimize. Note

that in our tables in order to make results easier to understand

the inverse of gini-index is shown. Therefore, the greater values of

gini-index are more desired.

Intra-List Distance (ILD): This is the measure of individual user

diversity [11, 31], which is a pairwise distance between all the items

in each user’s recommendation list.

ILD(Lu ) =
1

|Lu |(|Lu | − 1)
∑
i ∈Lu

∑
j ∈Lu

d(i, j) (12)

Where d(i, j) is the Cosine distance between two items based on

ratings data. Note that, while our direct objective is not increas-

ing individual diversity, we nevertheless measured ILD to explore

possible correlations between aggregate diversity and individual

diversity.

User and Item Utilities:We defined these utilities based on the

notion of NDCG and the ranking distance from each side’s ranking

preferences. The precise definition was provided in Section 3.

5.4 Results and Discussion
Figure 1 shows the increase in user and item utilities over successive

iterations of MMDA. Interestingly, in the beginning both utilities

are increasing at the same pace but over time the slope of the lines

shows more gain in item utility versus user utility. This is perfectly

aligned with our observations 2 and 1 in the previous section.

Also, we ran experiments on the Amazon Movies data set to

observe the effect of specifying various constraints for item ca-

pacity values cap in MMDA. Note that since this is an assignment

problem (meaning that for each user there are k empty positions

to assign items into those positions as recommendations) the cap
value cannot be smaller (lower bound) than |U| × k/|I| where k
is the recommendation list size. Choosing values smaller than the

lower bound will result in empty recommendation lists for some

users. Figures 2 and 3 show these results in terms of utilities (item-

side versus user-side) and accuracy-diversity trade-off, respectively.

In figure 3 the range of Gini-index values in x-axis are much larger

than precision values in y-axis. This shows the effectiveness of

MMDA in distributing items such that the loss in accuracy is mini-

mized. To the best of our knowledge no other re-ranking method

is capable of competing with MMDA when very low Gini values

(close to uniform distribution of items) is demanded. This would

be the major advantage of the MMDA compared to the baseline

methods as shown in the tables.

Figure 2 shows the performance of MMDA given various caps.
Note that the range of change in user utility is much smaller com-

pared to the range of changes in item utility. This reflects the ef-

fectiveness of MMDA in managing the trade-off in utilities such

that with little loss in user-side utility, the gain in item-side utility

would be substantial.

Among all of the existing methods in the literature our method

is the only one that can approach uniform distribution of items

(close to zero on the Gini-index in figure 3). More interestingly,

this huge lift in aggregate diversity does not result in a huge loss

of accuracy. Therefore, our approach effectively deals with the

accuracy-diversity trade off. Also, the increase in aggregated diver-

sity increases individual recommendation lists’ diversity which is

beneficial both to users and item providers.

Results on tables 1-6 show a comparative evaluation of different

re-ranking methods using metrics discussed in section 5.3. Note

that in order to make the tables more understandable we reversed

the values of gini-index such that larger values of any metric are

desired. Tables 1 and 2 show the results for MovieLens dataset. The

concentration bias of ratings over popular items in training set

of this dataset is much more than other two datasets. This makes

managing the trade-off between accuracy and diversity more chal-

lenging. We can see all of the baseline methods are bound from

below in terms of Gini values. The Gini values of MMDA on the

other hand are not restricted to a specific range. For example, the

Gini values for MMDA with cap = 17 and cap = 20 are much

smaller representing near uniform item distribution across recom-

mendations with the cost of losing about 12% in precision. (also

compare it to the baselines) On the other datasets, the concentration

bias is slightly smaller and therefore MMDA is able to maintain a

high level of precision while decreasing Gini values (thus increasing

aggregate diversity) significantly.

Even though our goal was not to increase individual diversity,

ILD measures in almost all of our results show the effectiveness of

MMDA in increasing Intra-list diversity of recommendations. This

suggest that both user and item sides are benefiting from MMDA

re-ranking results.

6 CONCLUSION AND FUTUREWORKS
We have proposed a two-sided re-ranking recommendation ap-

proach that takes into account both item and user utilities in order

to produce the best possible match between items and users. Based

on an extension of the Deferred Acceptance algorithm for solving

the well-known stable matching problem, our method is guaran-

teed to always produce a stable match in an efficient manner. We

have proved this property of the algorithm and we have also shown

that it is user-optimal subject to specified item cap constraints.

These properties allow our algorithm to automatically manage the

trade-off between aggregate diversity objective on the item side and

the accuracy objective on the user side. This is a post-processing



NMF

BR

α=0.01
BR

α=1e−3
BR

α=4e−4

NetFlow

λ=2.0
µ=0.0

NetFlow

λ=2.0
µ=0.01

NetFlow

λ=0.99
µ=0.01

MMDA

cap=17
MMDA

cap=20
MMDA

cap=50
MMDA

cap=80

Precision@10 22.4 6.5 20.6 25.2 2.2 16.7 21.7 8.7 9.7 14.7 17.9

Gini(reversed) 6.3 6.1 13.0 8.0 85.3 35.1 16.6 95.9 81.6 35.1 20.7

Avд(prec, дini) 14.3 6.3 16.8 16.6 43.8 25.9 19.2 52.3 45.6 24.9 19.3

U til ityU 100.0 97.9 99.8 99.9 74.3 98.7 99.7 85.0 89.4 99.2 99.3

U til ityI 16.9 14.5 28.3 23.4 65.1 56.0 38.0 84.4 73.8 47.9 24.0

Avд(U til it ies) 58.5 56.2 64.0 61.7 69.7 77.4 68.8 84.7 81.6 73.5 61.6

ILD 0.487 0.636 0.570 0.487 0.755 0.741 0.487 0.898 0.846 0.594 0.618

Table 1: MovieLens 1M dataset, NMF recommendations.

kNN

BR

α=0.01
BR

α=1e−3
BR

α=4e−4

NetFlow

λ=2.0
µ=0.01

NetFlow

λ=2.0
µ=0.01

NetFlow

λ=0.8
µ=0.2

MMDA

cap=17
MMDA

cap=20
MMDA

cap=50
MMDA

cap=80

Precision@10 22.4 3.1 17.5 21.6 2.5 6.7 9.1 9.4 10.1 14.6 16.9

Gini(reversed) 8.1 14.6 20.7 11.5 86.2 86.3 71.2 96.0 81.8 35.1 23.2

Avд(prec, дini) 15.2 8.9 19.1 16.6 44.4 46.5 40.1 52.7 46.0 24.8 20.1

U til ityU 100.0 97.3 99.9 100.0 77.3 96.2 98.4 86.3 93.8 99.2 99.6

U til ityI 31.2 30.7 51.1 43.2 66.0 74.1 71.6 82.8 73.3 47.9 41.1

Avд(U til it ies) 65.6 64.0 75.5 71.6 71.7 85.2 85.0 84.5 83.5 73.5 70.3

ILD 0.512 0.908 0.539 0.505 0.771 0.883 0.893 0.964 0.925 0.659 0.634

Table 2: MovieLens 1M dataset, User-kNN recommendations.

NMF

BR

α=0.01
BR

α=1e−3
BR

α=4e−4

NetFlow

λ=2.0
µ=0.01

NetFlow

λ=0.8
µ=0.2

NetFlow

λ=0.01
µ=0.99

MMDA

cap=12
MMDA

cap=15
MMDA

cap=20
MMDA

cap=50

Precision@10 7.2 1.9 3.9 6.8 1.0 1.4 2.7 4.3 4.7 5.4 6.5

Gini(reversed) 11.1 15.3 32.0 20.4 85.7 85.5 7.5 88.6 71.9 55.2 24.6

Avд(prec, дini) 9.1 8.6 17.9 13.6 43.3 43.5 5.1 46.4 38.3 30.3 15.5

U til ityU 100.0 99.0 99.6 99.9 85.7 87.3 98.2 98.6 99.1 99.5 99.9

U til ityI 41.6 43.5 74.2 67.6 77.4 79.5 21.4 93.7 87.4 78.3 55.4

Avд(U til it ies) 70.8 71.2 86.9 83.8 81.6 83.4 59.8 96.2 93.2 88.9 77.7

ILD 0.530 0.783 0.666 0.562 0.946 0.962 0.965 0.819 0.818 0.767 0.707

Table 3: Amazon Movies dataset, NMF recommendations.

kNN

BR

α=0.01
BR

α=1e−3
BR

α=4e−4

NetFlow

λ=2.0
µ=0.0

NetFlow

λ=0.99
µ=0.01

NetFlow

λ=0.01
µ=0.99

MMDA

cap=12
MMDA

cap=15
MMDA

cap=20
MMDA

cap=50

Precision@10 7.1 1.4 4.9 6.9 1.1 3.5 7.0 5.4 5.8 6.2 7.0

Gini(reversed) 13.9 21.4 51.5 28.7 85.4 85.8 14.1 88.9 73.6 58.5 30.1

Avд(prec, дini) 10.5 11.4 28.2 17.8 43.2 44.6 10.6 47.2 39.7 32.4 18.6

U til ityU 100.0 98.7 99.7 99.9 88.6 99.4 100.0 99.2 99.5 99.6 99.9

U til ityI 49.0 30.0 77.2 71.1 63.2 74.5 49.5 81.4 76.6 72.2 60.5

Avд(U til it ies) 74.5 64.3 88.5 85.5 75.9 87.0 74.8 90.3 88.0 85.9 80.2

ILD 0.690 0.838 0.752 0.745 0.964 0.98 0.922 0.810 0.757 0.718 0.722

Table 4: Amazon Movies dataset, User-kNN recommendations.

NMF

BR

α=0.01
BR

α=1e−3
BR

α=4e−4

NetFlow

λ=2.0
µ=0.0

NetFlow

λ=2.0
µ=0.01

NetFlow

λ=0.8
µ=0.2

MMDA

cap=12
MMDA

cap=15
MMDA

cap=20
MMDA

cap=50

Precision@10 14.3 3.6 4.2 11.5 2.4 8.6 14.2 9.4 10.4 11.4 13.8

Gini(reversed) 18.2 16.1 20.3 33.7 87.5 85.8 19.9 96.2 77.5 59.0 26.6

Avд(prec, дini) 16.2 9.9 12.2 22.6 45.0 47.2 17.0 52.8 44.0 35.2 20.2

U til ityU 100.0 99.4 99.5 99.9 90.9 99.6 100.0 98.6 99.5 99.8 99.9

U til ityI 47.8 37.8 61.9 74.7 85.6 97.3 52.1 96.3 88.2 77.7 53.9

Avд(U til it ies) 73.9 68.6 80.7 87.3 88.2 98.4 76.0 97.4 93.8 88.8 76.9

ILD 0.845 0.921 0.921 0.897 0.97 0.939 0.845 0.94 0.906 0.903 0.883

Table 5: Amazon Books dataset, NMF recommendations.



kNN

BR

α=0.01
BR

α=1e−3
BR

α=4e−4

NetFlow

λ=2.0
µ=0.01

NetFlow

λ=0.99
µ=0.01

NetFlow

λ=0.8
µ=0.2

MMDA

cap=12
MMDA

cap=15
MMDA

cap=20
MMDA

cap=50

Precision@10 12.8 2.4 10.3 11.4 3.6 7.0 12.6 10.1 10.7 11.4 12.6

Gini(reversed) 16.0 87.1 85.5 72.2 18.0 36.7 39.7 96.3 78.2 61.5 33.1

Avд(prec, дini) 14.4 44.8 47.9 41.8 10.8 21.9 26.2 53.2 44.5 36.5 22.9

U til ityU 100 92.7 99.7 99.8 99.2 99.5 99.9 97.9 99.4 99.7 99.9

U til ityI 59.7 75.3 94.9 93.8 34.9 87.2 89.4 94.7 91.1 86.8 74.5

Avд(U til it ies) 79.8 84.0 97.3 96.8 67.0 93.3 94.7 96.3 95.2 93.2 87.2

ILD 0.831 0.918 0.883 0.883 0.955 0.935 0.856 0.965 0.93 0.942 0.888

Table 6: Amazon Books dataset, User-kNN recommendations.

approach that can be used in conjunction with any underlying

collaborative recommendation algorithm, adding to its flexibility.

Our experimental evaluation using three datasets has provided

additional evidence for the effectiveness of our approach in increas-

ing aggregate diversity (and more generally item utilities) while

improving or maintaining recommendation accuracy.

In future work, we intend to experiment with additional base

recommendation algorithms to determine the impact of those al-

gorithms on item and user utilities resulting from the matching

algorithm. In addition we will explore the possibility of using differ-

ent underlying recommendation algorithms on the item and user

sides to improve the accuracy of initial item and user preference

orderings, respectively.
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