
Self-adaptive Particle Swarm Optimization for Large-scale
Feature Selection in Classification

YU XUE∗, Nanjing University of Information Science and Technology
BING XUE, Victoria University of Wellington, New Zealand
MENGJIE ZHANG, Victoria University of Wellington, New Zealand

Many evolutionary computation (EC) methods have been used to solve feature selection problems and they
perform well on most small-scale feature selection problems. However, as the dimensionality of feature
selection problems increases, the solution space increases exponentially. Meanwhile, there are more irrelevant
features than relevant features in datasets, which leads to many local optima in the huge solution space.
Therefore, the existing EC methods still su�er from the problem of stagnation in local optima on large-scale
feature selection problems. Furthermore, large-scale feature selection problems with di�erent datasets may
have di�erent properties. Thus, it may be of low performance to solve di�erent large-scale feature selection
problems with an existing EC method that has only one candidate solution generation strategy (CSGS). In
addition, it is time-consuming to �nd a suitable EC method and corresponding suitable parameter values for
a given large-scale feature selection problem if we want to solve it e�ectively and e�ciently. In this paper,
we propose a self-adaptive particle swarm optimization (SaPSO) algorithm for feature selection, particularly
for large-scale feature selection. First, an encoding scheme for the feature selection problem is employed in
the SaPSO. Second, three important issues related to self-adaptive algorithms are investigated. After that, the
SaPSO algorithm with a typical self-adaptive mechanism is proposed. The experimental results on 12 datasets
show that the solution size obtained by the SaPSO algorithm is smaller than its EC counterparts on all datasets.
The SaPSO algorithm performs better than its non-EC and EC counterparts in terms of classi�cation accuracy
not only on most training sets but also on most test sets. Furthermore, as the dimensionality of the feature
selection problem increases, the advantages of SaPSO become more prominent. This highlights that the SaPSO
algorithm is suitable for solving feature selection problems, particularly large-scale feature selection problems.

CCS Concepts: • Computing methodologies → Feature selection; Genetic algorithms.

Additional Key Words and Phrases: Feature selection, particle swarm optimization, large-scale, self-adaptive,
classi�cation.

ACM Reference Format:
Yu Xue, Bing Xue, and Mengjie Zhang. . Self-adaptive Particle Swarm Optimization for Large-scale Feature
Selection in Classi�cation. ACM Trans. Knowl. Discov. Data. , , Article (), 25 pages.

∗This work was supported by National Natural Science Foundation of China (Grant Number 61403206,61876089), by Natural
Science Foundation of Jiangsu Province (Grant Number BK20141005), by Natural Science Foundation of the Jiangsu Higher
Education Institutions of China (Grant Number 14KJB520025), and by Priority Academic Program Development of Jiangsu
Higher Education Institutions.

Authors’ addresses: Yu Xue, Nanjing University of Information Science and Technology, 219 Ningliu Rd, Nanjing, Jiangsu,
210044, xueyu@nuist.edu.cn; Bing Xue, Victoria University of Wellington, Gate 6, Kelburn Parade, Wellington, New Zealand,
bing.xue@ecs.vuw.ac.nz; Mengjie Zhang, Victoria University of Wellington, Gate 6, Kelburn Parade, Wellington, New
Zealand, mengjie.zhang@ecs.vuw.ac.nz.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and
the full citation on the �rst page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.
© Association for Computing Machinery.
1556-4681/ /-ART $
https://doi.org/

ACM Trans. Knowl. Discov. Data., Vol. , No. , Article . Publication date: .

:2 Yu Xue, Bing Xue, and Mengjie Zhang

1 INTRODUCTION
In machine learning and data mining, many classi�cation datasets have a large number of features
[Wu et al. 2017; Yu et al. 2016]. The training time increases as the feature space dimensionality
increases. The increasing dimensionality can cause the “curse of dimensionality" problem [Gheyas
and Smith 2010]. Feature extraction [Stuhlsatz et al. 2012], feature construction [Li and Tao 2012],
and feature selection [Xue et al. 2016] are three important dimensionality reduction approaches to
tackle with the “curse of dimensionality" problem. In fact, most of the features in the input datasets
are redundant or irrelevant features, which not only increases the training time but also reduces the
classi�cation accuracy of the learnt classi�er. Feature selection is an important data preprocessing
technique to overcome such problems, which involves choosing a minimum subset of relevant
features from the original large feature set so that the training time is reduced and the learning
performance be improved [Yang et al. 2013].

The feature selection problem can be considered as a combinatorial optimization problem. The
total number of possible solutions is (2= � 1) for a feature selection problem with = features. Thus,
the number of solutions increases exponentially with respect to=. It might be time-acceptable to �nd
the exact solution for a small-size feature selection problem using an exhaustive method. However,
it is impractical to �nd the exact solution using an exhaustive method for a large-scale feature
selection problem. For example, consider a feature selection problem with 57 dimensions. If we use
a personal computer to implement the exhaustive method and assume the computer can evaluate 3
billion solutions in 1 second, it would take at least 1.5 years to �nd the exact solution. Moreover, for
a feature selection problem with 100 dimensions, it would take more than 1.3585E+013 years, and
for a feature selection problem with 1000 dimensions, it would take more than 1.1483E+284 years.
In this paper, feature selection problems with more than 100 dimensions are termed as large-scale
problems. Therefore, it is impractical to �nd the exact solutions by an exhaustive method for the
large-scale feature selection problems.

In the past several decades, a variety of heuristic methods have been proposed to �nd acceptable
solutions for the feature selection problems [Chang et al. 2016; Tang and Liu 2014]. Based on
evaluation methods, feature selection methods can be simply classi�ed into two categories: �lter and
wrapper [Xue et al. 2016]. Filter methods evaluate features independent of any classi�cation method,
which may limit the performance. Filter approaches are often computationally less expensive than
wrapper approaches, but they are not as e�ective as wrapper approaches. Wrapper approaches
include a classi�cation method in the evaluation function, hence they are more time-consuming.
However, they can typically obtain better results than �lter approaches [Xue et al. 2014a].

Wrapper methods evaluate candidate subsets using a classi�er. Greedy search based sequential
search methods, such as sequential forward selection (SFS) [Whitney 1971] and sequential backward
selection (SBS) [Marill and Green 1963], are typical wrapper methods. Their main drawback is
the “nesting e�ect". Because they add or reduce features into/from a feature subset one by one, if
one feature is selected or removed, it will not be removed or selected again. Although a ¡°plus-;-
take-A -away¡± method has been proposed to alleviate the problem [Stearns 1976], the improved
approach still su�ers from stagnation in local optima. Moreover, the dimensionality in each repeated
stage is �xed depending on the prede�ned values of ; and A . Therefore, the sequential forward
�oating selection algorithm (SFFS) and sequential backward �oating selection (SBFS) algorithm are
proposed to overcome the above problems [Pudil et al. 1994]. The SFFS adds features to an empty
feature set using the basic SFS procedure, followed by a series of removing the worst feature from
the updated feature set if the removing process can improve the feature set. The SBFS removes
features from a complete feature set using the basic SBS procedure, followed by a series of adding
the best feature to the updated feature set if the adding process can improve the feature set.

ACM Trans. Knowl. Discov. Data., Vol. , No. , Article . Publication date: .

Self-adaptive Particle Swarm Optimization for Large-scale Feature Selection in Classification :3

In datasets, some features may interact with each other [Gheyas and Smith 2010], hence, an
individually relevant feature may become redundant when it works together with other features.
On the other hand, an individually weakly relevant feature may become highly useful when it works
with others. Therefore, the traditional �lter and wrapper approaches, which evaluate and select
features individually, cannot work well. Hence, to address the feature selection problems e�ectively,
a global search technique is required. Evolutionary computation (EC) techniques have recently
received much attention from the feature selection community because of their global optimization
ability [Xue et al. 2016]. The special population-based structure and e�cient parallel search manner
enable EC methods to have very good global search ability. Some famous EC methods used in
feature selection are: genetic algorithms [Ghareb et al. 2016; Holland 1975], genetic programming
[Kamath et al. 2012; Koza 1990], ant colony optimization [Dorigo and Gambardella 1997; Neagoe and
Neghina 2016], particle swarm optimization (PSO) [Bharti and Singh 2016; Kennedy and Eberhart
1995; Zhang et al. 2017a, 2015], di�erential evolution [Al-Ani et al. 2013; Storn and Price 1997],
and the �re�y algorithm [Yang 2008; Zhang et al. 2017b]. A survey of all kinds of work for solving
feature selection problems using EC methods can be found in Ref. [Xue et al. 2016].

Although many EC methods have been employed to solve small-scale feature selection problems,
existing ECmethods still su�er from the problem of stagnation in local optima on large-scale feature
selection problems. The solution space of a feature selection problem increases exponentially with
the dimensionality of the dataset increases. Thus, the increasing number of features results in a
huge solution space. Besides, feature selection is a special problem that is di�erent from other
common combinatorial optimization problems, i.e., there are typically more irrelevant or redundant
features than relevant features in the datasets, thus, the large number of irrelevant or redundant
features generate many local optima in the huge solution space. Therefore, most EC methods
still su�er from the problem of stagnation in local optima [Xue et al. 2014a]. Another possible
cause of this issue is that many of these methods lack the ability to explore and exploit the search
space in a proper manner [Al-Ani et al. 2013]. Moreover, di�erent datasets may have di�erent
properties, and di�erent positions may have di�erent �tness landscape for the solution space of
the same dataset. Thus, the suitable search manners for the EC method should be automatically
employed according to the feature selection problem and its �tness landscape. However, we do not
know the characteristics of the �tness landscape for a given feature selection problem. Hence, to
solve a feature selection problem e�ectively, generally speaking, many di�erent algorithms are
tested in advance, and when we test one of the algorithms for a given problem, many experiments
should be performed to look for a suitable parameter value set for the algorithm. Obviously, it
costs a great deal of computational time to look for a suitable algorithm and its suitable parameter
values. In recent years, some EC methods with a self-adaptive mechanism have been proposed
for solving di�erent optimization problems and the experimental results showed that they have
obvious advantages on optimization problems [Harrison et al. 2018; Pornsing et al. 2016; Sudo
et al. 2015; Xue et al. 2017, 2014b; Ying 2011]. For example, in order to overcome the drawbacks
in PSO, Wang and Zhou et al. [Ying 2011] have imported a chaotic local search into PSO and
proposed a chaotic self-adaptive particle swarm optimization (CSAPSO) algorithm. In the CSAPSO,
the velocity was adjusted dynamically so as to deal with various constraints in real-world problems.
In [Ying 2011], the CSAPSO was employed to solve the dynamic economic dispatch (DED) problem
with value-point e�ects, and the experimental results indicated that CSAPSO can get a better
solution in feasible time. Besides, Choosak and Manbir et al. [Pornsing et al. 2016] have designed
self-adaptive inertia weight and time varying adaptive swarm topology techniques for PSO. The
designed techniques were used to avoid premature convergence by executing the exploration and
exploitation stages simultaneously. The numerical experiments showed that the new algorithm
with self-adaptive inertia weight and time varying adaptive swarm topology outperforms other

ACM Trans. Knowl. Discov. Data., Vol. , No. , Article . Publication date: .

:4 Yu Xue, Bing Xue, and Mengjie Zhang

competitive algorithms. Furthermore, Harrison and Engelbrecht et al. [Harrison et al. 2018] have
reviewed many kinds of control parameter adaptation based PSO algorithms in a survey work . In
[Harrison et al. 2018], they have empirically examined whether the adapted parameters reach a
stable point and whether the �nal parameter values adhere to a well-known convergence criterion.
PSO and its many variant algorithms have been employed for feature selection problems. The

frameworks of these variant algorithms are similar. They �rst initialize a population of particles to
represent the possible solutions of an optimization problem and record some important information
about the solutions such as the personal best solutions and the global best solution, then they use
di�erent formulas and the recorded information to generate a population of new possible solutions.
Finally, they repeat the above process till a prede�ned stop criterion has been satis�ed. There are
many PSO variant algorithms and it is the di�erent updating formulas that make them di�erent from
each other. The function of these formulas is to generate new solutions, therefore the formula(s) in
each algorithm is (are) termed as candidate solution generation strategy (strategies) i.e. CSGS in this
study. Although many PSO variant algorithms have been developed for feature selection problems,
most of them employ only one CSGS to generate new solutions. Recently, Bharti and Singh [Bharti
and Singh 2016] proposed a binary particle swarm optimization (BPSO) algorithm with an adaptive
inertia weight operator, and employed the proposed BPSO to solve the feature selection in text
clustering. Their results indicate the proposed BPSO with an adaptive inertia weight operator
can select more informative feature set compared to its competitive methods as it obtained better
clustering performance. In EC algorithms, there exist many self-adaptive mechanisms. However,
�rst, to our best knowledge, though ECmethods with self-adaptivemechanisms have been employed
for solving large-scale feature selection in clustering [Bharti and Singh 2016], they have not been
tried for solving feature selection problems in classi�cation, not to mention large-scale feature
selection in classi�cation. Second, two important questions should be answered when designing
the strategy pool of the self-adaptive algorithm: (1) which CSGSs should be used in the pool? (2)
how many CSGSs should be used in the pool? To answer these questions, one basic problem should
be solved �rst, i.e., how to identify whether a CSGS is e�ective? PSO is an e�ective technique
for feature selection problems [Xue et al. 2014a]. Therefore, motivated by these questions and
methods analysis, we propose the methods to overcome the questions in designing strategy pool of
self-adaptive algorithms, and develop a self-adaptive PSO (SaPSO) algorithm for solving large-scale
feature selection problems in classi�cation. In the SaPSO algorithm, several CSGSs with di�erent
characteristics are maintained, and the previous experiences of generating promising solutions
are used to adaptively choose the suitable CSGSs to generate new solutions in the subsequent
generations.

1.1 Goals
The overall goal of this paper is to propose a new self-adaptive PSO algorithm for feature selection,
particularly for large-scale feature selection. The more detailed objectives are described as follows:

1) To design a new self-adaptive PSO algorithm with multiple CSGSs, which are used self-
adaptively during evolutionary process.

2) To carry out theoretical study of designing the strategy pool of the SaPSO algorithm.
3) To investigate whether a self-adaptive PSO algorithm can achieve good performance for

feature selection, especially for large-scale feature selection.

1.2 Organization
The remainder of this paper is organized as follows. In Section 2, we provide background information.
Section 3 describes the new algorithm with the representation of solutions, the strategy pool

ACM Trans. Knowl. Discov. Data., Vol. , No. , Article . Publication date: .

Self-adaptive Particle Swarm Optimization for Large-scale Feature Selection in Classification :5

designing methods, and the self-adaptive mechanism. Section 4 describes experiment design and
Section 5 presents results with discussions. Section 6 provides conclusions and future research
work.

2 RELATEDWORK
2.1 Initialization and Updating Mechanisms in PSO for Feature Selection
PSO has been widely used in feature selection problems [Xue et al. 2013, 2014a]. In the framework
of PSO, initialization is very important, and it signi�cantly a�ects the performance of PSO. Recently,
Xue et al. [Xue et al. 2014a] improved the performance of PSO for feature selection by improving
its initialization. In Ref. [Xue et al. 2014a], Xue et al. proposed three new initialization approaches,
and they have found a very good initialization strategy for the feature selection. In this paper, we
employ the same approach as used in the �nal proposed algorithm in Ref. [Xue et al. 2014a], which
is brie�y described as follows.

Mixed initialization: In this initialization strategy, most particles are initialized using a small
number of features and the remaining particles are initialized using large feature subsets [Xue et al.
2014a].
Actually, the feature selection problem has two objectives, where the �rst one is classi�cation

accuracy/classi�cation error, and the second one is the number of selected features (solution size).
For example, suppose a given dataset with 4 features and a decoded solution is {0, 1, 0, 1}. Obviously,
the second objective of the solution is 2. To calculate the �rst objective, �rstly, we use the second
column, the fourth column, and the label column of the dataset to form a new dataset. Then the
k-nearest neighbor (:NN) method is used to obtain the classi�cation accuracy on this new dataset,
which is also the �rst objective of the solution. In order to satisfy the two objectives of feature
selection, in addition to initialization, four updating mechanisms were investigated in Ref. [Xue
et al. 2014a]. Because it has been proved that the second one is a promising updating strategy, we
use the second updating strategy in this study, and it is brie�y presented as follows.

Classi�cation performance as the �rst priority: pbest or gbest is updated in two situations,
where pbest represents the best solution that is found by a particle so far while gbest means the
best solution obtained by the swarm so far [Kennedy and Eberhart 1995]. Use pbest as an example,
for the �rst situation, if the classi�cation performance of the particle’s new position is better than
pbest, pbest will be updated and replaced by the new position. In this case, the number of selected
features will be ignored. For the second situation, if the classi�cation performance is the same as
pbest and the number of features is smaller, the current pbest will be replaced by the particle’s new
position.

2.2 Related Work on Self-adaptive Algorithms
In the last decade, the self-adaptive mechanism in EC methods has attracted the attention of
researchers, and powerful self-adaptive EC methods have been proposed. For example, Qin et
al. [Qin et al. 2009] introduced a self-adaptive mechanism into di�erential evolution (DE) and
proposed a self-adaptive DE (SaDE). Their experimental results show SaDE is more e�ective in
obtaining better quality solutions. Additionally, Li et al. [Li et al. 2012] introduced an adaptive
framework into PSO to develop a self-learning PSO (SLPSO) algorithm. Di�erent from SaDE, their
adaptive scheme was implemented at the individual level. Their experimental study on a set of
45 test functions and two real-world problems show that the self-adaptive mechanism is helpful
for solving di�erent types of problems, particularly the problems that have very complex �tness
landscapes. Furthermore, Wang et al. [Wang et al. 2011] proposed a self-adaptive learning based
PSO (SLPSO) with a new probability model which was used to describe the probability of a strategy.

ACM Trans. Knowl. Discov. Data., Vol. , No. , Article . Publication date: .

:6 Yu Xue, Bing Xue, and Mengjie Zhang

They compared their SLPSO with eight PSO variants on 26 numerical optimization problems with
di�erent characteristics and an economic load dispatch problem in power systems. Their results
indicate that SLPSO can update the best solution records. In recent years, Xue et al. [Xue et al. 2017,
2014b] proposed some improved self-adaptive EC techniques to solve the continuous and discrete
optimization problems.

Recently, the EC methods with self-adaptive mechanisms have been proposed to solve large-scale
continuous optimization problems, and the experimental results show that these algorithms have
obvious advantages on the continuous numerical optimization problems with high dimensional-
ity [Xue et al. 2014b]. However, to our best knowledge, though EC methods with self-adaptive
mechanisms have been employed for solving large-scale feature selection in clustering [Bharti and
Singh 2016], they have not been tried for solving feature selection problems in classi�cation, not to
mention large-scale feature selection in classi�cation. In this paper, we investigate a self-adaptive
PSO algorithm to see whether it can achieve good performance for feature selection in classi�cation,
especially for large-scale feature selection in classi�cation.

3 SELF-ADAPTIVE PARTICLE SWARM OPTIMIZATION FOR FEATURE SELECTION
3.1 Representation of Solutions
There are several representation schemes for feature selection in the literature [Xue et al. 2016]. In
this paper, feature selection is transformed into a ‘0’ and ‘1’ combinatorial optimization problem, in
the samemanner as that in [Xue et al. 2014a]. Thus, the representation of a solution is a binary string.
This string has D dimensions, where D means the total number of features. We use continuous
encoding in PSO, and the range of each dimension of the position vector is limited in [0, 1]. To
transfer a continuous position vector to a binary string, a threshold \ is set in advance. If the value
of the 3C⌘ dimension of the position is greater than \ , the corresponding value in the binary vector
is set to 1, which represents that the 3C⌘ feature is selected. Otherwise, the value in the binary
vector is set to 0, which represents that the 3C⌘ feature is not selected.

3.2 Methods for Designing Strategy Pool
Di�erent from the other variant algorithms of PSO which use only one CSGS to generate new
particles, the SaPSO algorithm uses multiple CSGSs to generate new particles. In the SaPSO
algorithm, the multiple CSGSs are maintained in a speci�c component which is termed as strategy
pool. In order to design the strategy pool for the SaPSO, we have �rstly implemented 25 CSGSs
which are commonly used and representative CSGSs in the literature about PSO (The detailed
information of the 25 CSGSs can be seen in the complementary materials). The strategy pool is
not constitute of all the 25 CSGS, i.e., only the suitable CSGSs from the 25 CSGSs are put in the
strategy pool. In this subsection, a method for selecting CSGSs is introduced.

The choice of CSGSs to form the strategy pool has two aspects to consider. (1) how many CSGSs
should be selected to form the pool? (2) which CSGSs should be selected? There is a basic question
here, i.e., how to identify which CSGSs are e�ective? We can identify which CSGSs are e�ective
if there are only one dataset. However, there are a large number of datasets, and we expect the
CSGSs can perform well on the large-scale datasets. The only information that can be obtained is
the performance of the CSGSs on each dataset by doing experiments. Hence, we need a method to
comprehensively evaluate the performance of the CSGSs.

Analytic hierarchy process (AHP) is a famous multicriteria decision making technique [Aguaron
et al. 2016; Saaty 1990]. The main characteristics of this approach are: the modelling of the problem
using a hierarchical structure which re�ects all the relevant aspects of the problem; the use of
pairwise comparisons to incorporate the preferences of decision makers; the derivation of priority

ACM Trans. Knowl. Discov. Data., Vol. , No. , Article . Publication date: .

Self-adaptive Particle Swarm Optimization for Large-scale Feature Selection in Classification :7

vector for the alternative properties. In this paper, AHP is used to synthetically evaluate the CSGSs.
According to the AHP, a score or order, which is used to evaluate the CSGSs, should be assigned to
each CSGS. Because the total number of the CSGSs is greater than the allowed scale of the existing
AHP, we �rst propose a relative permutation order based scaling method (RPOSM) to divide the
CSGSs into small groups and assign a order/score to each CSGS according to their performance on
each feature selection problem. Nevertheless, these CSGSs in the same group have the same order.
Based on RPOSM, a new analytic hierarchy process (RPOSM-AHP) is proposed to comprehensively
evaluate the CSGSs. In this section, we �rst introduce RPOSM and then describe RPOSM-AHP.

3.2.1 Relative Permutation Order based Scaling Method. RPOSM is designed to get the order of
each CSGS on each dataset. The input of RPOSM is a sequence of CSGSs sorted according to their
�tness values on a feature selection problem. The output of RPOSM is the order of each CSGS.

RPOSM is described as follows. Suppose B4@ denotes a sorted sequence in decreasing according
to the importance of its elements. The order > of the C⌘ element is calculated according to Eq. (1)
as follows.

> = $(� d4;4 /⌧(e +1 (1)
where 4;4 represents the serial number of the C⌘ element in the B4@, > is the score of the C⌘
element, d·e is the rounding up operator, ⌧(represents the size of each group, and $(is the order
size which is determined by real-world problems.

For example, suppose there are 25 CSGSs and they are sorted as in Fig.1. In addition, we suppose
that OS=9, GS=3, and we want to calculate the orders for CSGS13 and CSGS2. Thus, according to
Eq.(1), they are calculated as follows:

>13 = $(� d4;4 /⌧(e + 1
= 9 � d1/3e + 1
= 9

>2 = $(� d4;4 /⌧(e + 1
= 9 � d25/3e + 1
= 1

3.2.2 RPOSM based Analytic Hierarchy Process. RPOSM-AHP is proposed based on RPOSM. In
this paper, a hierarchical structure with three levels is constructed. RPOSM-AHP is presented in
four steps as follows.
Step1 Construct hierarchies
“To select the suitable CSGSs to form strategy pool" is the overall goal level. We use #� selected
training sets to test the performance of #(CSGSs. The size of the datasets changes from small to
large. The #� selected training sets are used as the criteria level. Because our solving preference is
the large-scale problems, the datasets with large-scales are put in the front of criteria level. #(
CSGSs are used as the attribute level. Since our selection preference is the CSGSs which perform

Fig. 1. An example of a B4@ with 25 CSGSs

ACM Trans. Knowl. Discov. Data., Vol. , No. , Article . Publication date: .

:8 Yu Xue, Bing Xue, and Mengjie Zhang

better on the datasets, the CSGSs are sorted according to their performance on each dataset. The
hierarchical structure is shown as Fig. 2:

Fig. 2. The hierarchical structure of PROSM-AHP.

Step2 Construct pairwise comparison matrices and check consistency
Step 2.1 Construct pairwise comparison matrices
Firstly, sort the datasets at the criteria level according to the relative solving preference. Secondly,
obtain the sorted sequence of CSGSs according to the experimental results on each dataset.
Thirdly, use RPOSM to calculate the order number of each CSGS in each sorted sequence. Finally,
we construct pairwise comparison matrices at the criteria level and attribute level as follows.
Let’s take attribute level for example, suppose A represents a comparison matrix of the CSGS on
one dataset, and

� =

26666664

011 012 ... 01B
021 022 ... 02B
...
0B1 0B2 ... 0BB

37777775
(2)

Suppose >8 and > 9 represent the order numbers of CSGS 8 and CSGS 9 , respectively. Thus, for
808 9 2 � (9=1,2,...B , 8  9), 08 9 is calculated as follows.

08 9 =
⇢

>8 � > 9 + 1 8 5 >8 � > 9
1/(> 9 � >8 + 1) >C⌘4AF8B4

(3)

0 98 is calculated as follows.

0 98 = 1/08 9 (4)
where 8 = 1, 2, ..., B , 9 = 1, 2, ..., B . 08 9 represents the 8C⌘ row and 9C⌘ element of matrix �. 088 = 1,
08 9 = 1/0 98 , 08 9 > 0, and B is the total number of datasets/CSGSs in criteria level/attribute level.
All pairwise comparison matrices at the criteria level and attribute level can be obtained according
to Formulas (1-4).
Step 2.2 Check consistency
Step2.2.1 Calculate the maximum eigenvalue of each pairwise comparison matrix as follows.

_max = (1/B) ·ÕB
8=1 (�,)8/,8 (5)

where _max represents the maximum eigenvalue of the pairwise comparison matrix,, is the
eigenvector of the pairwise comparison matrix �, and(�,)8 is the 8C⌘ element of vector �, .
Step2.2.2 Calculate the consistence index (⇠�) [Saaty 1990] as follows.

⇠� = (_max�B)/(B � 1) (6)

ACM Trans. Knowl. Discov. Data., Vol. , No. , Article . Publication date: .

Self-adaptive Particle Swarm Optimization for Large-scale Feature Selection in Classification :9

Step2.2.3 Calculate the consistence ratio (⇠') [Saaty 1990] as follows.

⇠' = ⇠�/'� (7)

where '� is a random index [Saaty 1990] given in advance. When ⇠' <0.1, we consider that
the consistency of the pairwise comparison matrix is acceptable.

Step3 Get a priority vector at each single level
For each pairwise comparison matrix in Step 2.1, the relative priority at each level can be calculated
as follows.

08 9 = 08 9/
ÕB
:=1 0: 9 8, 9 = 1, 2, ..., B (8)

,8 =
ÕB
9=1 08 9/

ÕB
:=1

ÕB
9=1 0: 9 8 = 1, 2, ..., B (9)

Thus, we obtain a priority vector which is represented by C = (C1,C2, ...,C#�) at the criteria
level, and we obtain the priority vectors which are represented by,8 = (F81,F82, ...,F8#(), 8 =
1, 2, ...,#� , at the attribute level.
Step4 Calculate the total priority vector
Based on the results in Step3, the total priority vector can be calculated as follows.

,
0
= (Õ#�

8=1 28F81,
Õ#�
8=1 28F82,...,

Õ#�
8=1 28F8#(). (10)

Finally, the performance of the CSGSs can be evaluated comprehensively by PROSM-AHP.
Besides, PROSM-AHP introduces relative solving preference at the criteria level, which can make
RPOSM-AHP satisfy the requirement for solving large-scale problems.

3.3 Candidate Solution Generation Strategies
There are many PSO variant algorithms in the literature. It is impractical to investigate and
implement all of their CSGSs. We only chose and implemented 25 CSGSs which are representative,
frequently used, from high-quality papers or recently proposed. We have tried our best to choose
and implement the CSGSs as more as possible, we believe the 25 CSGSs cover almost all di�erent
types of CSGSs for designing the strategy pool. Due to the space limit, the 25 CSGSs are provided in
the complementary material. Based on the initial experimental results, 5 CSGSs are �nally selected.
The 5 CSGSs are described as follows.

1) Standard PSO is an e�cient EC method [Xue et al. 2014a], which is the main strategy used to
generate new solutions. This strategy searches for the optimal solution by updating the position
and velocity of each particle according to the following equations:

GC+183 = GC83 + EC+183 (11)

EC+183 = F ⇤ EC83 + 21 ⇤ A1 ⇤ (?83 � GC83) + 22 ⇤ A2 ⇤ (?63 � GC83) (12)
where C represents the CC⌘ iteration in the evolutionary process. 8 2 ?B represents the current
particle, and ?B is the population size. 3 2 ⇡ represents the 3C⌘ dimension in the search space,
and ⇡ represents the dimensionality of the search space.F is an inertia weight. GC83 represents the
3C⌘ dimension of current particle’s position. EC83 2 [�Emax, Emax] is the velocity of the 8C⌘ particle
in current iteration. 21 and 22 are acceleration constants. A1 and A2 are random values uniformly
distributed in [0, 1]. ?83 and ?63 represent the 3C⌘ elements of personal best solution and global
best solution, respectively.
2) A di�erent velocity updating strategy was proposed in Ref. [Wang et al. 2013], which is

described as follows.
GC+183 = A1 ⇤ GC83 + A2 ⇤ ?63 + A3 ⇤ (GC03 � GC13) (13)

ACM Trans. Knowl. Discov. Data., Vol. , No. , Article . Publication date: .

:10 Yu Xue, Bing Xue, and Mengjie Zhang

where GC03 and GC13 are position vectors of two random particles. The position updating method and
other variables have the same meaning as mentioned before.
3) Estimation-based velocity updating strategy from Ref. [Wang et al. 2011] is selected in this

paper, which is described as follows.

2 = (⇡�1)# (0,1)
⇡ + ⇠ (0,1)

⇡ (14)

EC+183 = (<40=C83 � GC83) +
2p
3

q
(?83 �<40=C83)

2 + (GC83 �<40=C83)
2 + (GC03 �<40=C83)

2 (15)
where # (0, 1) and⇠ (0, 1) represent two numbers randomly generated by the Gaussian distribution
and Cauchy distribution, respectively.<40=C83 is set to as same as that in Ref. [Xue et al. 2014b].
The position updating method and other variables have the same meaning as mentioned before.

4) The CLPSO velocity updating strategy from Ref. [Liang et al. 2006] is selected in this paper,
which is described as follows.

EC+183 = F ⇤ EC83 + 21 ⇤ A1 ⇤ (?14BC58 (3) � GC83) (16)

where 58 = [58 (1), 58 (2), ..., 58 (⇡)] de�nes whose personal best should be used by the current particle.
?14BC58 (3) can be the corresponding dimensionality of any particle’s ?14BC including its own ?14BC .
The position updating method and other variables have the same meaning as mentioned before.

5) An improved CLPSO velocity updating strategy called the PSO-CL-pbest strategy from Ref.
[Wang et al. 2011] is also selected in this paper. The strategy is given as follows.

EC+183 = F ⇤ EC83 + 0.5 ⇤ 21 ⇤ A1 ⇤ (?14BC58 (3) � GC83 + ?63 � GC83) (17)

where the variates and the position updating method have the same meaning as mentioned before.

3.4 The Self-adaptive Mechanism
The main objectives of the self-adaptive mechanism are to produce the probabilities for the CSGSs
according to their performance, and choose a suitable CSGS for each particle based on these
probabilities. There are twomost important problems here, i.e., (1) How to generate new probabilities
for the CSGSs? (2) How to select a suitable CSGS for each particle? In this paper, we adopt relatively
simple methods to solve the two problems because we focus mainly on solving the CSGS selection
problem for the self-adaptive algorithms.
The CSGSs which are successfully used in recent generations should be continuously used in

future generations. When a CSGS cannot perform well, it should be replaced by another CSGS that
may perform well. We use a simple self-adaptive mechanism which is described as follows. All the
CSGSs in the strategy pool are assigned an initial probability and the probabilities are changed
during evolution. Let ? 9 represent the selection probability of the 9C⌘ strategy (where 9=1, 2, ¡,
& , and & is the number of CSGSs. Thus the initial probability of each CSGS is 1/&). The sum of
these probabilities is 1 and they are recalculated according to the performance of the CSGSs on
generating new solutions.
In this paper, the roulette wheel method [Fogel 1994] is used to select a CSGS. Subsequently, a

candidate solution is generated by applying the selected CSGS to the corresponding particle. Then,
the candidate solution is evaluated and the updating mechanism which was described in Section 2
is employed to determine whether the ?14BC and 614BC should be updated. The information that
whether the generated solution is better than the corresponding ?14BC is recorded by the elements
=B�;068, 9 and =5 �;068, 9 (8 = 1, 2, ..., ?B , 9 = 1, 2, ...,& , where ?B is the number of particles and & is
the number of CSGSs) in the binary matrices =B�;06?B⇥& and =5 �;06?B⇥& . It is implemented as
follows.

At the beginning of a generation,

ACM Trans. Knowl. Discov. Data., Vol. , No. , Article . Publication date: .

Self-adaptive Particle Swarm Optimization for Large-scale Feature Selection in Classification :11

=B�;06 =

©≠≠≠≠
´

0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

™ÆÆÆÆ
¨?B⇥&

and =5 �;06 =

©≠≠≠≠
´

0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

™ÆÆÆÆ
¨?B⇥&

(18)

suppose the 9C⌘ strategy is selected for the 8C⌘ particle, if the generated new solution is better than
the corresponding ?14BC , then =B�;068, 9 = 1, otherwise, =5 �;068, 9 = 1. After the evolution process
of the current generation is �nished, we sum all the rows in =B�;06 and =5 �;06, then the number of
the new solutions that are generated by the 9C⌘ CSGS and successfully enter into the next generation
is recorded in the element (:, 9 (: = 1, 2, ..., !% , 9 = 1, 2, ...,& , where !% represents a number of
generations, it means the probabilities of CSGSs will be recalculated if the evolution process is
repeated for !% generations) of another matrix (!%⇥& . Similarly, the number of the new solutions
generated by the 9C⌘ CSGS but unsuccessfully enter into the next generation is recorded in the
element �:, 9 of another matrix �!%⇥& . Meanwhile, the matrices =B�;06 and =5 �;06 are initialized
as shown in Eq. (18), so that they can record the information in the next generation.
The above process is repeated !% generations to learn the success and fail information for the

CSGSs, after evolving for !% generations, the probability values of the CSGSs are recalculated.
At the �rst generation (: = 1) of each !% generations,

(=

©≠≠≠≠
´

0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

™ÆÆÆÆ
¨!%⇥&

and �=

©≠≠≠≠
´

0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

™ÆÆÆÆ
¨!%⇥&

. (19)

After the evolutionary process repeats !% generations, the strategy selection probabilities of the
CSGSs are recalculated based on the statistical data stored in matrices (and � . The probability for
the 9C⌘ (9 = 1, 2, ...,&) strategy is calculated as follows.

(19 =
Õ!%
:=1 (:, 9 (20)

(29=
⇢
Y, 8 5 (19=0
(19 , >C⌘4F8B4

(21)

(39 = (
1
9 /((29 +

Õ!%
:=1 �:, 9) (22)

? 9 = (39 /
Õ&
9=1 (

3
9 (23)

where S39 is the rate of the new solutions generated by the 9C⌘ strategy and replaced their corre-
sponding ?14BCB successfully within !% generations. Meanwhile, the matrices (and � are initialized
as Eq. (19). The small value Y = 0.0001 is used to avoid division by zero. The probabilities are
normalized by Eq. (23) to ensure that they always sum to 1.
Eqs. (18)-(23) are employed to generate new probabilities for the CSGSs according to their

performance during !% generations¡� evolution. The CSGSs are selected according to the new
probabilities. It is obvious that the larger the probability value, the larger probability that the
corresponding CSGS is selected to generate new solutions in the next !% generations.

Algorithm 1 shows the pseudo-code of the SaPSO algorithm.

ACM Trans. Knowl. Discov. Data., Vol. , No. , Article . Publication date: .

:12 Yu Xue, Bing Xue, and Mengjie Zhang

Algorithm 1 Pseudo code of the SaPSO algorithm
Initialization:

Set parameter values including number of �tness evaluations (#�⇢), current number of �tness
evaluations (2�⇢ = 0), population size (?B), & , ? 9 = 1/& for each 9 2 {1, 2, ...,&}, !% = 10,
=B�;06, =5 �;06, (!%⇥& , �!%⇥& , 2DA8C4A = 0, 5 ;068C4A = 0, and etc. Initialize the positions and
velocities of each particle. Evaluate each particle and store the ?14BCs and 614BC ;

1: while (2�⇢ < #�⇢) do
2: for each 8 < ?B do
3: Select one CSGS from the strategy pool for x8 by the roulette wheel selection method

based on {?1, ?2, ..., ?& }. Suppose the 9C⌘ CSGS is selected. Generate a new particle x=4F8
by the selected CSGS, and calculate its �tness value;

4: if x=4F8 is better than x8 then
5: =B�;068, 9 = 1;
6: if x=4F8 is better than ?14BC8 then
7: Update ?14BC8 with x=4F8 ;
8: if x=4F8 is better than 614BC then
9: Update 614BC with x=4F8 ;
10: end if
11: end if
12: else
13: =5 �;068, 9 = 1;
14: end if
15: 2�⇢ = 2�⇢ + 1;
16: Replace x8 with x=4F8 ;
17: end for
18: 2DA8C4A = 2DA8C4A + 1;
19: : = 2DA8C4A � 5 ;068C4A ;
20: Replace the :C⌘ row of (!%⇥& with the sum of all the rows in =B�;06;
21: Replace the :C⌘ row of �!%⇥& with the sum of all the rows in =5 �;06;
22: Initial =B�;06 and =5 �;06 as Eq. (18);
23: if (2DA8C4A � 5 ;068C4A) = !% then
24: 5 ;068C4A = 2DA8C4A ;
25: Update {?1, ?2, ..., ?& } based on (!%⇥& and �!%⇥& as Eqs. (20)-(23);
26: Initial (!%⇥& and �!%⇥& as Eq. (19);
27: end if
28: end while
Output:

614BC ;

4 EXPERIMENT DESIGN
4.1 Datasets and Classification Method
The datasets used in this paper are shown in Table 1, whichwere chosen from theUCIMachine Learn-
ing Repository [Bache and Lichman 2016]. They are available at http://archive.ics.uci.edu/ml/index.php.
In Table 1, No.1 to No.15 represent Gisette, MicroMass, CNAE, GrammaticalFacialExpression, Se-
meionHand writtenDigit, Isolet5, MultipleFeaturesDigit, HAPT, Har, UJIIndoorLoc, MadelonValid,
OpticalRecognitionofHandWritten, ConnectionistBenchData, WDBC, LungCancer. Besides, NOE,

ACM Trans. Knowl. Discov. Data., Vol. , No. , Article . Publication date: .

Self-adaptive Particle Swarm Optimization for Large-scale Feature Selection in Classification :13

NoF, and NoC are abbreviations of number of examples, number of features, and number of classes.
Some instances of several datasets were randomly reduced for saving experimental time, i.e., 519,
1000, 6567, 2852, 211, 2823 instances were reduced for datasets No.6, No.7, No.8, No.9, No.10, No.12,
respectively. The �rst 5 datasets in Table 1 were used for algorithm design, and for saving time, only
the 4C⌘ to 15C⌘ datasets in Table 1 were used to extensively test the performance of the designed
algorithm and the other non-ECmethods and ECmethods. The datasets consist of di�erent numbers
of examples, features and classes. Each dataset was divided into two partitions: one was used as a
training set, formed by randomly selecting 70% of the examples from the original dataset. The other
partition was used as a test set, and it consists of the remaining examples. The :NN method was
used as the classi�cation method to evaluate the feature subsets generated by the non-EC methods
and EC methods, where : = 3. In this paper, :NN method is used as the classi�cation method since
it is one of the most popular classi�cation algorithms used for feature selection due to its promising
classi�cation performance and simplicity [Xue et al. 2016]. In :NN, 3 fold cross-validation is used
to measure the classi�cation accuracy.

4.2 Experiment Methods and Benchmark Algorithms
The �rst 5 datasets in Table 1 were used to test the performance of the 25 CSGSs. The approaches
described in Subsection 2 of Section 3 were used to select CSGSs for the strategy pool of SaPSO.
At this stage, we only ran the algorithms with di�erent CSGSs twice in order to save time. The
experimental results were used as the inputs of RPOSM and RPOSM-AHP. Then the sorted sequence
of the 25 CSGSs on each dataset was obtained. From the �rst CSGS to the eleventh CSGS, by
gradually adding one CSGS one time into the strategy pool, 10 algorithms with di�erent strategy
pool sizes were designed. The 5 datasets were employed again to test the performance of the 10
algorithms. Using RPOSM and RPOSM-AHP on the experimental results, the sorted sequence of
the 10 algorithms was obtained. By analyzing CSGCs of the algorithms at the front of the sequence,
we selected CSGS1, CSGS11, CSGS13, CSGS14 and CSGS15, which were described in Subsection
3 of Section 3, to constitute the �nal strategy pool, and termed the algorithm that with the �nal
strategy pool as SaPSO.

Table 1. Information of the Datasets

Datasets NoE NoF NoC DataSets NoE NoF NoC
No.1 1000 5000 2 No.9 900 561 6
No.2 360 1300 2 No.10 900 522 3
No.3 1080 856 9 No.11 600 500 2
No.4 1062 301 2 No.12 1000 64 10
No.5 675 256 10 No.13 208 60 2
No.6 1040 617 26 No.14 596 30 2
No.7 1000 649 10 No.15 32 56 3
No.8 1200 561 12

To further show the e�ectiveness of SaPSO, non-EC methods (including SFS [Whitney 1971],
SBS[Marill and Green 1963], LRS21(;=2,A=1) [Pudil et al. 1994; Stearns 1976], LRS31(;=3,A=1) [Pudil
et al. 1994; Stearns 1976], LRS32(;=3,A=2) [Pudil et al. 1994; Stearns 1976] SFFS, and SBFS [Pudil
et al. 1994]) and EC methods (including GA [Yang and Honavar 1998], standard PSO [Kennedy
and Eberhart 1995; Xu et al. 2007; Xue et al. 2014a], original PSO [Xue et al. 2014a], DE [Storn and
Price 1997], and SaDE [Qin et al. 2009]) were employed for comparisons. Di�erent from original
PSO, standard PSO has an inertia weight which decreases from 0.9 to 0.4. There are two important
objectives for feature selection, one is the classi�cation accuracy, the other one is the number of
features, i.e. solution size. In fact, a small solution size represents a small training set and a small test

ACM Trans. Knowl. Discov. Data., Vol. , No. , Article . Publication date: .

:14 Yu Xue, Bing Xue, and Mengjie Zhang

set. So, a small solution size means less training time and less test time will be spent. Thus, we will
compare the solution sizes, training accuracies, and test accuracies obtained by these algorithms.

4.3 Parameter Se�ings
The following parameter values were used: for LRS, three groups of parameters were set according
to Ref.[Pudil et al. 1994], i.e., ;=2, A=1; ;=3, A=1; ;=3, A=2. The population size of the algorithm with
only one CSGS or EC methods was set to 100. The dimensionality of particles was equal to the
features in the corresponding dataset in Table 1. The threshold \=0.6 in the encoding scheme. The
upper boundary of each dimensionality was 1. The low boundary of each dimensionality was 0.
The upper/lower boundary of the velocity is 0.5/-0.5. Moreover, for fair comparisons, we use #�⇢
as a stop criterion. For saving time, we set the #�⇢ to 500,000 to test the performance of SaPSO
with each of the 25 CSGSs, But in order to thoroughly test the performance of the 10 di�erent
SaPSO algorithms by combining the CSGSs, we set the #�⇢ to 1,200,000. For saving time, the #�⇢
was set to 1,000,000 for the �nal SaPSO, GA, standard PSO, original PSO, DE, and SaDE. For the 25
CSGSs, the parameters were set as provided in the original papers. The detailed parameter values
of the comparison algorithms are presented in Table 2. Some particular parameters are explained
as follows: For standard PSO,F 2 [0.9, 0.4] and it decreased gradually with respect to the current
number of #�⇢. For each CSGS in SaDE, initial ⇠'=0.5, � is selected from normal distribution
with `=0.5 and f=0.3, !% was empirically set to 10. For SaPSO, the initial ? 9 = 0.2, the !% was
empirically set to 10. The 12 datasets which are from the 4C⌘ to the 15C⌘ datasets of Table 1 were
used to test SaPSO and its counterparts. Each algorithm was run 30 times on each dataset.

Table 2. The Parameter Values of the Comparison Algorithms

Algorithms Parameter values Algorithms Parameter values
LRS21 ; = 2; A=1 �=0.5; ⇠'=0.1;
LRS31 ;=3; A=1 DE #�⇢=1,000,000
LRS32 ;=3; A=2

⇠'=0.7;"'=0.1; �=8C80; ⇠'=0.5;
GA ('=0.5; SaDE � 2 # (0.5, 0.32);

#�⇢=1,000,000 !%=10; #�⇢=1,000,000
⇠1 = ⇠2 = 1.49618;

Original PSO F =0.7298; ? 9 = 0.2; !%=10;
#�⇢=1,000,000 ?B=100; \ = 0.6;
⇠1 = ⇠2 = 1.49618; SaPSO *1=1; !1=0;

Standard PSO F 2 [0.9, 0.4]; *1E=0.5; !1E=-0.5;
#�⇢=1,000,000 #�⇢=1,000,000

5 RESULTS
5.1 Results for the Strategy Pool Design of SaPSO
We have done preliminary experiments of using the 25 CSGSs on the �rst 5 datasets and obtained
the sorted CSGSs on each dataset by comparing the quality of the solutions found by these CSGSs.
Table 3 shows the �rst 7 CSGSs in the sorted sequence on each dataset. Limited by the page space,
only 7 CSGSs are listed in each sorted sequence.
Because our focus is solving large-scale feature selection problems, we set the sorted sequence

of datasets as <No.1 No.2 No.3 No.4 No.5>. Therefore, using the experimental results in Table 3

ACM Trans. Knowl. Discov. Data., Vol. , No. , Article . Publication date: .

Self-adaptive Particle Swarm Optimization for Large-scale Feature Selection in Classification :15

Table 3. Sorted CSGSs on the first 5 datasets

1 2 3 4 5 6 7
No.1 CSGS15 CSGS 14 CSGS 13 CSGS 6 CSGS 1 CSGS 8 CSGS 25
No.2 CSGS 13 CSGS 15 CSGS 3 CSGS 14 CSGS 11 CSGS 1 CSGS 6
NO.3 CSGS 15 CSGS 13 CSGS 14 CSGS 6 CSGS 3 CSGS 7 CSGS 2
NO.4 CSGS 13 CSGS 15 CSGS 1 CSGS 14 CSGS 25 CSGS 8 CSGS 6
NO.5 CSGS 15 CSGS 14 CSGS 13 CSGS 6 CSGS 8 CSGS 3 CSGS 2

and <No.1 No.2 No.3 No.4 No.5> as inputs for the approaches described in Subsection ⌫ of Section
3, we obtained a sorted sequence of the CSGSs. For short, only the used 11 CSGSs are listed as in
Table 4.

Table 4. Sorted CSGSs

NO. 1 2 3 4 5 6 7 8 9 10 11
Sorted

CSGS13 CSGS15 CSGS14 CSGS1 CSGS3 CSGS6 CSGS8 CSGS25 CSGS2 CSGS7 CSGS11CSGSs

The output values of RPOSM-AHP are shown as follows. _max of �1 is 5.06, where �1 is the
pairwise comparison matrix on criteria level, ⇠� is 0.017. According to AHP, the results are reliable
only when ⇠' < 0.1, and '� is an experimental value, the value can be obtained by �nding in table
[Saaty 1990]. '� of �ve order matrix is 1.12, ⇠' is 0.015<0.1; _max of �; (; = 2, 3, ..., 6) is 26.01,
where �; is the pairwise comparison matrix on attribute level, and⇠� is 0.04, '� of a 9 order matrix
is 1.45, ⇠'=0.027<0.1. Hence, the results are reliable.
Based on the experimental results shown in Table 4, we designed 10 algorithms and numbered

them from ALG 1 to ALG 10 through adding the number of CSGSes. Thus, the strategy pool in
ALG1 consists of the �rst two strategies in Table 4. The strategy pool in ALG2 consists of the �rst
three strategies in Table 4, and so on. Hence, the strategy pool of the 10C⌘ algorithm consists of
all the strategies in Table 4. We also employed the �ve datasets to test the 10 algorithms. Table 5
summarizes the mean value of the best �tness values obtained by the 10 algorithms on each dataset.

Table 5. The mean fitness values of the best solutions obtained by di�erent algorithms on the five data sets

Gisette MicroMass CNAE GrammaticalFacialExpression SemeionHandwrittenDigit
ALG 1 0.9933 0.9676 0.9342 0.9357 0.9192
ALG 2 0.9933 0.9583 0.928 0.9264 0.9162
ALG 3 0.9933 0.9491 0.9296 0.9262 0.9014
ALG 4 0.9783 0.9398 0.9295 0.9295 0.8843
ALG 5 0.9733 0.926 0.9295 0.9232 0.8867
ALG 6 0.97 0.9583 0.9248 0.928 0.9012
ALG 7 0.9683 0.9398 0.9295 0.9216 0.8894
ALG 8 0.9583 0.9352 0.9296 0.9216 0.8916
ALG 9 0.9567 0.9306 0.9247 0.9263 0.8964
ALG 10 0.9817 0.9537 0.9248 0.9233 0.8963

We employed RPOSM and RPOSM-AHP again to obtain the sorted vector of these 10 algorithms.
The detailed process was omitted to save space, we only list the �nal results as follows. (ALG1,
ALG2, ALG3, ALG10, ALG4, ALG 6, ALG5, ALG8, ALG7, ALG9). All the �rst �ve algorithms
includes CSGS13, CSGS15, CSGS14, and CSGS1. ALG10 was in the fourth position, and CSGS11
was employed in ALG10, which shows that although CSGS11 is ranked the lowest, it works well
together with the top 4 CSGSs to improve the performance. Thus, in the �nal algorithm, CSGS13,
CSGS15, CSGS14, CSGS1, and CSGS11 were employed to constitute strategy pool of the SaPSO
algorithm. Since the strategy pool of SaPSO is comprised of CSGS13, CSGS15, CSGS14, CSGS1,

ACM Trans. Knowl. Discov. Data., Vol. , No. , Article . Publication date: .

:16 Yu Xue, Bing Xue, and Mengjie Zhang

and CSGS11, we employed the same methods to compare SaPSO with CSGS13, CSGS15, CSGS14,
CSGS1, and CSGS11. For saving time, each method was run four times on each dataset. The mean
values of the best classi�cation accuracy values of the methods on the �ve datasets are given as in
Table 6.

Table 6. The mean fitness values of the best solutions obtained by di�erent SaPSO and its CSGSs on the five
data sets

Gisette MicroMass CNAE GrammaticalFacialExpression SemeionHandwrittenDigit
CSGS13 0.9675 0.9676 0.9318 0.9311 0.9069
CSGS15 0.9975 0.963 0.9319 0.9295 0.9251
CSGS14 0.975 0.9491 0.9288 0.9271 0.9067
CSGS1 0.955 0.9468 0.9193 0.9281 0.8804
CSGS11 0.9325 0.9329 0.9083 0.9107 0.8213
SaPSO 0.9975 0.9653 0.9336 0.9311 0.9165

Using the methods in Subection 2 of Section 3, the sorted sequence was obtained as: <SaPSO,
CSGS15, CSGS13, CSGS14, CSGS1, CSGS11>. It is demonstrated that the algorithm with multiple
strategies is better than that only with its separate strategies.

5.2 Computational Results and Comparisons
In this section, we show that SaPSO performs better than non-EC methods (including SFS, SBS,
LRS21, LRS32, SFFS, and SBFS) and other EC methods (including GA, PSO, DE, and SaDE) when
solving feature selection problems. To further test the performance, we tested them on 12 datasets
which are the fourth to the �fteenth datasets in Table 1.

5.2.1 Results of Solution Sizes. The results of solution sizes obtained by the SaPSO algorithm,
SFS, SBS, LRS21, LRS32, SFFS, SBFS, GA, standard PSO, original PSO, DE, and SaDE on the 12
training sets are shown in Tables 7 and 8, in terms of mean values (Mean) of solution sizes, standard
deviations (Std), and reduction rate (%).

In these Tables, ‘SZ’ represents the solution size, i.e., the number of selected features; a statistically
signi�cance test, i.e., T-test, with a con�dence level of 95% is used; ‘T-E’ describes whether existing
statistically signi�cant di�erences between the SaPSO algorithm and its counterparts, and ‘P’
represents the p-values obtained in the T-tests; ‘+’/‘-’ means the result of the SaPSO algorithm is
better/worse than the corresponding algorithm with a signi�cant di�erence, and ‘=’ means there
is no signi�cant di�erence between the SaPSO algorithm and the corresponding algorithm; "/#
indicates the reduction rate which is increased/decreased by the SaPSO algorithm comparing to
the corresponding algorithm. The best results in terms of solution size are typed in bold.

Because the results of LRS31 and LRS32 are almost the same and space limitation, only the results
of LRS32 are presented. It is shown in Table 7 that SFS, LRS21, LRS32 and SFFS can obtain smaller
solution sizes than SaPSO on almost all the training sets while the solution sizes obtained by SBS
and SBFS are much bigger than SaPSO. Generally speaking, SFS, LRS21, LRS32, SFFS can reduce
more than 90% features while SBF and SBFS can only reduce less than 10% features. The bigger
the number of the features, the smaller the reduction ratio of SBF and SBFS. It means that the “top
down" search techniques are not suitable for solving the large-scale feature selection problems.
Moreover, Table 7 indicates that non-EC methods are comparatively better on solution sizes. Maybe,
this advantage can be used to develop the EC techniques for feature selection in the future.
It can be observed from Table 8 that the solution sizes obtained by the SaPSO algorithm on

almost all the 12 datasets are smaller than those obtained by GA, standard PSO, original PSO, DE
and SaDE with statistical signi�cant di�erence. Moreover, on each dataset, there is a statistically

ACM Trans. Knowl. Discov. Data., Vol. , No. , Article . Publication date: .

Self-adaptive Particle Swarm Optimization for Large-scale Feature Selection in Classification :17

Table 7. Solution sizes of non-EC methods and SaPSO on training sets

DS
SFS SBS LRS21 LRS32 SFFS SBFS SaPSO

Mean±Std % Mean±Std % Mean±Std % Mean±Std % Mean±Std % Mean±Std % Mean±Std %

DS1 SZ 4.9±1.4 98.3 298.3±1.4 0.8 4.8±1.1 98.4 5.6±1.3 98.1 5.7±1.6 98.1 298.4±0.9 0.8 77.1±10.1 74.3
T-E,P -,<0.001 #24.1 +,<0.001 "73.4 -,<0.001 #24.0 -,<0.001 #23.7 -,<0.001 #23.7 +,<0.001 "73.5

DS2 SZ 14.8±5.0 94.2 254.4±0.9 0.6 14.0±4.0 94.5 14.1±3.8 94.4 11.8±2.4 95.3 253.9±0.3 0.8 107.5±4.8 58
T-E,P -,<0.001 #36.2 +,<0.001 "57.4 -,<0.001 #36.5 -,<0.001 #36.4 -,<0.001 #37.3 +,<0.001 "57.1

DS3 SZ 16.0±3.9 97.4 615.2±0.9 0.2 15.9±3.0 97.4 16.3±3.5 97.3 13.6±2.0 97.7 614.8±0.3 0.3 159.3±8.1 74.1
T-E,P -,<0.001 #23.2 +,<0.001 "73.9 -,<0.001 #23.2 -,<0.001 #23.1 -,<0.001 #23.6 +,<0.001 "73.8

DS4 SZ 10.2±2.5 98.4 646.1±0.9 0.4 10.1±2.7 98.4 9.5±2.4 98.5 10.8±1.6 98.3 646.5±0.6 0.3 147.4±14.9 77.2
T-E,P -,<0.001 #21.1 +,<0.001 "76.8 -,<0.001 #21.1 -,<0.001 #21.2 -,<0.001 #21.0 +,<0.001 "76.9

DS5 SZ 8.5±2.0 98.4 559.2±1.1 0.3 8.3±1.6 98.5 8.7±2.1 98.4 9.6±2.3 98.2 558.6±0.6 0.4 122.9±15.6 78
T-E,P -,<0.001 #20.4 +,<0.001 "77.7 -,<0.001 #20.4 -,<0.001 #20.3 -,<0.001 #20.2 +,<0.001 "77.6

DS6 SZ 7.7±2.3 98.6 559.3±1.0 0.3 7.1±1.6 98.7 7.1±2.1 98.7 9.0±2.3 98.3 558.9±0.3 0.3 123.0±15.8 78
T-E,P -,<0.001 #20.5 +,<0.001 "77.7 -,<0.001 #20.6 -,<0.001 #20.6 -,<0.001 #20.3 +,<0.001 "77.6

DS7 SZ 1.8±0.4 99.6 521.0±0.0 0.1 2.0±0.0 99.6 2.0±0.0 99.6 2.0±0.4 99.6 519.8±0.6 0.4 3.4±4.1 99.3
T-E,P -,0.0419 #0.3 +,<0.001 "99.1 =,0.072 #0.2 =,0.072 #0.2 =,0.073 #0.2 +,<0.001 "98.9

DS8 SZ 3.1±2.4 99.3 498.1±0.9 0.3 5.7±2.7 98.8 3.7±2.5 99.2 6.5±2.0 98.6 497.8±0.4 0.4 111.8±10.8 77.6
T-E,P -,<0.001 #21.7 +,<0.001 "77.2 -,<0.001 #21.2 -,<0.001 #21.6 -,<0.001 #21.0 +,<0.001 "77.1

DS9 SZ 15.3±2.5 76 62.4±0.8 2.4 15.4±3.1 75.8 14.9±2.6 76.6 9.7±2.5 84.7 61.7±0.6 3.5 32.8±1.7 48.6
T-E,P -,<0.001 #27.4 +,<0.001 "46.2 -,<0.001 #27.2 -,<0.001 #28.0 -,<0.001 #36.0 +,<0.001 "45.0

DS10 SZ 4.1±1.6 93.1 58.1±0.9 3 4.5±1.5 92.3 3.9±1.2 93.3 4.4±1.6 92.6 57.7±0.5 3.7 18.2±2.5 69.6
T-E,P -,<0.001 #23.5 +,<0.001 "66.6 -,<0.001 #22.7 -,<0.001 #23.7 -,<0.001 #23.0 +,<0.001 "65.8

DS11 SZ 3.4±1.0 88.5 28.4±0.7 5.2 3.5±1.0 88.2 3.3±1.1 89 3.1±1.0 89.5 27.8±0.3 7.1 9.9±2.3 67
T-E,P -,<0.001 #21.5 +,<0.001 "61.7 -,<0.001 #21.2 -,<0.001 #22.0 -,<0.001 #22.5 +,<0.001 "59.8

DS12 SZ 3.1±1.4 94.4 54.1±0.8 3.2 2.9±1.0 94.7 3.3±1.4 94.1 3.5±1.7 93.7 53.8±0.4 3.8 11.5±2.5 79.4
T-E,P -,<0.001 #15.0 +,<0.001 "76.1 -,<0.001 #15.3 -,<0.001 #14.7 -,<0.001 #14.3 +,<0.001 "75.5

Note: DS represents data sets. DS1 to DS12 represent the fourth to the �fteenth datasets in Table 1. The real number in the T-E row means
the percentage of the reduced features which is enhanced by the SaPSO algorithm.

Table 8. Solution sizes of EC methods on training sets

DS
GA Original PSO Standard PSO DE SaDE SaPSO

Mean±Std % Mean±Std % Mean±Std % Mean±Std % Mean±Std % Mean±Std %

DS1
SZ 124.6±13.8 58.6 123.7±10.1 58.8 121.0±8.0 59.8 121.7±8.4 59.5 114.0±7.7 62.1 77.1±10.1 74.3
T-E,P +,<0.001 "15.7 +,<0.001 "15.4 +,<0.001 "14.5 +,<0.001 "14.8 +,<0.001 "12.2

DS2 SZ 188.1±22.5 26.5 150.0±13.9 41.3 165.3±15.8 35.4 110.9±17.2 56.6 108.3±7.2 57.6 107.5±4.8 58
T-E,P +,<0.001 "31.4 +,<0.001 "16.6 +,<0.001 "22.5 =,0.3 "1.3 =,0.61 "0.3

DS3 SZ 339.3±51.6 45 262.3±20.8 57.4 286.9±36.8 53.4 244.5±11.4 60.3 233.6±9.9 62.1 159.3±8.1 74.1
T-E,P +,<0.001 "29.1 +,<0.001 "16.7 +,<0.001 "20.6 +,<0.001 "13.8 +,<0.001 "12.0

DS4 SZ 333.8±48.5 48.5 294.3±24.6 54.6 299.9±24.0 53.7 252.7±12.7 61 249.3±11.2 61.5 147.4±14.9 77.2
T-E,P +,<0.001 "28.7 +,<0.001 "22.6 +,<0.001 "23.5 +,<0.001 "16.2 +,<0.001 "15.7

DS5 SZ 324.9±54.8 42 273.5±24.4 51.2 286.8±31.2 48.8 227.0±11.6 59.5 220.2±11.7 60.7 122.9±15.6 78
T-E,P +,<0.001 "36.0 +,<0.001 "26.8 +,<0.001 "29.2 +,<0.001 "18.5 +,<0.001 "17.3

DS6 SZ 342.1±49.9 39 289.3±29.2 48.4 308.9±34.7 44.9 224.1±11.6 60 216.5±10.8 61.3 123.0±15.8 78
T-E,P +,<0.001 "39.0 +,<0.001 "29.6 +,<0.001 "33.1 +,<0.001 "18.0 +,<0.001 "16.6

DS7 SZ 225.4±45.0 56.8 85.4±8.8 83.6 23.0±6.7 95.5 171.2±2.9 67.1 155.7±4.5 70.1 3.4±4.1 99.3
T-E,P +,<0.001 "42.5 +,<0.001 "15.7 +,<0.001 "3.7 +,<0.001 "32.1 +,<0.001 "29.1

DS8 SZ 290.6±54.1 41.8 228.9±20.6 54.2 255.9±38.4 48.8 201.0±11.6 59.7 185.8±10.5 62.8 111.8±10.8 77.6
T-E,P +,<0.001 "35.7 +,<0.001 "23.4 +,<0.001 "28.8 +,<0.001 "17.8 +,<0.001 "14.8

DS9 SZ 42.2±4.3 34 39.9±2.7 37.6 42.8±3.3 33.1 36.4±7.2 43 34.5±3.1 46 32.8±1.7 48.6
T-E,P +,<0.001 "14.6 +,<0.001 "10.9 +,<0.001 "15.5 +,0.0119 "5.6 +,0.0115 "2.5

DS10 SZ 23.1±3.7 61.4 21.5±3.7 64.1 23.4±3.0 60.8 21.4±2.7 64.2 20.2±3.2 66.2 18.2±2.5 69.6
T-E,P +,<0.001 "8.2 +,<0.001 "5.5 +,<0.001 "8.7 +,<0.001 "5.3 +,0.00926 "3.4

DS11 SZ 13.4±3.6 55.1 13.4±2.3 55.3 15.0±3.4 50 11.3±2.1 62.1 11.3±1.8 62.3 9.9±2.3 67
T-E,P +,<0.001 "11.8 +,<0.001 "11.6 +,<0.001 "17.0 +,0.0168 "4.8 +,0.0112 "4.6

DS12
SZ 17.0±4.5 69.5 18.3±3.6 67.2 17.2±3.9 69.2 19.6±3.8 65 18.6±4.0 66.7 11.5±2.5 79.4
T-E,P +,<0.001 "9.8 +,<0.001 "12.1 +,<0.001 "10.1 +,<0.001 "14.4 +,<0.001 "12.6

signi�cant di�erence between the SaPSO algorithm and the other algorithms. As seen from Table 8
that, for one dataset (DS7), the SaPSO algorithm can reduce more than 90% of features; for seven
datasets (DS1, DS3, DS4, DS5, DS6, DS8, DS12), the feature reduction rate is 70% to 80%; for two
datasets (DS10, DS11), the reduced features take up 60% to 70%; and for the remaining two datasets
(DS2, DS9), the feature reduction rate is 50% to 60% and 40% to 50%, respectively. Therefore, the
SaPSO algorithm can reduce 70% to 80% of features in most cases. By comparing the reduction rate
between SaPSO and the other EC methods, it can be observed that the ratios are enhanced by 10%
to 30% on most datasets.

5.2.2 Results of Classification Accuracy on Training Sets and Test Sets. The training classi�cation
accuracies and test classi�cation accuracies obtained by the non-EC and EC methods on the 12
training datasets and the corresponding test datasets are presented in Tables 9, 10 11, and 12 in

ACM Trans. Knowl. Discov. Data., Vol. , No. , Article . Publication date: .

:18 Yu Xue, Bing Xue, and Mengjie Zhang

terms of mean values and standard deviations of classi�cation accuracies. The best mean value on
each dataset is typed in bold. In these tables, ‘CA’ represents the classi�cation accuracy.

Table 9. Classification accuracies of non-EC methods and SaPSO on training sets

DS
SFS SBS LRS21 LRS32 SFFS SBFS SaPSO

Mean±Std Mean±Std Mean±Std Mean±Std Mean±Std Mean±Std Mean±Std

DS1
CA 0.8929±0.0082 0.8147±0.0113 0.8924±0.0078 0.8965±0.0077 0.9002±0.0051 0.8170±0.0108 0.9159±0.0026
T-E,P +,<0.001 +,<0.001 +,<0.001 +,<0.001 +,<0.001 +,<0.001

DS2 CA 0.6832±0.0492 0.8471±0.0041 0.6772±0.0511 0.6822±0.0453 0.6396±0.0350 0.8475±0.0034 0.9031±0.0049
T-E,P +,<0.001 +,<0.001 +,<0.001 +,<0.001 +,<0.001 +,<0.001

DS3 CA 0.7481±0.0392 0.7615±0.0041 0.7460±0.0277 0.7475±0.0361 0.6949±0.0363 0.7599±0.0033 0.8899±0.0025
T-E,P +,<0.001 +,<0.001 +,<0.001 +,<0.001 +,<0.001 +,<0.001

DS4 CA 0.8449±0.0208 0.9493±0.0017 0.8453±0.0209 0.8373±0.0193 0.9194±0.0150 0.9478±0.0030 0.9831±0.0015
T-E,P +,<0.001 +,<0.001 +,<0.001 +,<0.001 +,<0.001 +,<0.001

DS5 CA 0.9244±0.0111 0.9192±0.0022 0.9261±0.0081 0.9266±0.0120 0.9282±0.0074 0.9185±0.0020 0.9693±0.0043
T-E,P +,<0.001 +,<0.001 +,<0.001 +,<0.001 +,<0.001 +,<0.001

DS6 CA 0.9200±0.0110 0.9134±0.0031 0.9196±0.0091 0.9170±0.0114 0.9268±0.0119 0.9137±0.0031 0.9745±0.0048
T-E,P +,<0.001 +,<0.001 +,<0.001 +,<0.001 +,<0.001 +,<0.001

DS7 CA 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000
T-E,P =,NaN =,NaN =,NaN =,NaN =,NaN =,NaN

DS8 CA 0.6595±0.0858 0.7155±0.0072 0.7392±0.1062 0.6803±0.0804 0.8160±0.0399 0.7145±0.0060 0.8722±0.0050
T-E,P +,<0.001 +,<0.001 +,<0.001 +,<0.001 +,<0.001 +,<0.001

DS9 CA 0.9482±0.0108 0.9675±0.0021 0.9490±0.0116 0.9470±0.0121 0.8185±0.0737 0.9676±0.0028 0.9863±0.0009
T-E,P +,<0.001 +,<0.001 +,<0.001 +,<0.001 +,<0.001 +,<0.001

DS10 CA 0.8476±0.0230 0.8095±0.0093 0.8492±0.0190 0.8444±0.0181 0.8540±0.0243 0.8080±0.0111 0.9537±0.0086
T-E,P +,<0.001 +,<0.001 +,<0.001 +,<0.001 +,<0.001 +,<0.001

DS11 CA 0.9419±0.0052 0.9474±0.0023 0.9452±0.0046 0.9449±0.0051 0.9442±0.0060 0.9466±0.0024 0.9682±0.0033
T-E,P +,<0.001 +,<0.001 +,<0.001 +,<0.001 +,<0.001 +,<0.001

DS12
CA 0.7300±0.0657 0.6440±0.0223 0.7167±0.0460 0.7419±0.0514 0.7470±0.0481 0.6315±0.0253 0.9310±0.0192
T-E,P +,<0.001 +,<0.001 +,<0.001 +,<0.001 +,<0.001 +,<0.001

Table 10. Classification accuracies of EC mothods on training sets

DS
GA Original PSO Standard PSO DE SaDE SaPSO

Mean±Std Mean±Std Mean±Std Mean±Std Mean±Std Mean±Std

DS1
CA 0.9078±0.0035 0.9107±0.0022 0.9127±0.0040 0.8988±0.0024 0.9029±0.0023 0.9159±0.0026
T-E,P +,<0.001 +,<0.001 +,<0.001 +,<0.001 +,<0.001

DS2 CA 0.8702±0.0057 0.8753±0.0041 0.8809±0.0060 0.8464±0.0034 0.8510±0.0044 0.9031±0.0049
T-E,P +,<0.001 +,<0.001 +,<0.001 +,<0.001 +,<0.001

DS3 CA 0.8205±0.0076 0.8446±0.0089 0.8495±0.0138 0.7941±0.0035 0.8059±0.0047 0.8899±0.0025
T-E,P +,<0.001 +,<0.001 +,<0.001 +,<0.001 +,<0.001

DS4 CA 0.9688±0.0029 0.9705±0.0034 0.9734±0.0041 0.9585±0.0017 0.9610±0.0017 0.9831±0.0015
T-E,P +,<0.001 +,<0.001 +,<0.001 +,<0.001 +,<0.001

DS5 CA 0.9467±0.0032 0.9510±0.0027 0.9529±0.0024 0.9351±0.0020 0.9391±0.0020 0.9693±0.0043
T-E,P +,<0.001 +,<0.001 +,<0.001 +,<0.001 +,<0.001

DS6 CA 0.9379±0.0056 0.9429±0.0056 0.9476±0.0064 0.9262±0.0028 0.9296±0.0025 0.9745±0.0048
T-E,P +,<0.001 +,<0.001 +,<0.001 +,<0.001 +,<0.001

DS7 CA 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000
T-E,P =,NaN =,NaN =,NaN =,NaN =,NaN

DS8 CA 0.7837±0.0116 0.8157±0.0110 0.8221±0.0169 0.7608±0.0082 0.7724±0.0046 0.8722±0.0050
T-E,P +,<0.001 +,<0.001 +,<0.001 +,<0.001 +,<0.001

DS9 CA 0.9860±0.0018 0.9838±0.0018 0.9849±0.0019 0.9693±0.0023 0.9748±0.0016 0.9863±0.0009
T-E,P =,0.42 +,<0.001 +,<0.001 +,<0.001 +,<0.001

DS10 CA 0.9447±0.0108 0.9467±0.0114 0.9461±0.0146 0.9024±0.0055 0.9124±0.0062 0.9537±0.0086
T-E,P +,<0.001 +0.00962 +,0.0178 +,<0.001 +,<0.001

DS11 CA 0.9657±0.0035 0.9670±0.0037 0.9665±0.0042 0.9644±0.0013 0.9658±0.0014 0.9682±0.0033
T-E,P +,0.00611 =,0.19 =,0.087 +,<0.001 +,<0.001

DS12
CA 0.9355±0.0289 0.9431±0.0232 0.9484±0.0303 0.8718±0.0245 0.8855±0.0211 0.9310±0.0192
T-E,P =,0.48 -,0.0319 -,0.0106 +,<0.001 +,<0.001

It is shown in Table 9 that SaPSO can get better classi�cation accuracies than all of SFS, SBS,
LRS21, LRS32, SFFS and SBFS on 11 training sets with statistical signi�cant di�erence. SaPSO and all
the other non-EC algorithms obtain the same results on 1 training set. The performance of SaPSO
is better than the non-EC algorithms in terms of training accuracy. In fact, SFS, LRS21, LRS32 and
SFFS belong to the “bottom-up" search technique while SBS and SBFS belong to the “top-down"
search technique. The “bottom-up" search technique adds better features to an empty set while the
“top-down" search technique removes worse features from a complete set. It means the classi�cation
accuracy increases as either increasing the solution size from zero or decreasing the solution size
from the total number of features. Nevertheless, many local optima will be experienced during

ACM Trans. Knowl. Discov. Data., Vol. , No. , Article . Publication date: .

Self-adaptive Particle Swarm Optimization for Large-scale Feature Selection in Classification :19

this process. However, both “bottom-up" and “top-down" techniques can only obtain few solutions
because they are heuristic search techniques. They add or remove a feature separately and greedily.
In fact, the individually good features may not be included in the optimal set, and vice versa, the
individually bad features may not be excluded from the optimal set. Hence, the greedy search
techniques easily get trapped in local optima from di�erent directions, and the “bottom-up" search
techniques always get the solutions with small sizes while the “top-down" search techniques always
get the solutions with big solution sizes. Starting the search with one or multiple medium solution
sizes, and searching along di�erent directions may be a better search technique for feature selection
problems. This may be a reason why SaPSO performs more e�cient than the other algorithms.

Table 11. Classification accuracies of non-EC methods and SaPSO on test sets

DS
SFS SBS LRS21 LRS32 SFFS SBFS SaPSO

Mean±Std Mean±Std Mean±Std Mean±Std Mean±Std Mean±Std Mean±Std

DS1
CA 0.8447±0.0133 0.7301±0.0313 0.8471±0.0150 0.8446±0.0169 0.8165±0.0211 0.7319±0.0333 0.8448±0.0157
T-E,P =,0.98 +,<0.001 =,0.56 =,0.96 +,<0.001 +,<0.001

DS2 CA 0.5478±0.0663 0.7994±0.0167 0.5495±0.0613 0.5542±0.0587 0.4355±0.0548 0.7991±0.0188 0.7795±0.0216
T-E,P +,<0.001 -,<0.001 +,<0.001 +,<0.001 +,<0.001 -,<0.001

DS3 CA 0.6568±0.0498 0.7144±0.0162 0.6562±0.0482 0.6586±0.0505 0.4620±0.0578 0.7139±0.0167 0.8106±0.0167
T-E,P +,<0.001 +,<0.001 +,<0.001 +,<0.001 +,<0.001 +,<0.001

DS4 CA 0.7666±0.0261 0.9308±0.0090 0.7598±0.0242 0.7609±0.0250 0.8444±0.0374 0.9308±0.0087 0.9388±0.0092
T-E,P +,<0.001 +,0.00121 +,<0.001 +,<0.001 +,<0.001 +,0.00102

DS5 CA 0.8520±0.0220 0.8479±0.0130 0.8531±0.0185 0.8516±0.0219 0.7764±0.0253 0.8449±0.0127 0.8814±0.0121
T-E,P +,<0.001 +,<0.001 +,<0.001 +,<0.001 +,<0.001 +,<0.001

DS6 CA 0.8702±0.0204 0.8545±0.0144 0.8779±0.0165 0.8720±0.0267 0.8017±0.0397 0.8554±0.0162 0.9140±0.0212
T-E,P +,<0.001 +,<0.001 +,<0.001 +,<0.001 +,<0.001 +,<0.001

DS7 CA 0.9981±0.0032 0.9996±0.0011 0.9974±0.0038 0.9989±0.0021 0.9979±0.0029 0.9993±0.0022 0.9986±0.0026
T-E,P =,0.51 =,0.06 =,0.16 =,0.62 =,0.33 =,0.27

DS8 CA 0.5400±0.0728 0.6173±0.0291 0.6029±0.1033 0.5797±0.0779 0.6482±0.0673 0.6141±0.0325 0.6863±0.0351
T-E,P +,<0.001 +,<0.001 +,<0.001 +,<0.001 +,0.00865 +,<0.001

DS9 CA 0.8833±0.0216 0.9317±0.0084 0.8843±0.0244 0.8831±0.0287 0.7248±0.0789 0.9319±0.0111 0.9364±0.0107
T-E,P +,<0.001 =,0.064 +,<0.001 +,<0.001 +,<0.001 =,0.12

DS10 CA 0.6634±0.0498 0.6513±0.0624 0.6608±0.0581 0.6456±0.0391 0.6649±0.0737 0.6494±0.0595 0.7005±0.0511
T-E,P +,0.00608 +,0.00149 +,0.00677 +,<0.001 +,0.0343 +,<0.001

DS11 CA 0.8622±0.0248 0.8887±0.0148 0.8774±0.0293 0.8719±0.0300 0.8881±0.0513 0.8881±0.0141 0.9099±0.0135
T-E,P +,<0.001 +,<0.001 +,<0.001 +,<0.001 +0.0312 +,<0.001

DS12
CA 0.4870±0.2037 0.6204±0.0990 0.4417±0.1694 0.4139±0.1892 0.4269±0.1658 0.5926±0.1085 0.5102±0.1442
T-E,P =,0.61 -,0.00113 =,0.097 +,0.0308 +,0.0424 -,0.0155

Table 12. Classification accuracies of EC methods on test sets

DS
GA Original PSO Standard PSO DE SaDE SaPSO

Mean±Std Mean±Std Mean±Std Mean±Std Mean±Std Mean±Std

DS1
CA 0.8513±0.0151 0.8449±0.0131 0.8507±0.0126 0.8506±0.0133 0.8470±0.0117 0.8448±0.0157
T-E,P =,0.11 =,0.98 =,0.11 =,0.13 =,0.54

DS2 CA 0.7872±0.0201 0.7821±0.0272 0.7892±0.0254 0.7690±0.0207 0.7685±0.0183 0.7795±0.0216
T-E,P =,0.16 =,0.68 =,0.12 =,0.059 +,0.0377

DS3 CA 0.7487±0.0258 0.7875±0.0232 0.7777±0.0202 0.7375±0.0214 0.7534±0.0223 0.8106±0.0167
T-E,P +,<0.001 +,<0.001 +,<0.001 +,<0.001 +,<0.001

DS4 CA 0.9356±0.0091 0.9327±0.0105 0.9348±0.0125 0.9300±0.0106 0.9334±0.0104 0.9388±0.0092
T-E,P =,0.18 +,0.02 =,0.16 +0.00112 +,0.0375

DS5 CA 0.8530±0.0159 0.8585±0.0146 0.8599±0.0152 0.8496±0.0199 0.8504±0.0172 0.8814±0.0121
T-E,P +,<0.001 +,<0.001 +,<0.001 +,<0.001 +,<0.001

DS6 CA 0.8679±0.0146 0.8727±0.0156 0.8713±0.0174 0.8630±0.0212 0.8673±0.0243 0.9140±0.0212
T-E,P +,<0.001 +,<0.001 +,<0.001 +,<0.001 +,<0.001

DS7 CA 0.9962±0.0053 0.9901±0.0064 0.9952±0.0043 0.9908±0.0082 0.9919±0.0103 0.9986±0.0026
T-E,P +,0.0314 +,<0.001 +,<0.001 +,<0.001 +,0.00155

DS8 CA 0.6421±0.0291 0.6598±0.0352 0.6503±0.0402 0.6400±0.0357 0.6387±0.0346 0.6863±0.0351
T-E,P +,<0.001 +,0.00498 +,<0.001 +,<0.001 +,<0.001

DS9 CA 0.9312±0.0097 0.9278±0.0098 0.9324±0.0078 0.9187±0.0135 0.9247±0.0136 0.9364±0.0107
T-E,P =,0.053 +,0.00195 =,0.1 +,<0.001 +,<0.001

DS10 CA 0.6908±0.0556 0.6972±0.0462 0.6804±0.0423 0.6779±0.0442 0.6841±0.0553 0.7005±0.0511
T-E,P =,0.48 =,0.79 =,0.1 =,0.072 =,0.24

DS11 CA 0.9125±0.0232 0.9162±0.0191 0.9092±0.0213 0.9021±0.0200 0.9021±0.0127 0.9099±0.0135
T-E,P =,0.6 =,0.15 =,0.88 =,0.083 +,0.0248

DS12
CA 0.4750±0.1602 0.4565±0.1211 0.4565±0.1348 0.4852±0.1523 0.4481±0.1446 0.5102±0.1442
T-E,P =,0.37 =,0.12 =,0.14 =,0.52 =,0.1

Table 10 shows that the SaPSO algorithm performs better than the other EC methods in terms of
classi�cation accuracy with statistical signi�cant di�erence on most of the training sets. Besides, it

ACM Trans. Knowl. Discov. Data., Vol. , No. , Article . Publication date: .

:20 Yu Xue, Bing Xue, and Mengjie Zhang

is observed from Table 10 that the robustness of SaPSO is good since the standard deviations of
SaPSO on most datasets are small. The results indicate that the self-adaptive mechanism and the
e�cient CSGSs in the strategy pool make SaPSO e�cient in solving feature selection problems.
As can be seen from Table 11, for most test sets SaPSO performs better than SFS, SBS, LRS21,

LRS32, SFFS, and SBFS respectively. Occasionally, SaPSO performs worse that SBS and SBFS. It can
be seen from Table 12 that the classi�cation accuracy of the SaPSO algorithm is higher than that
of GA on 5 test sets, similar to that of GA on 7 test sets; the classi�cation accuracy of the SaPSO
algorithm is higher than that of original PSO on 7 test sets, similar to that of original PSO on 5 test
sets. Similarly, the classi�cation accuracy of the SaPSO algorithm is higher than that of standard
PSO on 5 test sets, similar to that of standard PSO on 7 test sets; the classi�cation accuracy of the
SaPSO algorithm is higher than that of DE on 7 test sets, similar to that of DE on 5 test sets; the
classi�cation accuracy of the SaPSO algorithm is higher than that of SaDE on 9 test sets, similar to
that of SaDE on 3 test sets. The standard deviations of SaPSO on the test sets are small. Overall, the
performance of the SaPSO is better than the other EC methods on the test sets.

5.2.3 Convergence Performance of the EC Methods on the Training Sets. The convergence perfor-
mance of the six EC methods on training sets is shown in Fig. 3. (Note: the scales along Y axis
are di�erent for di�erent graphs, and the experimental results in Fig. 3 are statistical, i.e., for
each algorithm, the mean values of the results of its 30 independent runs were �rstly calculated
then plotted). By comparing the convergence curves of the algorithms, it is observed that most
algorithms have similar performance at the initial stage because the same initialization method is
used for all the algorithms. However, at the early stage, the SaPSO algorithm converges faster than
GA, original PSO, standard PSO, DE, and SaDE to the solutions which with both small sizes and
higher classi�cation accuracies on most datasets. At the later stages, although the convergence
performance of all the algorithms decreases signi�cantly, the classi�cation accuracy obtained by the
SaPSO algorithm become higher and higher while the classi�cation accuracy of other algorithms
changes very little on most datasets, meanwhile the solution size obtained by SaPSO is much smaller
than that of the other algorithms. Thus, the SaPSO algorithm has a better diversity property instead
of stagnating into a local optimum. Besides, it is observed that there exist obvious distinctions
between SaPSO and the other algorithms.
For small-scale training sets, i.e., the last four datasets, although the di�erence of classi�cation

accuracy among the six algorithms is not obvious, SaPSO can obtain the solutions that with much
smaller sizes. For most large-scale feature selection problems, SaPSO can obtain the solutions with
a high classi�cation accuracy and a small size. The advantage of the SaPSO algorithm becomes
increasingly prominent as the dimensionality of the datasets increases. Perhaps this is because
there are few local optima in the small solution space of a feature selection problem. Hence, this
kind of problem is not very di�cult to solve by a common EC method. Thus, the SaPSO algorithm,
GA, original PSO, standard PSO, DE and SaDE have similar performance on small-scale feature
selection problems. However, with the dimensionality of the datasets increasing, an increasing
number of local optima appear in the increasingly huge solution space. Therefore, the problem
becomes increasingly di�cult to solve, and a technique such as the SaPSO algorithm may be more
useful to solve feature selection problems with a large-scale dimensionality.

We have already got a conclusion from Table 8 that more than 70% of the features are irrelevant
or redundant in most cases. If the irrelevant or redundant features are added into a feature set, many
solutions with di�erent sizes but with the same accuracy will be generated in the solution space.
For example, suppose that there are 3 relevant features and 7 irrelevant features. The 7 irrelevant
features generate more than 1000 redundant solutions or local optima for the 3 relevant features.
Therefore, in most cases, optima exist in a small solution space, while the space is separated or

ACM Trans. Knowl. Discov. Data., Vol. , No. , Article . Publication date: .

Self-adaptive Particle Swarm Optimization for Large-scale Feature Selection in Classification :21

Fig. 3. Convergence curves on DS1-DS12.

ACM Trans. Knowl. Discov. Data., Vol. , No. , Article . Publication date: .

:22 Yu Xue, Bing Xue, and Mengjie Zhang

surrounded by many local optima that occupy huge space. Therefore, it is observed that the six
algorithms �ndmany solutions that have di�erent solution sizes but the same classi�cation accuracy.
Regardless of the classi�cation accuracy, the solution size obtained by the SaPSO algorithm is
obviously smaller than that of the other algorithms. It is because the SaPSO algorithm not only
has a better exploration property but also a better exploitation property, which is due to the
multiple e�cient CSGSs, and they are used adaptively in the SaPSO algorithm. Therefore, the
SaPSO algorithm is an e�cient technique not only for small-scale feature selection problems but
also for large-scale feature selection problems. Particularly on large-scale feature selection problems,
its advantages become more and more prominent.

By comparing the classi�cation accuracy and solution size of the other algorithms, we observed
that, in most cases, the classi�cation accuracy of GA, original PSO and standard PSO is higher than
that of DE and SaDE. Unfortunately, the solution size of GA, original PSO and standard PSO is
worse than that of DE and SaDE. Our goal is to obtain the solutions with not only small solution
size but also high classi�cation accuracy. However, most existing algorithms are good at only one
objective. By comparing SaPSO with SaDE, it is obviously observed that SaPSO is better than SaDE
on most datasets. The results indicate that the SaPSO algorithm is an e�ective technique to solve
feature selection problems, particularly large-scale feature selection problems. This is because
e�ective CSGSs are employed in SaPSO, and it indicates that the strategy selecting method is useful
for strategy pool design.

5.2.4 Changing Tendency of Selection Probabilities of the CSGSs. To investigate the e�ectiveness of
the self-adaptive mechanism in the SaPSO algorithm, the changing curves of the strategy selection
probabilities are plotted as shown in Fig. 4. Each subgraph means the changing tendency of the
selection probabilities of the CSGSs on each dataset. In each subgraph, the G axis represents the
number of generations, the ~ axis represents the value of the selection probability, and one curve
means the changing selection probability of one CSGS. Taking the third subgraph for example, the
red curve represents the selection probability of CSGS01. At the beginning, it is selected at the
probability of about 0.2. After 200 generations, it is selected at the probability of more than 0.5, and
the selection probability sometimes arrives at 0.8. Similarly, the blue curve represents the selection
probability of CSGS03. At the beginning, it is selected at the probability of 0.2 as well. But it is
never selected after 200 generations since its selection probability becomes zero. For observing
convenience, only the �rst 500 generations of the curves are plotted. It is observed from Fig. 4 that
all the probabilities change during all the evolutionary processes on all datasets. This phenomenon
indicates not only that all CSGSs are used but also that the performance of the CSGSs changes
at di�erent evolutionary stages. The self-adaptive mechanism can select the most suitable CSGS
at di�erent evolution stages. We can see that the probability of the �rst CSGS is greater than the
other CSGSs on some datasets whereas it is less than most of the others on other datasets. It is
because di�erent feature selection problems have di�erent properties. However, the self-adaptive
mechanism can select the most suitable CSGS during di�erent evolution stages.

6 CONCLUSIONS
The objectives of this paper were to design a self-adaptive algorithm, to carry out theoretical
study of designing the strategy pool, and to investigate whether a self-adaptive PSO algorithm can
achieve good performance for feature selection, especially for large-scale feature selection. These
objectives have been successfully achieved as shown by a set of experiments on datasets of varying
di�culties.

In this paper, we analyzed the properties of the feature selection. We found that feature selection
is di�erent from other common combinatorial optimization problems, i.e. there are more irrelevant

ACM Trans. Knowl. Discov. Data., Vol. , No. , Article . Publication date: .

Self-adaptive Particle Swarm Optimization for Large-scale Feature Selection in Classification :23

Fig. 4. Changing curves of strategy selection probabilities on DS1-DS12.

features than relevant features in the datasets, and the large number of irrelevant features generates
more local optima in the huge solution space. Thus, a feature selection problem becomes more
di�cult to solve as the dimensionality increases. In addition, large-scale feature selection problems
with di�erent datasets often have di�erent properties. In order to solve the large-scale feature
selection problems e�ectively, we proposed an improved AHP approach to solve the basic problems
of designing a self-adaptive based EC method. The SaPSO algorithm was proposed using a simple
self-adaptive framework. The experiments were conducted on 15 datasets. 12 of the them were
further employed to test the performance of SaPSO and its counterparts. The experimental results
showed that the SaPSO algorithm could reduce 70% to 80% of the features in most cases. By
comparing the SaPSO algorithmwith the other four ECmethods, the reduction ratios were enhanced
by 10% to 30% on most datasets. Moreover, the SaPSO algorithm is better than the other algorithms
in the terms of classi�cation accuracy on both the training set and the test set. Furthermore, the
performance of the SaPSO algorithm becomes increasingly better than the other algorithms as the
dimensionality of the datasets increases.

ACM Trans. Knowl. Discov. Data., Vol. , No. , Article . Publication date: .

:24 Yu Xue, Bing Xue, and Mengjie Zhang

In the future work, we will implement more state-of-the-art EC based feature selection methods,
and do more comparison experiments on more datasets to investigate the performance of SaPSO.
In addition, because feature selection can be treated as a two-objective or three-objective problem,
we will investigate the properties of the multi-objective feature selection and propose a new
multi-objective algorithm based on SaPSO to solve large-scale multi-objective feature selection
problems.

REFERENCES
J. Aguaron, M. T. Escobar, and J. M. Moreno-Jimenez. 2016. The precise consistency consensus matrix in a local AHP-group

decision making context. Annals of Operations Research 245, 12 (2016), 245–259.
A. Al-Ani, A. Alsukker, and R. Khushaba. 2013. Feature subset selection using di�erential evolution and a wheel based

search strategy. Swarm and Evolutionary Computation 9 (2013), 15–26.
K. Bache and M. Lichman. 2016. UCI machine learning repository.
K. K. Bharti and P. K. Singh. 2016. Opposition chaotic �tness mutation based adaptive inertia weight BPSO for feature

selection in text clustering. Applied Soft Computing 43 (2016), 20–34.
X. J. Chang, F. P. Nie, Y. Yang, C. Q. Zhang, and H. Huang. 2016. Convex sparse PCA for unsupervised feature learning.

ACM Transactions on Knowledge Discovery from Data 11, 1 (2016), 16.
M. Dorigo and L. M. Gambardella. 1997. Ant colony system: a cooperative learning approach to the traveling salesman

problem. IEEE Transactions on Evolutionary Computation 1, 1 (1997), 53–66.
D. B. Fogel. 1994. An introduction to simulated evolutionary optimization. IEEE Transactions on Neural Networks 5, 1 (1994),

3–14.
A. S. Ghareb, B. A. Abu, and A. R. Hamdan. 2016. Hybrid feature selection based on enhanced genetic algorithm for text

categorization. Expert Systems with Applications 49 (2016), 31–47.
I. A. Gheyas and L. S Smith. 2010. Feature subset selection in large dimensionality domains. Pattern Recognition 43, 1 (2010),

5–13.
Kyle Robert Harrison, Andries P. Engelbrecht, and Beatrice M. Ombuki-Berman. 2018. Self-adaptive particle swarm

optimization: a review and analysis of convergence. Swarm Intelligence 12 (2018), 187–226.
J. H. Holland. 1975. Adaptation in natural and arti�cial systems. University of Michigan Press.
U. Kamath, J. Compton, R. I. Dogan, K. D. Jong, and A. Shehu. 2012. An evolutionary algorithm approach for feature

generation from sequence data and its application to DNA splice site prediction. IEEE-ACM Transactions on Computational
Biology and Bioinformatics 9, 5 (2012), 1387–1398.

J. Kennedy and R. Eberhart. 1995. Particle swarm optimization. In IEEE International Conference on Neural Networks.
1942–1948.

J. R. Koza. 1990. Genetic programming: A paradigm for genetically breeding populations of computer programs to solve problems.
Vol. 34. Stanford University.

C. H. Li, S. X. Yang, and T. T. Nguyen. 2012. A self-learning particle swarm optimizer for global optimization problems.
IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics 42, 3 (2012), 627–646.

J. Li and D. C. Tao. 2012. On preserving original variables in Bayesian PCA with application to image analysis. IEEE
Transactions on Image Processing 21, 12 (2012), 4830–4843.

J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar. 2006. Comprehensive learning particle swarm optimizer for global
optimization of multimodal functions. IEEE Transactions on Evolutionary Computation 10, 3 (2006), 281–295.

T. Marill and D. Green. 1963. On the e�ectiveness of receptors in recognition systems. IEEE Transactions on Information
Theory 9, 1 (1963), 11–17.

V. E. Neagoe and E. C. Neghina. 2016. Feature selection with ant colony optimization and its applications for pattern
recognition in space imagery. In International Conference on Communications. 101–104.

Choosak Pornsing, Manbir S. Sodhi, and Bernard F. Lamond. 2016. Novel self-adaptive particle swarm optimization methods.
Soft Computing 20, 9 (2016), 3579–3593.

P. Pudil, J. Novoviov, and J. Kittler. 1994. Floating search methods in feature selection. Pattern recognition letters 15, 11
(1994), 1119–1125.

A. K. Qin, V. L. Huang, and P. N. Suganthan. 2009. Di�erential evolution algorithm with strategy adaptation for global
numerical optimization. IEEE Transactions on Evolutionary Computation 13, 2 (2009), 398–417.

T. L. Saaty. 1990. How to make a decision: the analytic hierarchy process. European Journal of Operational Research 48, 1
(1990), 9–26.

S. D. Stearns. 1976. On selecting features for pattern classi�ers. In Proceedings of the 3rd International Joint Conference on
Pattern Recognition. 71–75.

ACM Trans. Knowl. Discov. Data., Vol. , No. , Article . Publication date: .

Self-adaptive Particle Swarm Optimization for Large-scale Feature Selection in Classification :25

R. Storn and K. Price. 1997. Di�erential evolution - a simple and e�cient heuristic for global optimization over continuous
spaces. Journal of global optimization 11, 4 (1997), 341–359.

A. Stuhlsatz, J. Lippel, and T. Zielke. 2012. Feature extraction with deep neural networks by a generalized discriminant
analysis. IEEE Transactions on Neural Networks and Learning Systems 23, 4 (2012), 596–608.

T. Sudo, K. Goto, Y. Nojima, and H. Ishibuchi. 2015. E�ects of ensemble action selection with di�erent usage of player’s
memory resource on the evolution of cooperative strategies for iterated prisoner’s dilemma game. IEEE Congress on
Evolutionary Computation, 1505–1512.

J. L. Tang and H. Liu. 2014. Feature selection for social media data. ACM Transactions on Knowledge Discovery from Data 8, 4
(2014), 1–27.

H. Wang, H. Sun, C. H. Li, S. Rahnamayan, and J. S. Pan. 2013. Diversity enhanced particle swarm optimization with
neighborhood search. Information Sciences 223 (2013), 119–135.

Y. Wang, B. Li, T. Weise, J. Y. Wang, B. Yuan, and Q. J. Tian. 2011. Self-adaptive learning based particle swarm optimization.
Information Sciences 181, 20 (2011), 4515–4538.

A. W. Whitney. 1971. A direct method of nonparametric measurement selection. IEEE Transactions on Computers 100, 9
(1971), 1100–1103.

Y. Wu, S. C. H. Hoi, T. Mei, and N. H. Yu. 2017. Large-scale online feature selection for ultra-high dimensional sparse data.
ACM Transactions on Knowledge Discovery from Data 11, 4 (2017), 1–22.

R. Xu, G. C. Anagnostopoulos, and D. C. Wunsch. 2007. Multiclass cancer classi�cation using semisupervised ellipsoid
ARTMAP and particle swarm optimization with gene expression data. IEEE-ACM Transactions on Computational Biology
and Bioinformatics 4, 1 (2007), 65–77.

B. Xue, W. N. Browne, M. J. Zhang, and X. Yao. 2016. A survey on evolutionary computation approaches to feature selection.
IEEE Transactions on Evolutionary Computation 20, 4 (2016), 606–626.

B. Xue, M. J. Zhang, and W. N. Browne. 2013. Particle swarm optimization for feature selection in classi�cation: a multi-
objective approach. IEEE Transactions on Cybernetics 43, 6 (2013), 1656–1671.

B. Xue, M. J. Zhang, and W. N. Browne. 2014a. Particle swarm optimisation for feature selection in classi�cation: novel
initialisation and updating mechanisms. Applied Soft Computing 18 (2014), 261–276.

Y. Xue, J. Jiang, B. Zhao, and T. H. Ma. 2017. A self-adaptive arti�cial bee colony algorithm based on global best for global
optimization. Soft Computing 22, 9 (2017), 2935–2952.

Y. Xue, S. M. Zhong, Y. Zhuang, and B. Xu. 2014b. An ensemble algorithm with self-adaptive learning techniques for
high-dimensional numerical optimization. Applied Mathematics and Computation 231 (2014), 329–346.

H. Q. Yang, M. R. Lyu, and I. King. 2013. E�cient online learning for multitask feature selection. ACM Transactions on
Knowledge Discovery from Data 7, 2 (2013), 1–27.

J. H. Yang and V. Honavar. 1998. Feature subset selection using a genetic algorithm. IEEE Intelligent Systems and their
Applications 13, 2 (1998), 44–49.

X. S. Yang. 2008. Nature-inspired metaheuristic algorithms. Luniver press.
Wang Ying. 2011. Chaotic self-adaptive particle swarm optimization algorithm for dynamic economic dispatch problem

with valve-point e�ects. Expert Systems with Applications 38, 11 (2011), 14231–14237.
K. Yu, X. D. Wu, W. Ding, and J. Pei. 2016. Scalable and accurate online feature selection for big data. ACM Transactions on

Knowledge Discovery from Data 11, 2 (2016), 39.
Y. Zhang, D. W. Gong, and J. Cheng. 2017a. Multi-objective particle swarm optimization approach for cost-based feature

selection in classi�cation. IEEE-ACM Transactions on Computational Biology and Bioinformatics 14, 1 (2017), 64–75.
Y. Zhang, D. W. Gong, Y. Hu, and W. Q. Zhang. 2015. Feature selection algorithm based on bare bones particle swarm

optimization. Neurocomputing 148 (2015), 150–157.
Y. Zhang, X. F. Song, and D. W. Gong. 2017b. A return-cost-based binary �re�y algorithm for feature selection. Information

Sciences 418 (2017), 561–574.

ACM Trans. Knowl. Discov. Data., Vol. , No. , Article . Publication date: .

Appendix

Table 1. References and formulas of the 25 CSGSs

No. Reference Formula Brief information
1 [Xue et al. 2014a] xt+1

id = xt
id + vt+1

id (1) w=0.7298.
vt+1
id = w ⇥ vtid + c1 ⇥ r1i ⇥ (pid � xt

id) + c2 ⇥ r2i ⇥ (pgd � xt
id) (2)

2 [Xue et al. 2014a] xt+1
id = xt

id + vt+1
id (3)

vt+1
id = vtid + c1 ⇥ r1i ⇥ (pid � xt

id) + c2 ⇥ r2i ⇥ (pgd � xt
id) (4)

3 [Xue et al. 2014a] xt+1
id = xt

id + vt+1
id (5) w 2 [0.9, 0.5].

vt+1
id = w ⇥ vtid + c1 ⇥ r1i ⇥ (pid � xt

id) + c2 ⇥ r2i ⇥ (pgd � xt
id) (6)

4 [Li et al. 2012] vdk = wvdk + ⌘ · (pbestdk � xd
k) (7) w = [0.9, 0.5], ⌘ = 2.0.

5 [Li et al. 2012] vdk = vdavg ·N(0, 1) (8) where vdavg =
NP

k=1

��vdk
��/N ,

N(0, 1) is a random number generated from a normal distribution.
6 [Li et al. 2012] vdk = wvdk + ⌘ · (pbestdrand � xd

k) (9) pbestdrand is the personal best of a random particle.
7 [Li et al. 2012] vdk = wvdk + ⌘ · rdk · (gbestd � xd

k) (10) This strategy is used to perform learning from the global best.
8 [Beheshti et al. 2015] p!lbesti = (p1lbesti, p

2
lbesti, ..., p

n
lbesti) (11)

vdi (t+ 1) = w(t)⇥ vdi (t) + C1(t)⇥ rand1 ⇥ (pdbesti(t)� xd
i (t))+

c2(t)⇥ rand2 ⇥ (pdlbesti(t)� xd
i (t)) (12)

9 [Du and Li 2008] vid(t+ 1) = sgn(r1 � 0.5)(wvid(t) + c1r2(pid � xid(t))+ (13)
c2r3(pgd � xid(t))

sgn(t) =

8
<

:

�1, t < 0
0 , t = 0
1, t > 0

(14)

10 [Wang et al. 2013] Xi+1 = r1 ·Xi + r2 · pbesti + r3 · (Xc �Xd) (15) where Xc and Xd are the position vectors of two random particles.
11 [Wang et al. 2013] Xi+1 = r1 ·Xi + r2 · gbesti + r3 · (Xc �Xd) (16)
12 [Wang et al. 2011] V iaddi Xd

k �Xd
j (17)

c = N(0.5, 0.2) (18)
V d
i c⇥ V iaddi + c⇥ (pbestdi �Xd

i) (19)

13 [Wang et al. 2011] c = (D�1)N(0,1)
D + C(0,1)

D (20)
V d
i (meand

i �Xd
i)+ (7)

cp
3

q
(pbestdi �meand

i)
2
+ (Xd

i �meand
i)

2
+ (Xd

k �meand
i)

2
(21)

14 [Liang et al. 2006] V d
i w ⇥ V d

i + c⇥ randdi ⇥ (pbestdfi(d) �Xd
i) (22)

15 [Wang et al. 2011] V d
i w ⇥ V d

i + 0.5⇥ c⇥ randi ⇥ (pbestdfi(d) �Xd
i + pbestdi �Xd

i) (23)
16 [Xue et al. 2014b] F = N(0.5, 0.2) (24) where N(0.5, 0.2) is a random number.

Abi
0 Abr1 + F ⇥ (Abr2 �Abr3) (25)

Abd
i
=

⇢
Abd

i

0
, if d 2 randSel(D)

Abd
i
, otherwise

(26)

Abd
i
=

⇢
min(2ld

i
�Abd

i
, ud

i) , if Abd
i
< ld

i

max(2ud
i
�Abd

i
, ld

i
) , if Abd

i
> ud

i

(27)

17 [Xue et al. 2014b] Abi
0 Abr1 + rand⇥ (Abr2 �Abr3) + F ⇥ (Abr4 �Abr5) (28)

18 [Xue et al. 2014b] F = U(0.6, 1) (29) where U(0.6, 1)is a uniformly distributed random number between 0.6 and 1.
Ab0

i Abi + rand⇥ (Abr1 �Abr2) + F ⇥ (Abr3 �Abr4) (30)
19 [Xue et al. 2014b] c = U(0, 2) (31)

Abd
i
 Abd

i
+ c⇥ (Abd

r1 �Abd
i
) (32)

20 [Qin et al. 2009] ui,j =

⇢
xr1,j + F · (xr2,j � xr3,j), if rand[0, 1) < CR or j = jrand

xi,j , otherwise
(33)

21 [Qin et al. 2009] ui,j =

8
<

:

xi,j + F · (xbest,j � xi,j) + F · (xr1,j � xr2,j) + F · (xr3,j � xr4,j),
if rand[0, 1) < CR or j = jrand

xi,j , otherwise
(34)

22 [Qin et al. 2009] ui,j =

8
<

:

xr1,j + F · (xr2,j � xr3,j) + F · (xr4,j � xr5,j),
if rand[0, 1) < CR or j = jrand

xi,j , otherwise
(35)

23 [Qin et al. 2009] Ui,G=Xi,G+k · (Xr1,G�Xi,G)+F · (Xr2,G�Xr3,G) (36)
24 [Liang et al. 2006] vdi = w ⇤ vdi + c ⇤ randdi ⇤ (pbestdfi(d) �Xd

i) (37)
25 [Zhan et al. 2011] vid = �[vid + c1r1d(pid � xid) + c2r2d(pnd � xid)] (38)

1

2 Yu Xue, Bing Xue, and Mengjie Zhang

REFERENCES
Z. Beheshti, S. M. Shamsuddin, and S. Hasan. 2015. Memetic binary particle swarm optimization for discrete

optimization problems. Information Sciences 299 (2015), 58–84.
W. Du and B. Li. 2008. Multi-strategy ensemble particle swarm optimization for dynamic optimization.

Information Sciences 178, 15 (2008), 3096–3109.
C. H. Li, S. X. Yang, and T. T. Nguyen. 2012. A self-learning particle swarm optimizer for global optimization

problems. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics 42, 3 (2012), 627–646.
J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar. 2006. Comprehensive learning particle swarm optimizer

for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation 10, 3
(2006), 281–295.

A. K. Qin, V. L. Huang, and P. N. Suganthan. 2009. Di↵erential evolution algorithm with strategy
adaptation for global numerical optimization. IEEE Transactions on Evolutionary Computation 13, 2
(2009), 398–417.

H. Wang, H. Sun, C. H. Li, S. Rahnamayan, and J. S. Pan. 2013. Diversity enhanced particle swarm
optimization with neighborhood search. Information Sciences 223 (2013), 119–135.

Y. Wang, B. Li, T. Weise, J. Y. Wang, B. Yuan, and Q. J. Tian. 2011. Self-adaptive learning based particle
swarm optimization. Information Sciences 181, 20 (2011), 4515–4538.

Bing Xue, Mengjie Zhang, and Will N. Browne. 2014a. Particle swarm optimisation for feature selection in
classification: novel initialisation and updating mechanisms. Applied Soft Computing 18 (2014), 261–276.

Y. Xue, S. M. Zhong, Y. Zhuang, and B. Xu. 2014b. An ensemble algorithm with self-adaptive learning
techniques for high-dimensional numerical optimization. Appl. Math. Comput. 231 (2014), 329–346.

Z. H. Zhan, J. Zhang, Y. Li, and Y. H. Shi. 2011. Orthogonal learning particle swarm optimization. IEEE
Transactions on Evolutionary Computation 15, 6 (2011), 832–847.

