
Seed-Driven Geo-Social Data Extraction
Suela Isaj

Aalborg University

suela@cs.aau.dk

Torben Bach Pedersen

Aalborg University

tbp@cs.aau.dk

ABSTRACT
Geo-social data has been an attractive source for a variety of prob-

lems such as mining mobility patterns, link prediction, location

recommendation, and influence maximization. However, new geo-

social data is increasingly unavailable and suffers several limitations.

In this paper, we aim to remedy the problem of effective data extrac-

tion from geo-social data sources. We first identify the limitations of

extracting geo-social data. To overcome the limitations, we propose

a novel seed-driven approach that uses the points of one source as

the seed to feed as queries for the others. We additionally handle

differences between, and dynamics within the sources by proposing

three variants for optimizing search radius. Furthermore, we pro-

vide an optimization based on recursive clustering to minimize the

number of requests and an adaptive procedure to learn the specific

data distribution of each source. Our comprehensive experiments

with six popular sources show that our seed-driven approach yields

14.3 times more data overall, while our request-optimized algorithm

retrieves up to 95% of the data with less than 16% of the requests.

Thus, our proposed seed-driven approach set new standards for

effective and efficient extraction of geo-social data.

CCS CONCEPTS
• Information systems→ Spatial-temporal systems; Informa-
tion extraction.

1 INTRODUCTION
Each year social networks experience a continuous growth of 13%

in the number of users (http://wearesocial.com/uk /blog/2018/01/

global-digital-report-2018). Consequently, more and more informa-

tion is available regarding the activity that the users share, events in

which they participate and the new connections they make. When

data collected by social networks contain social connections (friend-

ship links, mentions, and tags in posts, etc) as well as geographic in-

formation (check-ins, geo-data in posts and implicit location detec-

tion), then this data is usually referred as geo-social data. Geo-social
data have attracted studies regarding location prediction, location

recommendation, location-based advertisement, urban behavior,

etc. The primary sources of geo-social data are location-based so-
cial networks (LBSNs) such as Gowalla, Brightkite, and Foursquare,

which contain social ties, check-ins, tips and detailed information

about locations. However, Gowalla and Brightkite were closed in

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SSTD ’19, August 19–21, 2019, Vienna, Austria
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6280-1/19/08. . . $15.00

https://doi.org/10.1145/3340964.3340973

2012, whereas Foursquare has blocked the extraction of check-ins

from its API (Application Programming Interface - set of functions

and procedures that allow data extraction from a source). Other

secondary sources of geo-social data are social networks such as

Facebook, Twitter, Flickr, etc. Social networks are characterized

by richness and variety of data, making them an attractive source

for data extraction. However, the percentage of geo-located posts

reported in the literature is less than 1% ([5, 15, 23]). Furthermore,

they provide rich information about users, their networks, their ac-

tivities but only a few details about locations (only the coordinates).

Another less common source of location data (not necessarily geo-

social) are directories such as Yelp, Google Places, TripAdvisor, etc,

which contain locations with details such as name, phone, type of

business, etc and sometimes accompanied by user reviews. In the

majority of the cases, directories do not contain user profiles; even

when they do, the API does not provide functions to extract user’s

information. Hence, it is necessary to use several sources in order

to gain a complete dataset of geo-social data.

Not only is geo-social data scattered over several sources but

the APIs of the sources are also highly restrictive regarding the

number of requests, the amount and the type of data that can be

extracted, etc. Instead of extracting the data, publicly available

datasets can be used. However, their usability is limited because

sometimes they lack the details about users’ profiles or the locations,

which could be of interest for the research purpose. Besides, the

check-ins/photos/posts/reviews are sparse and scattered all over

the globe, affecting the quality of the experiments while mining

frequent patterns, mobility patterns, urban behavior, etc. Enriching

these datasets with the missing details is not possible because the

data is anonymized, so the link with the source is lost. Even when

the data is not anonymized, the datasets are old (2008-2013) and

they can not map to the existing users or locations of nowadays.

When we analyzed 32 papers from 2009 to 2018 using geo-social

data, we found that no less than 50% used datasets that are 3-8 years

older than the published article (see Appendix A in [14]).

To sum up, geo-social data is becoming even more needed and

even less accessible. We thus, address the problem of location-based
geo-social data extraction from social networks and location-based

sources. We introduce the limitations of six sources of geo-social

data, namely: Flickr, Twitter, Foursquare, Google Places, Yelp, and

Krak. Then, we propose a seed-driven algorithm that uses the points

of the richest source (the seed) to extract data from the others. Later,

we introduce techniques to optimize the selection of radius and

seed points. Our main contributions are: (i) We provide an analysis

of the current limitations of data extraction from six popular geo-

social data sources. (ii) We identify and formulate the problem

of maximizing the extracted geo-social data while minimizing the
requests to the sources. To the best of our knowledge, we are the

first to optimize the data extraction process in social networks and

location-based sources. (iii) We propose a novel algorithm for data

https://doi.org/10.1145/3340964.3340973
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3340964.3340973&domain=pdf&date_stamp=2019-08-19

SSTD ’19, August 19–21, 2019, Vienna, Austria Isaj et al.

extraction that uses the points of one source as seed to the API

requests of the others. Our seed-driven algorithm retrieves up to 98

times more data than the default API querying. (iv) We introduce

an optimized version of our algorithm that minimizes the requests

and ensures maximized data extraction by recursively adapting the

radius and the centroid of the query region. We retrieve around

90% of the data using less than 16% of the requests.

The remainder of the paper is structured as follows: first, we

describe the related work in Section 2; then, we introduce the def-

initions and the data extraction problem in Section 3; later, we

categorize the limitations of the data extraction process and we pro-

vide preliminary results from six sources in Section 4; we continue

with formalizing our proposed algorithm in Section 5; next, we test

the proposed solutions through real-time querying of the sources

and we compare the results in Section 6; and finally, we conclude

and provide further insights on our work in Section 7.

2 RELATEDWORK
Despite the growing interest in geo-social related topics, the exist-

ing related work does not focus specifically on optimizing the data

extraction process. Most of the existing research uses either publicly

available datasets [4, 7, 9, 10, 21, 22, 22, 29, 30, 33, 35, 36, 38–40],

crawl using the default settings of the API [3, 6, 11, 16, 24, 27, 32,

34, 37] or do both [18, 25]. The (sparsely described) crawling meth-

ods used in these papers can be categorized as either user-based
crawling, location-based crawling or keyword-based querying.

User-based crawling. User-based crawling is based on query-

ing users for their data and their networks as well. A user-based

crawling technique mentioned in several studies is the Snowball
technique [12, 31]. Snowball requires a prior seed of users to start

with and then, traverses the network while extracting data from

the network of friends. Nonetheless, Snowball is biased to the high

degree nodes [20] and requires a well-selected seed. Another inter-

esting method is to track the users that post with linked accounts
[1, 13, 28], for instance, users posting from Twitter using the check-

in feature of Foursquare. Nevertheless, this method is limited only

to linked accounts, whose percentage is less than 1%.

Location-based crawling. Location-based crawling requires

no prior knowledge, and the extraction process can start at any

time. It is based on extracting data near or within a specific area.

Lee et al. [19] use a periodical querying based on points extracted

from Twitter. First, Twitter is queried for initial points. Then, in a

later step, other requests are performed using the initial points as

query points, focusing on areas detected by the user. Thus, in each

step n, the points discovered in step n − 1 are used to perform the

new queries. We will refer to this method as Self-seed.
Keyword-based querying. As the name suggests, the source is

queried [not necessarily crawled] with a keyword to find relevant

data. The keyword-based querying is widely used by the research

on topic mining, opinion mining, the reputation of entities, quality

of samples and several related topics [2, 17] but not for geo-social

topics since querying with a keyword does not guarantee that the

retrieved data will be located in the queried location. For example,

querying Twitter with the keyword "Brussels" can return tweets in

Brussels, tweets talking about Brussels but not located there, and

even tweets about brussels sprouts.

Discussion. Obviously, the keyword-based querying is not of

interest due to the noise it brings. The user-based crawling requires

prior information about a seed of users and applies only to social

networks. Subsequently, it leaves aside other location-based sources

such as Yelp, TripAdvisor, and Google Places. Moreover, if the study

is based on a region of interest, the user-based crawling results in

a lot of irrelevant data because even if the seed of users is well-

selected from the region of interest, there is no guarantee that the

friends will check-in in the area of interest. Consequently, user-

based crawling produces wasted requests. The method described

by [19] has some similarities with ours because it is location-based

crawling and focuses on performing requests on areas discovered

previously. In comparison, our approach differs significantly be-

cause (i) instead of selecting points from a single source and query-

ing itself, we use a seed source to query multiple sources, (ii) we
minimize the number of requests performed while maximizing

the data extracted (iii) our seed-driven data extraction approach

does not need periodical querying; it can be run continuously and

simultaneously for all the sources, resulting in faster data extrac-

tion process, compared to several months like in [19]. To sum up,
our data extraction approach is faster, richer, request-economic, and
includes multiple sources.

3 PROBLEM DEFINITION
The notion that we will use widely in the paper is a location. A
location in a directory is a venue with a geographical point and

additional attributes like name, category, etc. Social networks con-

tain activities such as check-ins, tips, photos and tweets which are

geo-tagged. We denote the locations associated with the activities

as derived locations and for brevity, just as locations.

Definition 1. A location l is a spatial entity identified within the
source by a unique identifier id(l). A location l has a set of attributes
A = {a1,a2...an } accompanied by their values {a1(l),a2(l)...an (l)}.
A required attribute for a location l is its geographical coordinates
denoted as p(l)

For example, l1 is a tweet with id = 1234567, where A={text, user,
point} and the values are {"Nice day in park", 58302, <57.04, 9.91>}.

Geo-social data sources usually offer an Application Programming
Interface (API), which is a set of functions and procedures that allow

accessing a source to obtain its data. Location-based API calls allow

querying with (i) a point p and a radius r , (ii) a box < p1,p2,p3,p4 >
and (iii) keywords. We will not consider keyword-based querying

due to the noise it brings (see Section 2). The circular querying and

the rectangular querying are quite similar as long as the parameters

are the same. In this work, we use querying with a point p and a

radius r and refer to the searched area as Circle(p, r). We define a

geo-social data source formally as:

Definition 2. A geo-social data source S , short as source, consists
of the (complete) set of locations L(S) and a source-specific extraction
functionAPI : PxR+ ⇒ 2

L(S), where P is the domain of geographical
points and R+ is the domain of non-negative numbers. API (p, r)
queries with a centroid p ∈ P and a radius r ∈ R and returns a
sample of locations Lrp , such that for each l ∈ Lrp , p(l) ∈ Circle(p, r)
and |Lrp | ≤ MS , whereMS is the maximal result size for S .

Seed-Driven Geo-Social Data Extraction SSTD ’19, August 19–21, 2019, Vienna, Austria

If S is Twitter, then L(S) is the complete set of tweets (all the

tweets posted ever on Twitter). A request with a point and a radius <

p, r > will retrieve a sample Lrp of size at mostMS of the underlying

activities Lrp (S) in Circle(p, r). So, if MS = 100, then Lrp ≤ 100

locations. Given that the requests are limited, they need to be used

wisely in order to retrieve the largest combined result size. For

example, if the first request retrieves the locations {l1, l4, l5, l6} and
the second request retrieves {l2, l4, l5, l6}, then the second request

contributed with only one new location (l2).
Problem definition. Optimizing geo-social data extraction is the

problem that given a source Si and a number of requests n finds the

sequence of pairs of point and radius {< p1, r1 >, < p2, r2 > ... <

pn , rn >} such that the size of Li =
n⋃
j=1

L
r j
pj is maximized .

The problem aims to obtain a good compromise between the

number of requests and the number of locations Li . The optimal

solution is a combination of {< p∗
1
, r∗
1
>, < p∗

2
, r∗
2
> ... < p∗n , r

∗
n >}

such that Li is maximal (the optimal L∗i). Given the API limitations,

trying exhaustively all possible values and combinations of p and r
to find L∗i is not feasible. Hence, we propose solutions that are based
on heuristics and assumptions. Before proposing our solutions, let

us first introduce the API limitations for each source.

4 LIMITATIONS OF EXISTING GEO-SOCIAL
DATA SOURCES

With regard to quantifying the limitations, we present preliminary

results from querying six sources: Twitter, Flickr, Foursquare, Yelp,

Google Places, and Krak. Krak is a Danish website that offers infor-

mation about companies, telephone numbers, etc. In addition, Krak

is part of Eniro Danmark A / S. which takes care of publishing The

Yellow Pages. We queried all the sources simultaneously for the

region of North Denmark during November-December 2017. With

respect to gaining more data, we performed additional requests

using different keywords ("restaurant", "library", "cozy", etc) as well

as coordinates of the cities and towns in the region.

The API bandwidth refers to the number of requests allowed

within a time frame. For example, Twitter allows 180 requests in

15 min; meanwhile, Krak has a time window of a month. Google

Places allowed 1000 requests in a day before June 2018, and now,

just one request per day. If more requests are needed, the cost is

0.7 US cents/request (first 200 USD free). In our data extraction

and experiments, we fix the bandwidth of Google Places to 1000

requests in a day (the former default). The maximal result size
is the maximal number of results returned by a single request. For

instance, an API call in Flickr retrieves 250 photos, but in Google

Places retrieves only 20 places. The historical access is related to

how accessible the earlier activity is. Directories such as Yelp, Krak,

and Google Places do not provide historical data; they only keep

track of the current state of their locations. Foursquare provides

only the current state of its venues and historical access to photos

and tips by querying with venues. Flickr can go back in old photos,

whereas Twitter limits the results only to the last couple of weeks.

The supplemental results are data which do not belong in the

query region, but they are still added to the API result. For example,

if we search for "Zara" shop in city X, the API might return the

"Zara" shop which is the closest to X but in city Y. We noticed that

supplemental results are present only in directories, which aim to

advertise and provide results anytime. Having access to the com-
plete dataset means that the API can query the whole dataset, not

just a sample. For example, the Twitter API accesses only a sample

of 1% while others enable access to its complete dataset. Most social

networks and directories offer free APIs at no costs. They also offer
premium or enterprise services with monthly payment or pay-as-

you-go services. While some sources have predefined pricing plans

(Twitter, Foursquare, and Google Places), others offer the possibility

to discuss the needs and the price (Yelp). Even though a premium

service has fewer restrictions, it is still needed to keep costs down.

A summary of the limitations of social networks is presented

in Table. 1. Krak is restrictive with the bandwidth. Google Places

has a very small result size and only one request per day. Flickr

is promising in terms of the API limitations, while Twitter shows

severe problems regarding the limitation to access historical data.

Foursquare and Yelp could be considered similar in terms or lim-

itations. The number of locations and the number of points for

each source are presented in Table 2. Krak has a leading position

with almost two orders of magnitude more results than any other

source, followed by Flickr, Foursquare, Yelp, Google Places, and

finally, Twitter. As for the temporal density, we recorded that in

Flickr there are around 17 photos per day, in Twitter 10 photos per

day, in Foursquare 0.03 tips and 0.36 photos per day (See Subsection

4.2 in [14] for more details on data scarcity). To sum up, a single

source queried with the default API cannot provide a rich enough

dataset. In the next section, we propose a novel algorithm that uses

one of the sources as seed to extract data from the others and is

capable of obtaining up to 14.3 times more data than single source

initial querying (Section 6.1).

5 MULTI-SOURCE SEED-DRIVEN
APPROACH

Section 4 studied the limitations of data extraction and quantified

the performance of each of the sources. In this section, we propose

a main algorithm and several adaptions to it that lead to an effective

data extraction process.

5.1 Multi-Source Seed-Driven Algorithm
We will refer to the initial default API queries as Source Initial
(SI) and to the set of locations they retrieve as LI . Having no prior

knowledge of the underlying data L(Si) makes it challenging to

choose which API calls to perform. However, all the sources operat-
ing in the same region contain data that maps to the same physical
world. For example, if there is a bar in the point (56.89 9.21) in Krak,

probably around this point there might be this and other locations

in Yelp, Google Places, and Foursquare and even some activity such

as tweets, photos or check-ins in Twitter, Flickr, and Foursquare.

This means that if the SI of a source is rich in terms of locations,

then its knowledge can be used to improve the data extraction of

the other sources. Hence, we propose a seed-driven approach to

extract locations from multiple sources. The main idea is simple;

selecting one (more complete) source as the seed and feeding the points
to the rest for data extraction.

Multi-Source Seed-Driven (MSSD) is a function that takes as

input a set of sources S1, S2...Sk and outputs their corresponding

SSTD ’19, August 19–21, 2019, Vienna, Austria Isaj et al.

API limitations Krak Yelp Google Places Foursquare Twitter Flickr

Bandwidth 10K/month 5K/day 1/day (from 6/2018) 550/hour 180/15 min 3.6K/hour

Max Res. Size 100 50 20 50 100 500

Hist. Access N/A N/A N/A Full 2 weeks Full

Supp Results 4.3% 17.3% 0.5% 0.0% 0.0% 0.0%

Complete access yes yes yes yes 1% yes

Cost not stated negotiable from 200$/month from 599$/month 149$ - 2499$/month not stated

Table 1: Summary of limitations of social networks

Category Krak Yelp GP FSQ TW Flickr

Locations 143,073 473 380 1,097 115 4,084

Points 32,461 467 356 1,093 25 2,272

Table 2: Locations and points per source

sets of locations {LS1 ,LS2 , ...LSk } obtained from the seed-driven

approach in Alg. 1. For example, let us suppose that the seed pro-

vides a location with coordinates (57.05, 9.92) as in Fig. 1. We can

search for locations across sources within the circle with center

(57.05, 9.92) and a predefined radius. The different colors in the

figure represent the different sources. We can discover three loca-

tions from the red source, two from the blue source and two from

the green source. The algorithm for the seed-driven approach is

presented in Alg. 1. Selecting a good seed is important; thus, we

start by getting the most complete source (with the most points) in

line 4. The points in the seed indicate regions of interest and are

used for the API request in the sources. So, for each point in seed

(for each p in P), we query the rest of the sources except the seed

source. Line 7 shows the general API call for each of the sources,

which is performed in correspondence to the requirements of the

source. The request takes the coordinates of p and the radius r .
The search returns a set of locations Lrp , which is unioned to our

source-specific output LS .

Algorithm 1Multi-Source Seed-Driven (MSSD)

Input: A set of sources {S1, S2, ...Sk }, radius r
Output: {LS

1
, LS

2
, ...LSk }

1: for each S in {S1, S2, ...Sk } do
2: LS ← LI →/* Initialize LS of each source with LI */
3: end for
4: Let Sseed be the source with the most points in {S1, S2, ...Sk }, Lseed its

locations and P the distinct points in Lseed
5: for each p in P do
6: for each S in {S1, S2, ...Sk } - Sseed do
7: Lrp ← API (p, r) →/* API request for the source S */

8: LS ← LS ∪ Lrp
9: end for
10: end for

return {LS
1
, LS

2
, ...LSk }

5.2 Optimizing the Radius
We can improve further MSSD by adapting the API request to the

source. Even though a big radius might seem like a better solution,

note that the API retrieves only a fixed size sample of the underlying

data. Hence, if we query with points that are nearby, we might

retrieve intersecting samples. We denote the maximal result size of

the API for source S as MS . Let us consider the example in Fig.3,

where MS is 3, which means that the API can not retrieve more

than 3 tweets. If we query with a big radius as in the left part of

Fig.3, we might get 2 out of 3 tweets in the intersection. If the radius

is small, then we explore better the dense areas, but we might miss

in sparser ones like in the right part of Fig. 3. The union of tweets

in both searches is just 4, where ideally it should have been 6. We

propose two improvements: using the knowledge of the seed to define
the radius and recursively learn a suitable radius for the source.

Multi-Source Seed-Driven Density-Based MSSD-D. The ra-
dius in this version is defined by the density of points in the seed.
Before the API requests, we check the density of points in the

search area in the seed, and we adapt the radius accordingly. Fig.

2a illustrates the intuition behind MSSD-D. We are using the point

in red as seed point p. Before performing any API call, we check

how many points of the seed are in the search area (N = 4 points

in the black circle with center p and initial radius r). Second, we
adjust the radius according to the density, so in this case, we divide

the radius by 4 (rd =
r
|N |). Finally, we perform the API call to the

source with the red circle. Alg. 1a shows the alterations we make

in Alg. 1 for the radius calculation. We add line 5.a and 5.b after

line 5 in Alg. 1. First, we find the density of the region, and then,

we adjust the radius depending on the density. We query with the

adjusted rd =
r
|N | in line 7 of Alg. 1.

Algorithm 1a MSSD Density-Based (MSSD-D)

5.a: Find N = {q |q ∈ Circle(p, r)} →/* Find how dense the region is*/

5.b: rd = r
|N | →/* Adjust the radius*/

Multi-Source Seed-Driven Nearest Neighbor MSSD-N. As
the name suggests, we use the nearest neighbor in the seed to

define the radius. A simple illustration of this idea is presented

in Fig. 2b. For each of the points p in the seed (in red), we find

the nearest neighbor q in the seed (in green), and then we query

with the adjusted radius rn = |p − q |. Note that we query with a

small radius in dense areas and a big radius in sparse ones. Alg. 1b

instead adds line 5.a and 5.b after line 5 of Alg. 1. It finds the nearest

neighbor q of the point p. Then, we set rn = |p − q |. The adjusted
rn is used to query the sources in line 7 of Alg. 1.

Algorithm 1b MSSD Nearest Neighbor (MSSD-N)

5.a: Find q = min

q∈Li
|p − q | →/* Find the nearest neighbor*/

5.b: rn = |p − q | →/* Adjust the radius*/

Multi-Source Seed-Driven Recursive MSSD-R. The advan-

tage of MSSD-D and MSSD-N is that no API call is needed to adjust

the radius because these calculations are performed on the seed
points. However, there is a need for a better approach to assigning

a suitable radius for a specific area. We propose a solution that

adjusts the radius while querying the source. If an area not dense,

we can identify it from the API call. However, in contrast to SQL

queries on a database where the operations are transparent, the

operations of API queries on an online source are a black box, and

thus, we need to assume a certain level of transparency. Therefore,

we assume that if the area contains less thanMS locations, the API

call will retrieve all of them.

Seed-Driven Geo-Social Data Extraction SSTD ’19, August 19–21, 2019, Vienna, Austria

Figure 1:MSSD approach

(a) MSSD-D radius (b)MSSD-N radius (c) MSSD-R radius

Figure 2:MSSD radius

Assumption 1. For each source S in {S1, S2, ..., Sk }, ifCircle(p, r)
contains Lrp (S) locations such that |Lrp (S)| ≤ MS , then API (p, r) will
retrieve Lrp = Lrp (S).

The API retrieves a sample of sizeMS of the underlying data in

a queried region Circle(p, r). If the underlying locations Lrp (S) are

already less than MS , then we assume that the API will retrieve

all the locations lying in Circle(p, r). For example, if there are 30

locations in Circle((56.78 9.67), 1km) andMS = 50, then querying

with p = (56.78 9.67) and r=1 km will return all 30 locations.

Theorem 1. Let < p, r > be a pair of point and radius such that
API (p, r) = Lrp where |Lrp | < MS . Then, for all r ′ such that r ′ < r ,
Lr ′p ⊆ Lrp .

Proof. Let us assume that there are |Lrp (S)| locations inCircle(p, r)

and |Lr ′p (S)| locations in Circle(p, r′) . Since r ′ < r , then the sur-

face covered by Circle(p, r′) is smaller than the surface covered

by Circle(p, r) (πr ′2 < πr2). Consequently, Lr ′p (S) ⊆ Lrp (S). Ac-

cording to Assumption 1, since API (p, r) retrieves |Lrp | < MS , then

Lrp = Lrp (S) and |L
r
p (S)| < MS . Given that Lr ′p (S) ⊆ Lrp (S) and

|Lrp (S)| < MS , we conclude that |Lr ′p | < MS and Lr ′p = Lr ′p (S).

Finally, from Lr ′p (S) ⊆ Lrp (S), we derive that L
r ′
p ⊆ Lrp . □

This is an important finding that will be used in definingMSSD-R.
Since there are less thanMS locations retrieved by the API call in

source S , there are no new locations to be gained by querying with

a smaller radius. Thus, we propose a recursive method that uses

Theorem 1 as our stopping condition. First, we query with an initial

large radius, and if the result size is MS , then we know this is a

dense area, and we perform another request with a smaller radius.

The search stops when the number of returned results is smaller

than the maximal result size because according to Theorem 1. The

recursive method is illustrated in Fig. 2c. Let us suppose that we

are querying source S and the maximal result size isMS = 5. After

querying with the green circle, we get 5 locations so we know that

Figure 3: Radius adjustment
Figure 4:MSSD*

the area is dense. We reduce the radius by α (rr =
r
α) and query

again with the blue circle. We get 5 locations again, therefore we

continue once more with a smaller radius. When we query with

the red circle, we get only 2 locations, so we stop. Alg. 1c (MSSD-
R) has a modification where a new algorithm is called. Instead of

querying with a static r , we perform a recursive procedure to adjust

the radius. Alg. 2 takes the following parameters: the radius rr , the
coefficient α which is used to reduce the radius, the point p that

comes from the seed, the queried source S and the locations Lrp .

The stopping condition is retrieving less than MS locations (line

3). However, we have no control over the number of additional

requests needed by MSSD-R, but under the following assumption,

we know that MSSD-R converges:

Assumption 2. Let S be a source and L(S) its locations. For each
point p there exists a radius rp such that the surface covered by
Circle(p, rp) contains less thanMS locations.

We assume that there will always be an rp such that |L
rp
p | <

MS . MSSD-R performs several requests decreasing r by α until

rp is found and MSSD-R reaches the stopping condition. Given

Assumption 2, we guarantee thatMSSD-R performs a finite number

of requests.

Algorithm 1c MSSD Recursive (MSSD-R)

6: for each S in {S1, S2, ...Sk } - Sseed do
7: Lrp ← ∅
8: Lrp ← RadRecursive(rr , α , p , S , Lrp)
9: LS ← LS ∪ Lrp
10: end for

Algorithm 2 RadRecursive

Input: rr , α , p , S , Lrp
Output: Lrp

1: R ← API (p, rr , S) →/* Query S with rr */
2: Lrp ← Lrp

⋃
R

3: if |R | < MS then
4: return Lrp →/* The area is not dense*/

5: else
6: RadRecursive(

rr
α , α , p , S , Lrp) →/* Call with new rr */

7: end if

5.3 Optimizing the Point Selection
All MSSD algorithms are based on exhaustive querying. However,

some seed points might be quite close to each other, resulting in

redundant API requests. We propose MSSD* which clusters the

SSTD ’19, August 19–21, 2019, Vienna, Austria Isaj et al.

seed points using DBSCAN [8] (a clustering algorithm suitable for

spatial data and robust to noise) and queries with the centroids of

the clusters. If the results size is maximal, then there is a possibility

that this is a dense area. Afterward, we apply DBSCAN on the union
of the points of the current cluster and the points retrieved from the
API request. Depending on the data distribution of the source, we

move the focus to the dense areas that we discover. We stop when

the result size of the request is less than the maximal (based on

Theorem 1).

Fig. 4 shows a simple example of MSSD*. The seed points come

from the seed, whereas the blue ones are in the source. The initial

DBSCAN will cluster together (A, B, C), (D, E), (F,G, H) and I. After

the querying with the centroids of these clusters, only clusters (A,

B, C) and I will continue further. The new clusters for (A, B, C) will

be A, B and (C, K, L), where K and L are points from the source.

For cluster I, we query with the centroid of (I, J, M). In the third

step cluster (I, J, M) is divided to I, (J,M) and N, where N is a new

point discovered from the second step. MSSD* is formalized in Alg.

3. After a source is chosen, its points are clustered with DBSCAN

(line 5) using ϵ as minimal distance between points andm as the

number of points that a cluster should have. DBSCAN returns

the set of clusters {C}. For each centroid c of the cluster C , we
call RadRecursive* (Alg. 2a), which is similar to its parent version,

RadRecursive (Alg. 2) regarding the stopping condition and the

adaptive radius but differs from line 6 and on (the else clause). If the
area is dense, then we split the cluster by taking into consideration

the unionCp
⋃
R of points in the clusterCp and the retrieved points

from the source R. We cluster Cp
⋃
R with DBSCAN in line 6 and

we receive a new set of clusters {C ′}. For each centroid c ′ of the
clusterC ′ we call the algorithm again with the adjusted parameters.

Note that in the case of Twitter, the majority of results R is polygons.

Therefore we modify line 6 in Alg. 2a with (i) the centroids of the

polygons and we denote this version of MSSD*-C or (ii) the nearest

point of the polygon to the queried point p, and we denote this

version as MSSD*-N.

Algorithm 2a RadRecursive*

Input: rr , α , < p, Cp >, S , ϵ ,m, Lrp
Output: Lrp
6: {C }′ ← DBSCAN (Cp

⋃
R, ϵ

α ,
m
α) →/* DBSCAN on the union ofCp

and R with new parameters*/

7: for each < c ′, C ′ > do
8: RadRecursive*(

rr
α , α , < c ′, C ′c >, S , ϵα ,

m
α , Lrp)

9: end for

MSSD* has these advantages: (i) MSSD* manages better the re-

quests by using the centroids of clusters rather than all the points

in a cluster, (ii)MSSD* is not sensitive to parameters because it uses

an adaptive algorithm to learn them for each of the sources, and (iii)

while querying, MSSD* adapts the center of the circle depending
on the locations found by the previous query. Let us now suppose

that the optimal combination of pairs of < p∗, r∗ > that retrieve the

maximal L∗ exists. In order to compare our solution to the optimal,

let us first prove the submodularity of our problem.

Theorem 2. Optimizing the data extraction based on API calls is
a monotone submodular problem.

Algorithm 3 MSSD* algorithm

Input: A set of sources {S1, S2, ...Sn }, radius r
Output: {L∗S

1

, L∗S
2

, ...L∗Sk
}

1: for each S in {S1, S2, ...Sk } - Sseed do

2: LS ← LI =
k⋃
i=1

Li →/* Initialize each LS with LI */

3: end for
4: Let Sseed be the source with the most points in {S1, S2, ...Sk }, Lseed its

locations and P the distinct points in Lseed
5: {C } ← DBSCAN (P), ϵ,m)
6: for each S do
7: for each < c, C > do
8: Lrp ← ∅
9: Lrp ← RadRecursive*(r, α, < c, Cc >, S, ϵ,m, Lrp)
10: LS ← LS ∪ Lrp
11: end for
12: end for

return {L∗S
1

, L∗S
2

, ...L∗Sk
}

Proof. An API call takes < p, r > as parameters and retrieves

Lrp locations. Let us denote as γ (p, r) the gain (new locations) that
API (p, r) brings. Note that an extra API call is effective as long as it

contributes to the union of the results of the previous calls. To prove

the submodularity, we need to show that γ (P ′ ∪ p, r) ≥ γ (P ∪ p, r)
if P ′ ⊂ P . Let us consider a set of points P and P ′ such that P ′ ⊂ P .

The locations retrieved from P ′ are
⋃ |P ′ |
i=1 L

r
pi and the locations

retrieved from P are

⋃ |P |
i=1 L

r
pi . Since P

′ ⊂ P ,
⋃ |P ′ |
i=1 L

r
pi ⊆

⋃ |P |
i=1 L

r
pi .

Let us consider a new point p. and Lrp the result of API (p, r). Since⋃ |P ′ |
i=1 L

r
pi ⊆

⋃ |P |
i=1 L

r
pi , then (L

r
p ∩ (

⋃ |P ′ |
i=1 L

r
pi)) ⊆ (L

r
p ∩ (

⋃ |P |
i=1 L

r
pi)).

As a result, γ (P ′ ∪p, r) ≥ γ (P ∪p, r). To prove themonotonicity, for
every P ′ ⊆ P , |

⋃ |P ′ |
i=1 L

r
pi | ≤ |

⋃ |P |
i=1 L

r
pi |. So, the more we increase

the set of seed points, the more locations we get. It is simple to

show that

⋃ |P |
i=1 L

r
pi = (

⋃ |P ′ |
i=1 L

r
pi) ∪ (

⋃ |P−P ′ |
i−i Lrpi) so (

⋃ |P ′ |
i=1 L

r
pi) ∪

(
⋃ |P−P ′ |
i−i Lrpi) ⊇

⋃ |P ′ |
i=1 L

r
pi . Hence, |

⋃ |P ′ |
i=1 L

r
pi | ≤ |

⋃ |P |
i=1. □

Our MSSD* tries to solve the data extraction problem by pro-

viding a solution that starts with initial centroids and then splits

further if the area looks promising in terms of density. However,

we extract onlyMS locations in one call, and this sample might not

be representative if the amount of the actual locations in the area

may be quite large. So, if the sample of theMS points misses some

dense areas, our DBSCAN will classify those as outliers, and we

will not query further. Thus, our solution is greedy because it makes

a locally optimal solution regarding which API calls to perform in

step i + 1 based on the information of step i .

Theorem 3. The greedy solution MSSD* of our monotone submod-
ular problem performs at least 1 − 1

e as good as the optimal solution
in terms of maximizing the number of locations, where e is the base
of the natural logarithm.

A greedy approach to a monotone submodular problem is guar-

anteed to be at least 1− 1

e as good as the optimal solution [26]. The

proof uses the submodularity and the monotonicity to show the

ratio between the greedy and the optimal solution.

Proof. Let L∗ be the result of the optimal solution from points

P∗ and Lk the greedy solution provided by MSSD* for n requests.

Note that L∗ is not the same as the total locations L(S) of the source

Seed-Driven Geo-Social Data Extraction SSTD ’19, August 19–21, 2019, Vienna, Austria

S but instead the optimal solution given P∗ starting seed points and
obeying the limitations of the API. Due to the monotonicity, we

can write:

⋃ |P ∗ |
i=1 Lrpi ≤

⋃ |P ∗∪P ′ |
i=1 Lrpi =

⋃ |P ′ |
i=1 L

r
pi +

∑n
j=1 γ (pj , r) ≤⋃ |P ′ |

i=1 L
r
pi +n(

⋃ |P ′+1 |
i=1 Lrpi −

⋃ |P ′ |
i=1 L

r
pi) and

⋃ |P ∗ |
i=1 Lrpi −

⋃ |P ′ |
i=1 L

r
pi ≤

n(
⋃ |P ′+1 |
i=1 Lrpi −

⋃ |P ′ |
i=1 L

r
pi). We rearrange as:

⋃ |P ∗ |
i=1 Lrpi −

⋃ |P ′ |
i=1 L

r
pi ≤

n((
⋃ |P ∗ |
i=1 Lrpi −

⋃ |P ′ |
i=1 L

r
pi) − (

⋃ |P ∗ |
i=1 Lrpi −

⋃ |P ′+1 |
i=1 Lrpi)) and we use

δi to represent
⋃ |P ∗ |
i=1 Lrpi −

⋃ |P ′ |
i=1 L

r
pi so we can rewrite: δi ≤ n(δi −

δi+1) and finally δi+1 ≤ (1−
1

k)δi . So, for every k ≤ n we can write

δk ≤ (1 −
1

n)
kδ0. Note that δ0 =

⋃ |P ∗ |
i=1 Lrpi −

⋃ | ∅ |
i=1 L

r
pi =

⋃ |P ∗ |
i=1 Lrpi .

Moreover, for all x ∈ R, 1 − x ≤ e−x . So finally, we can write that

δk ≤ (1 −
1

n)
k ⋃ |P ∗ |

i=1 Lrpi ≤ e−
k
n
⋃|P∗ |
i=1 Lrpi . By substituting δk with⋃ |P ∗ |

i=1 Lrpi −
⋃ |Pk |
i=1 Lrpi , rearranging and finally replacing

⋃ |Pk |
i=1 Lrpi

with its result Lk and

⋃ |P ∗ |
i=1 Lrpi with L

∗
, we have: Lk ≥ (1−e

− kn)L∗

and for l = k (lower bound) we have: Lk ≥ (1 −
1

e)L
∗
. □

6 EXPERIMENTS
In this section, we test our approach on the sources presented in

Section 4 and compare with the existing baselines.

6.1 MSSD Experiments
We run MSSD algorithms using Krak as the seed source as it is the

richest in terms of locations, points, and categories. We compare

the results of the baseline (the initial locations of sources SI) to
MSSD-F which uses a fixed radius of 2 km (Alg. 1), MSSD-D with

a density-based approach to define the radius (Alg. 1a), MSSD-N
with a nearest-neighbor method to define a flexible radius (Alg.

1b) and MSSD-R with a recursive method that starts with a radius

of 16 km (the largest values accepted by all sources) and reduces

the radius by a coefficient α = 2 (Alg. 1c). Some APIs allow only

an integer radius in the granularity of km, so α = 2 is the smallest

integer value accepted. Fig. 6 illustrates the improvement in the

extracted data volume from each source by each version of MSSD
over SI. Krak is not included since it is the seed. Google Places

(GP) has the highest improvement of 98.4 times more locations

extracted byMSSD-R compared to the initial ones from SI. Flickr had
4,084 locations initially, which become 4.3 times more withMSSD-F
and above 9.5 times more with MSSD-D, MSSD-N and MSSD-R. In
Foursquare (FSQ) and Yelp, MSSD-F extracts 3 and 2 times more

locations respectively, but MSSD-D, MSSD-N, and MSSD-R retrieve

up to 3.5. Twitter returns 10.7 times more with MSSD-R but still

has a low number of locations overall. These values highlight that

in spite of their different scopes, all the sources relate to the same
physical world. MSSD-R performs the best with an improvement of

14.3 times more than SI but with extra requests that in the case of

Twitter and GP can reach up to 8 times more thanMSSD-F,MSSD-D
and MSSD-N.

We ran the optimized version MSSD* (Alg. 3) for each of the

sources with initial radius of 16 km and initial m = 10 and ϵ =

500 meters as parameters of DBSCAN.m, ϵ and r are recursively
reduced by α = 2. We compared MSSD-F, MSSD-D, MSSD-N, MSSD-
R and MSSD* regarding the number of requests performed and

the locations retrieved. The results for each source are presented

in Fig. 5. The number of requests is in the x-axis, whereas the

number of locations is expressed as the percentage of the total of

distinct locations extracted by all methods. MSSD-R provides the

highest percentage of locations (above 95%) for all the sources but

considerably more requests. For instance, for GP (Fig. 5b) and for

Twitter (Fig. 5d), MSSD-R need respectively 3.8 and 8.7 times more

requests than the MSSD versions with fixed number of requests

(MSSD-F, MSSD-D, MSSD-N). For the same number of requests,

MSSD-N provides a higher percentage of locations compared to

MSSD-F andMSSD-D for all the sources.MSSD* is the most efficient

in terms of requests. For all sources except Google Places, MSSD*
gets around 90% of the locations with around 25% of the requests of

MSSD-F,MSSD-D andMSSD-N. With regard toMSSD-R,MSSD* uses
12%-15% of MSSD-R requests for Flickr, Yelp and Foursquare, 8.5%

of MSSD-R requests for Google Places and 2.7% of MSSD-R requests

for Twitter. In Google Places, MSSD* can retrieve only 40% of the

locations, because of its small result size of Google (Table 1).MSSD-
N extracts 2 times more locations than MSSD* but with 3 times

more requests. In Twitter, MSSD*-C (with centroids) retrieves 20%

more locations than MSSD*-N (with the nearest neighbor) using

the same number of requests. To conclude, MSSD* guarantees the
best compromise for all the sources.

Setting α and radius r . In this experiment, we test different

values of α and r forMSSD*. When α is bigger, or r is smaller, fewer

requests are performed, some areas are missed, and consequently,

fewer locations are retrieved. Table 3 provides the trade-offs in

terms of percentage of requests and percentage of locations of

MSSD* with regards to MSSD-R for each α (while fixing the radius

at 16 km) and for each r (while fixing α at 2)(See Appendix B.2 in

the full version of the paper [14] for details.). In all the cases, the

additional requests of MSSD* with small values of α are rewarded

with a higher percentage of locations. For example, for 0.3% more

requests, we retrieve 18.8% more locations in Foursquare. In Flickr,

for 0.8% more requests, we retrieve 17.5% more locations. Similarly,

starting with a big radius is safer and more rewarding. For instance,

Foursquare and Yelp perform less than 0.4% of the requests to get

around 46% more locations when starting with r=16km compared

to r=1km.A risk-averted selection of parameters turns out to provide a
good trade-off between the number of requests and number of locations
because MSSD* adapts to the density of the region and still manages
the requests carefully. Thus, the algorithm is robust to different

parameter settings, and fine-tuning is not needed.

Choosing a different seed. In order to show that our MSSD
algorithms apply to any type of seed (preferable a rich source),

we ran MSSD-D, MSSD-N, MSSD-R and MSSD*using as seed Flickr,

Foursquare, Yelp, Google Places, and Twitter. The results are pre-

sented in Fig. 7. Even though Krak performs the best, the other

sources which provide significantly fewer seed points (see Table

2) are able to achieve comparable results. Recall that Krak has 14

times more seed points than Flickr, 30 times more than Foursquare,

70 times more than Yelp, 91 times more than Google Places and

295 times more than Twitter. Apart from Krak, MSSD* performs

the best for Flickr, Yelp, and Foursquare. For Flickr, MSSD* with
Yelp seed points retrieves 6.5 times more points than SI. For FSQ,
MSSD* with Flickr and Yelp seed points retrieves 2.9 and 2.5 times

more points than SI, respectively. For Yelp, MSSD* with Flickr seed

points retrieves 3.5 times more data than SI, whereas Krak retrieves

SSTD ’19, August 19–21, 2019, Vienna, Austria Isaj et al.

 0

 0,1

 0,2

 0,3

 0,4

 0,5

 0,6

 0,7

 0,8

 0,9

 1

 0 5 10 15 20 25 30 35 40 45 50

%
 o

f
a

ll
M

S
S

D
 l
o

c
a

ti
o

n
s

Number of requests (10
3
)

MSSD-F
MSSD-D
MSSD-N
MSSD-R

MSSD*

(a) Yelp

 0

 0,1

 0,2

 0,3

 0,4

 0,5

 0,6

 0,7

 0,8

 0,9

 0 20 40 60 80 100 120

%
 o

f
a

ll
M

S
S

D
 l
o

c
a

ti
o

n
s

Number of requests (10
3
)

MSSD-F
MSSD-D
MSSD-N
MSSD-R

MSSD*

(b) Google Places

 0

 0,1

 0,2

 0,3

 0,4

 0,5

 0,6

 0,7

 0,8

 0,9

 1

 0 10 20 30 40 50 60 70

%
 o

f
a

ll
M

S
S

D
 l
o

c
a

ti
o

n
s

Number of requests (10
3
)

MSSD-F
MSSD-D
MSSD-N
MSSD-R

MSSD*

(c) Foursquare

 0

 0,1

 0,2

 0,3

 0,4

 0,5

 0,6

 0,7

 0,8

 0,9

 1

 0 50 100 150 200 250 300

%
 o

f
a

ll
M

S
S

D
 l
o

c
a

ti
o

n
s

Number of requests (10
3
)

MSSD-F
MSSD-D
MSSD-N
MSSD-R

MSSD*-C
MSSD*-N

(d) Twitter

 0

 0,1

 0,2

 0,3

 0,4

 0,5

 0,6

 0,7

 0,8

 0,9

 1

 0 10 20 30 40 50 60 70

%
 o

f
a

ll
M

S
S

D
 l
o

c
a

ti
o

n
s

Number of requests (10
3
)

MSSD-F
MSSD-D
MSSD-N
MSSD-R

MSSD*

(e) Flickr

Figure 5: Requests versus locations for differentMSSD algorithms with Krak as seed

Sources Req
vs loc

Alpha Radius

2 4 6 8 10 12 14 16 1 4 8 12 16

FSQ % req 13.2% 13.0% 12.9% 12.9% 12.9% 12.9% 12.9% 12.9% 12.8% 12.9% 13.1% 13.3% 13.2%

% loc 88.3% 78.1% 75.4% 74.8% 73.0% 71.5% 70.3% 69.5% 43.2% 82.9% 86.4% 88.1% 88.3%

Flickr % req 15.8% 15.4% 15.2% 15.1% 15.0% 15.0% 15.0% 15.0% 13.2% 14.4% 15.3% 15.7% 15.8%

% loc 96.5% 91.9% 86.9% 85.1% 82.9% 81.4% 80.3% 79.0% 49.1% 88.5% 94.8% 95.8% 96.5%

GP % req 9.3% 9.0% 8.8% 8.7% 8.6% 8.5% 8.5% 8.4% 7.6% 9.0% 9.3% 9.3% 9.3%

% loc 38.4% 34.3% 32.9% 32.4% 31.6% 30.9% 30.4% 30.1% 33.6% 37.2% 37.3% 38.2% 38.4%

Yelp % req 17.5% 17.4% 17.4% 17.4% 17.4% 17.4% 17.4% 17.4% 17.3% 17.4% 17.4% 17.4% 17.5%

% loc 98.2% 95.8% 93.7% 95.1% 93.4% 90.6% 89.8% 89.7% 51.1% 94.2% 97.7% 98.3% 98.2%

Twitter-C % req 3.0% 3.0% 3.0% 3.0% 3.0% 3.0% 3.0% 3.0% 3.0% 3.0% 3.0% 3.0% 3.0%

% loc 76.8% 58.6% 58.1% 57.1% 55.7% 52.8% 52.3% 52.3% 53.4% 61.5% 60.0% 58.9% 76.8%

Twitter-N % req 3.0% 3.0% 3.0% 3.0% 3.0% 3.0% 3.0% 3.0% 3.0% 3.0% 3.0% 3.0% 3.0%

% loc 99.5% 99.4% 99.0% 98.6% 98.3% 98.2% 97.9% 97.8% 86.4% 97.0% 97.1% 98.4% 99.5%

Table 3: % of req. vs % of loc. forMSSD* relative toMSSD-R depending on α and r

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

Yelp FSQ GP Twitter Flickr

N
u

m
b

e
r

o
f

lo
c
a

ti
o

n
s
 (

1
0

3
)

SI
MSSD-F
MSSD-D
MSSD-N
MSSD-R

Figure 6: Nr of loc. per source

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

Krak Flickr FSQ GP TW

N
u
m

b
e
r

o
f
lo

c
a
ti
o
n
s

SI

MSSD-D

MSSD-N

MSSD-R

MSSD*

(a) Yelp

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

Krak Flickr FSQ Yelp TW

N
u
m

b
e
r

o
f
lo

c
a
ti
o
n
s

SI
MSSD-D
MSSD-N
MSSD-R

MSSD*

(b) GooglePlaces

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

Krak Flickr GP Yelp TW

N
u
m

b
e
r

o
f
lo

c
a
ti
o
n
s

SI
MSSD-D
MSSD-N
MSSD-R

MSSD*

(c) Foursquare

 0

 200

 400

 600

 800

 1000

 1200

 1400

Krak Flickr FSQ GP Yelp

N
u
m

b
e
r

o
f
lo

c
a
ti
o
n
s

SI
MSSD-D
MSSD-N
MSSD-R

MSSD*

(d) Twitter

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

Krak FSQ GP Yelp TW

N
u
m

b
e
r

o
f
lo

c
a
ti
o
n
s

SI
MSSD-D
MSSD-N
MSSD-R

MSSD*

(e) Flickr

Figure 7:MSSD results with different seeds for all sources

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 1 2 3 4 5 6 7 8

N
u
m

b
e
r

o
f
lo

c
a
ti
o
n
s

Number of requests (10
3
)

MSSD*-C
MSSD*-N
Snowball
Self-seed

(a) Twitter

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 1 2 3 4 5 6 7 8 9

N
u
m

b
e
r

o
f
lo

c
a
ti
o
n
s

Number of requests (10
3
)

MSSD*
Snowball
Self-seed

(b) Flickr

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 1 2 3 4 5 6 7 8 9

N
u
m

b
e
r

o
f
lo

c
a
ti
o
n
s

Number of requests (10
3
)

MSSD*
Self-seed

(c) Foursquare

 0

 200

 400

 600

 800

 1000

 1200

 0 1 2 3 4 5 6 7 8

N
u
m

b
e
r

o
f
lo

c
a
ti
o
n
s

Number of requests (10
3
)

MSSD*
Self-seed

(d) Yelp

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 2 4 6 8 10 12

N
u
m

b
e
r

o
f
lo

c
a
ti
o
n
s

Number of requests (10
3
)

MSSD*
Self-seed

(e) Google Places

Figure 8: Number of request versus number of locations forMSSD*, Snowball and Self-seed

3.6 times more while having 70 times more seed points. For Twit-

ter and Google Places, MSSD-R performs the best; 7.4 times more

locations than SI with Flickr seed points in Twitter and 23.6 times

more locations with Yelp seed points in Google Places. The per-

formance of each algorithm in terms of the number of requests

versus the number of locations can be found in [14]. An interesting

observation is thatMSSD* sometimes performs better thanMSSD-R.

Even when the seed source is not rich, MSSD* manages to achieve
good results due to its ability to adapt the next call according to the
distribution of the source.

Elapsed time of the experiments. The elapsed time is more

important than the CPU time because of the bandwidth limitations.
Our experiments were run simultaneously for all the sources in

order to avoid the temporal bias, so all bandwidth limitations were

Seed-Driven Geo-Social Data Extraction SSTD ’19, August 19–21, 2019, Vienna, Austria

Source Algorithm
Real
80%

Synthetic
20% Req

Real
70%

Synthetic
30% Req

Real
50%

Synthetic
50% Req

Flickr MSSD-R 85.62% 87.16% 84.44% 85.70% 82.71% 83.70%

MSSD* 64.91% 66.22% 10.16% 63.59% 65.01% 10.12% 62.12% 64.28% 9.80%

Yelp MSSD-R 97.17% 99.44% 97.10% 99.4% 97.10% 99.23%

MSSD* 72.23% 77.81% 12.74% 68.89% 76.94% 12.49% 66.42% 72.59% 11.78%

FSQ MSSD-R 94.27% 96.69% 94.19% 95.51% 94.07% 95.26%

MSSD* 67,75% 74,57% 10.67% 66,15% 70,34% 10.62% 63,60% 68,65% 10.45%

GP MSSD-R 92,42 % 78,76% 91,60% 76,15% 89,94% 69,33%

MSSD* 34,48% 35,76% 13,85% 45,80% 33,59% 9,14% 38,09% 33,99% 13,49%

Twitter
MSSD-R 81,16 % 97,70% 81,16% 95,66% 80,92% 87,23%

MSSD*-C 45,30% 63,31% 2,45% 44,37% 62,09% 2,44% 48,88% 68,51% 2,45%

MSSD*-N 69,79% 97,70% 2,53% 69,11% 94,51% 2,53% 60,90% 86,61% 2,53%

Table 4:MSSD-R andMSSD* compared to ground truth

Nr of loc. Nr of users Time period

Twitter Snowball 1421 35 2015-2018

Self-seed 461 101 2017-2018

MSSD*-C 936 195 2017-2018

MSSD*-N 1237 231 2017-2018

Flickr Snowball 2885 46 2005-2018

Self-seed 14910 1007 2005-2018

MSSD* 39427 1740 2005-2018

Table 5: Snowball, Self-seed and MSSD*
comparison

respected at the same time. The elapsed time for all the sources

is around 1 week for the MSSD-F, MSSD-D and MSSD-N, 2 weeks
for MSSD-R and 1.7 days for MSSD*. If the algorithms are run

independently, it takes on average 1 day per source for MSSD-F,
MSSD-D and MSSD-N, 2 days for MSSD-R and less than 6 hours for

MSSD*.

6.2 Comparison with Existing Baselines
The technique using linked accounts [1, 13, 28] requires users that
have declared their account in another social network. From our

initial querying of the sources, there were only 0.27 % of users

on Flickr with linked accounts to Twitter and 0.003 % of users on

Twitter with linked accounts to Foursquare. Hence, a comparison

with this technique makes little sense. The keyword-based querying

shows limited applicability in location-based data retrieval. We

conducted a small experiment using the names of cities and towns

in North Denmark as keywords. For Flickr and Twitter, the precision

(% of data that falls in the queried region) was just 31.6% and 0.85%

respectively, while the recall was less than 5%, relative to MSSD*.
Foursquare and Yelp offer a query by term or query by location

expressed as a string. The former [query by term] does not retrieve

any data when queried with a city or town name. If we express the

location as a string, the precision is 93% and 85% for Foursquare and

Yelp respectively, and the recall is less than 19%, relative to MSSD*.
In GP, the data retrieved is only the towns and the cities themselves.

For example, if we query with the keyword "Aalborg", the API

will return Aalborg city only and not any other places located in

Aalborg (1 request per 1 location). Even though the precision is

100%, the recall is only 0.07% relative to MSSD*. Thus, we compare

to Snowball and to the technique mentioned in [19].

To compare with Snowball ([12, 31]), we formed the seed with

the users found in Section 4. We used the same number of requests

for Snowball and MSSD*. Snowball is based on users, and conse-

quently, it can be applied only to Twitter and Flickr (Foursquare

API no longer provides the check-in data unless the crawling user

has checked in himself at the venue). The technique mentioned in

[19] (we will refer to it as Self-seed) starts with querying a specific

location to get initial points. Later, other requests are performed

using the seed points of the previous step. We ran Self-seed on all

our sources for the same number of requests as MSSD* (results in
Fig. 8). Snowball in Twitter retrieves more locations in the region

than versions ofMSSD* (MSSD*-C andMSSD*-N) and Self-seed (Fig.

8a) because in the case of user-based calls, the bandwidth is 200 (100

for location-based) and the historical access is unlimited (2 weeks

for location-based). In the case of Flickr, MSSD* outperforms Snow-
ball and Self-seed with 14 and 3 times more locations respectively.

Snowball gets most of the data in the region in the beginning and

degrades later because when using Snowball, while we traverse the
network, there is more and more data which falls outside the region
of interest. MSSD* yields a higher number of locations compared

to Self-seed: 5.5 times more locations for Foursquare, 9 times more

locations for Yelp and 3.5 times more locations for Google Places.

Self-seed in the case of directories stops yielding new locations

after approximately 500 requests. In the case of directories, after
some steps, the seed points in Self-seed stop growing, converging
into a dead end. Recall that Google Places has a result size of 20
and is denser in terms of data, so it has new locations for the

subsequent steps, avoiding thus the convergence. The number of

users and the time period covered are presented in Table 5. Despite

the slight advantage of Snowball on Twitter in terms of the number

of locations, the data comes only from 35 users compared to 231 for

MSSD*-N and 101 for Self-seed. Moreover, the time period covered

by the tweets in Snowball is 3 years compared to 1 year of MSSD*
versions. Regarding Flickr, the time period of the photos is the same,

but the number of photos and the number of users are 1-2 orders

of magnitude larger for MSSD* compared to Snowball. Self-seed
can retrieve a better variety of users and locations compared to

Snowball but still contains only half the number of locations and

users of MSSD*.

6.3 MSSD-R and MSSD* Result Completeness
Given the API limitations, we cannot get the actual ground truth of

source locations. Instead, we performed the following experiment:

first, we union all the locations sets from all our algorithms (SI,
MSSD-F, MSSD-D, MSSD-N, MSSD-R and MSSD*) to create a dataset
of real data; second, we learn the distributionD of the locations by

dividing the area in a grid of 1km x 1km and assigning each grid

cell d a probability pd ∼ Dd ; third, we generate synthetic locations

in the area and assign them to a grid cell d with the estimated

probabilitypd .We consider the synthetic and the real data as ground

truth. We implemented "simulated offline" API functions for each

source, respecting the maximal result size for each of them. We

ran our MSSD-R and MSSD* on the ground truth data for different

ratios of synthetic data as in Table 4. The data retrieved by MSSD-R
is above 94% of the ground truth in Yelp and Foursquare and above

80% of the ground truth in Flickr, Google Places, and Twitter.MSSD*
performs the best in Yelp and Twitter (MSSD*-N) with above 70% of

the ground truth for all ratios of real versus synthetic data, followed

SSTD ’19, August 19–21, 2019, Vienna, Austria Isaj et al.

by Foursquare and Flickr with above 64%. What is more important,

MSSD-R and MSSD* are seen to be robust regardless of the ratio of
synthetic to real data. Although MSSD* retrieves less than MSSD-R,
this result is achieved using only around 10% of the requests of

MSSD-R. In the case of Google Places, MSSD* gets around 40% of

the ground truth because of the small result size of only 20 locations

per request. In the case of Twitter, MSSD*-N performs better than

MSSD*-C.

6.4 Discussion of Experiments
Selecting an external seed of points improved the number of loca-

tions retrieved and avoid converging into a dead end like in Self-seed.
Moreover, the attempts to adapt the radius of the search according

to the search region prove to be effective in retrieving more loca-

tions. MSSD-F, MSSD-D and MSSD-N extract on average up to 11.1

times more data than SI but if we adapt the radius according to the

source (MSSD-R), we extract up to 14.3 times more locations than

SI. MSSD* provides a very good trade-off between the number of

requests and number of locations as MSSD* extracts up to 90% of

the data of MSSD-R with less than 16% of its requests. Our compar-

ison with the Snowball and the Self-seed baseline shows that our

seed-driven algorithm is better in terms of extracting (i) up to 14

times more locations for all the sources, (ii) in the case of Twitter

and Flickr, the activity originates from a larger base of users (up to

6.6 times more), and (iii) in the case of directories, ourMSSD avoids

converging into a dead end. In a ground truth dataset, for most of

the sources, our MSSD-R algorithm finds 82 % - 99 % of the ground

truth, while MSSD* with 10% of the requests is able to guarantee

63 % - 73% of the ground truth.

7 CONCLUSIONS AND FUTUREWORK
This paper was motivated by the need for an efficient algorithm

that extracts recent geo-social data. We formulated the problem of

data extraction as an optimization problem which aims to maximize

the retrieved locations while minimizing the requests. We identi-

fied the API limitations for six sources: Krak, Yelp, Google Places,

Foursquare, Twitter, and Flickr. Then, we proposed a seed-driven

algorithm that uses one source as the seed to feed the points as API

parameters to the others. MSSD versions extracted up to 14.3 times

more data than SI. Our optimized algorithm MSSD* retrieved 90%

of the locations with less than 16% of the requests, outperforming

MSSD-D and MSSD-N. Interesting directions for future research in-

clude applying machine learning for data extraction, seed selection

based on other criteria (diversity in semantics, maximal spread of

points, relation to the source), data integration, and data fusion of

location-based data from multiple geo-social sources.

REFERENCES
[1] N. Armenatzoglou, S. Papadopoulos, and D. Papadias. 2013. A general framework

for geo-social query processing. PVLDB (2013).

[2] N. Bennacer, F. Bugiotti, M. Hewasinghage, S. Isaj, and G. Quercini. 2017. Inter-

preting reputation through frequent named entities in twitter. In WISE.
[3] F. Burini, N. Cortesi, K. Gotti, and G. Psaila. 2018. The Urban Nexus Approach for

Analyzing Mobility in the Smart City: Towards the Identification of City Users

Networking. Mobile Information Systems (2018).
[4] J. L. Z. Cai, M. Yan, and Y. Li. 2016. Using crowdsourced data in location-based

social networks to explore influence maximization. In INFOCOM.

[5] Z. Cheng, J. Caverlee, and K. Lee. 2010. You are where you tweet: a content-based

approach to geo-locating twitter users. In CIKM.

[6] E. Cho, S. A. Myers, and J. Leskovec. 2011. Friendship and mobility: user move-

ment in location-based social networks. In KDD.
[7] Tobias Emrich, Maximilian Franzke, NikosMamoulis, Matthias Renz, and Andreas

Züfle. 2014. Geo-social skyline queries. In DASFAA.
[8] M. Ester, H. Kriegel, J. Sander, X. Xu, et al. 1996. A density-based algorithm for

discovering clusters in large spatial databases with noise.. In KDD.
[9] S. Feng, X. Li, G. Zeng, Y.and Cong, Y. Meng Chee, and Q. Yuan. 2015. Personalized

Ranking Metric Embedding for Next New POI Recommendation.. In IJCAI.
[10] G. Ference, M. Ye, and W. Lee. 2013. Location recommendation for out-of-town

users in location-based social networks. In CIKM.

[11] H. Gao, J. Tang, X. Hu, and H. Liu. 2013. Exploring temporal effects for location

recommendation on location-based social networks. In RecSys.
[12] H. Gao, J. Tang, X. Hu, and H. Liu. 2015. Content-Aware Point of Interest

Recommendation on Location-Based Social Networks.. In AAAI.
[13] D. Hristova, M. J. Williams, M. Musolesi, P. Panzarasa, and C. Mascolo. 2016.

Measuring urban social diversity using interconnected geo-social networks. In

WWW.

[14] S. Isaj and T. B. Pedersen. 2019. Seed-Driven Geo-Social Data Extraction - Full

Version. CoRR (2019).

[15] D. Jurgens. 2013. That’s What Friends Are For: Inferring Location in Online

Social Media Platforms Based on Social Relationships. ICWSM (2013).

[16] D. Jurgens, T. Finethy, J. McCorriston, Y. T. Xu, and D. Ruths. 2015. Geolocation

Prediction in Twitter Using Social Networks: A Critical Analysis and Review of

Current Practice. ICWSM (2015).

[17] H. Kwak, C. Lee, H. Park, and S. Moon. 2010. What is Twitter, a social network

or a news media?. In WWW.

[18] Ankita L., Srikanta B., and Deepak P. 2017. LoCaTe: Influence Quantification for

Location Promotion in Location-based Social Networks. In IJCAI-17.
[19] R. Lee and K. Sumiya. 2010. Measuring geographical regularities of crowd

behaviors for Twitter-based geo-social event detection. In GIS-LBSN.
[20] S. H. Lee, P. Kim, and H. Jeong. 2006. Statistical properties of sampled networks.

Physical Review E (2006).

[21] G. Li, S. Chen, J. Feng, K. Tan, and W. Li. 2014. Efficient location-aware influence

maximization. In SIGMOD.
[22] J. Li, T. Sellis, J. S. Culpepper, Z. He, C. Liu, and J. Wang. 2017. Geo-social influence

spanning maximization. TKDE (2017).

[23] L. Li, M. F. Goodchild, and B. Xu. 2013. Spatial, temporal, and socioeconomic

patterns in the use of Twitter and Flickr. CaGIS (2013).
[24] N. Li and G. Chen. 2009. Analysis of a location-based social network. In CSE.
[25] Y. Liu, T. N. Pham, G. Cong, and Q. Yuan. 2017. An experimental evaluation of

point-of-interest recommendation in location-based social networks. PVLDB
(2017).

[26] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. 1978. An analysis of approxima-

tions for maximizing submodular set functionsâĂŤI. Mathematical programming
(1978).

[27] A. Noulas, S. Scellato, N. Lathia, and C. Mascolo. 2012. A random walk around

the city: New venue recommendation in location-based social networks. In So-
cialCom/PASSAT .

[28] D. Preoţiuc-Pietro and T. Cohn. 2013. Mining user behaviours: a study of check-in

patterns in location based social networks. In WebSci.
[29] M. A. Saleem, R. Kumar, T. Calders, and T. B. Pedersen. 2018. Effective and

efficient location influence mining in location-based social networks. Knowledge
and Information Systems (2018).

[30] M. A. Saleem, R. Kumar, T. Calders, X. Xie, and T. B. Pedersen. 2017. Location

Influence in Location-based Social Networks. In WSDN.
[31] S. Scellato, C. Mascolo, M. Musolesi, and V. Latora. 2010. Distance Matters:

Geo-social Metrics for Online Social Networks.. In WOSN.
[32] S. Scellato, A. Noulas, and C. Mascolo. 2011. Exploiting place features in link

prediction on location-based social networks. In KDD.
[33] H. Wang, M. Terrovitis, and N. Mamoulis. 2013. Location recommendation in

location-based social networks using user check-in data. In SIGSPATIAL/GIS.
[34] M. Weiler, K. A. Schmid, N. Mamoulis, and M. Renz. 2015. Geo-social co-location

mining. In GeoRich@SIGMOD.
[35] Z. Yao, Y. Fu, B. Liu, Y. Liu, and H. Xiong. 2016. POI recommendation: A temporal

matching between POI popularity and user regularity. In ICDM.

[36] F. Yu, N. Che, Z. Li, K. Li, and S. Jiang. 2017. Friend recommendation considering

preference coverage in location-based social networks. In PAKDD.
[37] C. Zhang, L. Shou, K. Chen, G. Chen, and Y. Bei. 2012. Evaluating geo-social

influence in location-based social networks. In CIKM.

[38] J. Zhang and C. Chow. 2013. iGSLR: personalized geo-social location recommen-

dation: a kernel density estimation approach. In SIGSPATIAL/GIS.
[39] S. Zhao, T. Zhao, H. Yang, M. R. Lyu, and I. King. 2016. STELLAR: Spatial-

Temporal Latent Ranking for Successive Point-of-Interest Recommendation.. In

AAAI.
[40] Q. Zhu, H. Hu, C. Xu, J. Xu, and W. Lee. 2017. Geo-social group queries with

minimum acquaintance constraints. VLDB J. (2017).

	Abstract
	1 Introduction
	2 Related work
	3 Problem definition
	4 Limitations of existing geo-social data sources
	5 Multi-source Seed-Driven approach
	5.1 Multi-Source Seed-Driven Algorithm
	5.2 Optimizing the Radius
	5.3 Optimizing the Point Selection

	6 Experiments
	6.1 MSSD Experiments
	6.2 Comparison with Existing Baselines
	6.3 MSSD-R and MSSD* Result Completeness
	6.4 Discussion of Experiments

	7 Conclusions and future work
	References

