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STATISTICAL MECHANICS AND 
DISORDERED SYSTEMS 

Since computers are able to simulate the equilibrium properties of model 
systems, they may also prove useful for solving the hard optimization 
problems that arise in the engineering of complex systems. 

SCOTT KIRKPATRICK and ROBERT H. SWENDSEN 

The central problem of statistical mechanics is the cal- 
culation of the thermodynamic properties of macro- 
scopic systems from the microscopic laws governing the 
individual atoms or molecules. We might wish to know, 
for example, how the volume of a fluid will respond to 
a change in temperature or pressure, or how the mag- 
netization of a crystal will respond to a magnetic field. 
Calculations of this kind are difficult, however, because 
of the large number of particles in any real system. 
When there are 10z3 variables, there is no way the 
microscopic equations can be integrated analytically. 
Moreover, experimental information about the states of 
systems is extremely sparse. We can measure the tem- 
perature and pressure of a gas, but we can never deter- 
mine the position and velocity of each molecule. 

Under these conditions, even the statement of a prob- 
lem is essentially probabilistic. We want to predict the 
most probable value of some observable quantity, as 
well as the fluctuations about this value. Fortunately, 
the fluctuations of most properties are generally orders 
of magnitude smaller than we can measure, so that 
predicted behavior effectively resembles deterministic 
laws. 

Microscopic interactions are extremely short ranged. 
Each atom or molecule is directly affected only by its 
neighbors over distances of a few angstroms. Ordered 
phases, such as crystals, which can be coherent on a 
length scale of meters, are the result of cooperative 
effects whereby long-range correlations are established 
exclusively through short-range interactions. The na- 
ture of these correlations differs from material to mate- 
rial, and also for a given substance under different con- 
ditions Water can exist as a gas, liquid, or solid, de- 
pending on the pressure and temperature; iron has a 
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permanent magnetic moment at low temperatures, but 
is demagnetized above a certain critical temperature. 

As the critical temperature is approached, correla- 
tions extend over long distances. The characteristic 
correlation length .$ diverges at the critical tempera- 
ture as long-range order sets in. In general, the correla- 
tion length diverges as a power law with a critical 
exponent V: 

,$ - (T - 7-J’. (11 

Other thermodynamic properties such as specific heat 
also exhibit power law singularities: 

c a (T - T,)-“. PI 

An understanding of phase transitions is one of the 
major accomplishments of condensed matter physics in 
the last decade [ll, 121. With this understanding comes 
the ability to derive the associated power law phenom- 
ena from simple symmetry arguments. 

Considering the nature of the problem, it is natural 
that numerical methods should play a major role in 
modern statistical mechanics. One of the most fruitful 
approaches has been the use of computer simulations. 
This approach has increased in importance in recent 
years with the development of powerful methods of 
analysis for extracting information from the data and 
with the continued improvement in the capacity of 
modern computers, 

A SIMPLE MODEL 
To illustrate current methods, we use a simplified 
model of a magnet, known as the Ising model, in which 
the atomic magnetic moments or spins are arranged on 
a lattice and can point only up or down. The micro- 
scopic state of the system can be completely specified 
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by giving the value +1 (up) or -1 (down) to variables s 
assigned to each lattice site i. Interactions between 
spins can only occur with the nearest neighbors on the 
lattice. Neighboring spins have a lower energy (-I) if 
they are pointing in the same direction than if they are 
pointing in opposite directions (+I). For two spins, the 
interaction energy is 

E = -Js+z. (3) 

If a system of two spins is at temperature T, the proba- 
bility of finding it in the state (sl, sz] is 

P(sl, s2) = Z-‘exp(-KS&, (4) 

where K is equal to -J/kT, k the Boltzmann constant, T 
the absolute temperature, and Z a normalization factor: 

Z = 2 exp(K) + 2 exp(-K). (5) 

At high temperatures, K is small and the spins are al- 
most independent. For low temperatures, K is large and 
it is more probable that the spins will be found in the 
same state. 

To generalize to many spins, we define the Hamilton- 
ian, 

H = K C !;iSi = KS, (61 
i.] 

where the sum is over nearest neighbors on the lattice. 
The probability of the state {s) is 

P(s) = Z-‘fexp(-H), (7) 

and the normalization factor (known as the partition 
function) is given by the trace sum over all states {s]: 

Z = Tq,, exp(-H). (8) 

An array of spins on a lattice in two or more dimen- 
sions exhibits a phase transit ion. At high temperatures 
the correlations between spins are weak; there are as 
many spins up as there are down, and the total magnet- 
ization is zero. Below a critical temperature T,, this up- 
down symmetry is broken, and the majority of spins 
point in the same direction. This phase transition is 
accompanied by singular behavior in the res 

f 
onse of 

the system to changes in temperature; the si gularities 
usually take the form of power laws similar to eq. (1). 
As an example, in Figure 1 the specific heat has been 
calculated exactly for a two-dimensional Ising model 
and displays a logarithmic dependence on (T - T,) 
(which can be regarded as the limiting behavior when 
the exponent (Y - 0). 

COMPUTER SIMULATION OF THE ISING MODEL 
For an Ising model with only two spins, any property 
can easily be calculated by summing over the four 
states. However, the number of states grows exponen- 
tially with the number of spins. Even for a two- 
dimensional 10 X 30 lattice, there are 2”’ configura- 
tions to sum over, requiring more than 10” years of 
computer time. 

It might be supposed that states could be chosen at 
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The exact results for the m x n square lattice with periodic 
boundary conditions are displayed for m = n = 2, 4, 8, 16, 
32, and 64. The limiting critical point is marked by a vertical 
line. Taken from Ferdinand, A.E., and Fisher, M.E., Bounded 
and inhomogeneous lsing models: Specific-heat anomaly of a 
finite lattice, Pbys. Rev. 785, 832 (1969). 

FIGURE 1. The Specific Heat per Spin for Small lsing Lattices 

random to estimate the sum. Unfortunately, the over- 
whelming majority of states in most systems with a 
large number of particles are energetically unfavorable 
and do not make a significant contribution. This makes 
random sampling so inefficient as to be completely im- 
practical. 

A better approach is to simulate the behavior of the 
system by generating states with the probability they 
would have in nature. We can easily generate a se- 
quence of configurations for which the probability of 
finding each of the four states is given by eq. (4). We 
start with an arbitrary state and choose one of the spins 
using a random number generator. We then compute 
the change in energy required to reverse the spin 
(either +2J or -21). If the energy is lowered, the change 
is made for the next configuration; if the energy is 
raised, the change is only made with the probability 
exp(-2K). The choice is made by comparing exp(-2K) 
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with another random number uniformly distributed be- 
tween zero and one [8]. Any observable such as the 
average total energy can then be calculated by taking 
the mean over the configurations generated. 

For a system with many particles, the situation is 
almost identical. Again, a sequence of configurations is 
generated by altering a spin according to the energy 
change and a comparison with a random number. The 
algorithm is very efficient, even for a large system, 
since the energy change can be computed from a small 
number of terms involving only the values of the near- 
est neighbor spins. Typical configurations for the Ising 
model taken from a computer simulation of a 64 X 64 
lattice are shown at the top of Figure 2 for temperatures 
10 percent above and 5 percent below the critical tem- 
perature. 

The specific heat must be treated somewhat differ- 
ently because it is the derivative of the energy with 
respect to temperature. Such derivatives can also be 
calculated from fluctuations within the sequence of 
configurations. Since the average energy is given by 

E = J(S) = Z-‘Tq,JS exp(H), 

it is easy to show that 

(9) 

fg = (52) - (S)2, (10) 

which is essentially the specific heat, since K is the 
reciprocal temperature. 

This method is known as Monte Carlo simulation, 
because of the use of random numbers as an essential 
feature. 

LARGE CORRELATION LENGTHS 
AND FINITE-SIZE SCALING 
Computer simulations are limited by statistical errors 
and the size of the systems that can be analyzed. The 
latter is the most serious problem in the investigation of 
phase transitions. 

One illustration using the two-dimensional Ising 
model is replacing a local group or “block” of spins with 
a single spin representing the most important gross fea- 
tures. For example, we can take a 2 x 2 block and 
replace it by a block spin with the value +l or -1, 
according to whether most of the spins in the block are 
up or down (ties are decided by random number). 
Short-wavelength fluctuations are eliminated, but it is 
clear that, if most of the spins over a large area are up, 
then most of the corresponding block spins will be up 
as well. If the spins are only weakly correlated over 
short distances, the block-spin correlations are even 
weaker. 

As mentioned earlier, a correlation extends over 
longer distances as some critical temperature T, is ap- 
proached; correlation lengths diverge at T,. As long as 
correlation lengths are small in comparison with the 
size of the systems being simulated, the computer sim- 
ulations are indistinguishable from truly macroscopic 
systems. Since the correlation lengths diverge at T,, 
however, they are always larger than the model when 
close to T,. Since the fluctuations over large distances 
are responsible for the singularities at T,, singularities 
are rounded off in a finite system, as shown in Figure 1. 

The effect of performing such a transformation di- 
rectly on typical configurations generated by computer 
for temperatures 10 percent above and 5 percent below 
the critical temperature is illustrated in Figure 2. There 
is reduction in the number of degrees of freedom (the 
system becomes smaller), and the correlations in the 
low-temperature system become steadily stronger, until 
the system is in the lowest energy state (all spins up) 
almost everywhere. Clearly, the renormalized configu- 
rations correspond to a lower effective temperature. In 
the high-temperature system, correlations over 10 or 
more lattice constants are clearly visible in the original 
system but are much smaller after two transformations. 
Here, the effective temperature increases. 

This can be made more quantitative by considering 
the effect of the finite, but large, linear dimension L of 
the simulated system in eqs. (1) and (2). As long as the 
correlation length { is much less than L, these equa- 
tions hold. However, when F and L are roughly the 
same size, 5 stops growing, and the specific heat diver- 
gence is rounded off. This will happen for 

In both cases, the trend is to move further away from 
the critical temperature. The long-range correlations re- 
main the same after several transformations only if the 
original system is at its critical temperature. This prop- 
erty allows the critical point to be identified with con- 
siderable accuracy from the computer simulation. The 
Hamiltonians describing such a sequence are then said 
to approach a fixed point. 

< = L a (T - T,)-‘, (11) Since the average diameter of patches of like spins is 

at which point 

C - (T - TJ”L”“. (12) 

By simulating different-sized systems and plotting the 
height of the peak in the specific heat as a function of 
L, eq. (12) provides a simple method of calculating the 
exponent ratio (Y/U. This method is known as finite-size 
scaling and has been used frequently to obtain informa- 
tion not available by analytic methods. 

RENORMALIZATION GROUP ANALYSIS 
The concept of examining the correlations near the 
critical temperature on different length scales can be 
extended far beyond finite-size scaling analysis to im- 
proving accuracy and efficiency by the rather elegant 
renormalization group approach. There are many dif- 
ferent mathematical formulations of the renormaliza- 
tion group; it is essentially a way of systematically inte- 
grating out the shortest wavelength or smallest scale 
fluctuations to obtain information on successively 
longer length scales. The remaining variables form a 
statistical-mechanical model with the same symmetry 
as the original. 
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(a) Ten percent above the critical temperature. 

Each configuration has been renormalized four times by 
transforming blocks of four old spins into two new spins, 
creating the sequence of configurations indicated by the ar- 
rows. 

FIGURE 2a. Configurations from Monte Carlo Simulations of the d = 2 king Model 
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(b) Five percent below the critical temperature. 

Each configuration has been renormalized four times by 
transforming blocks of four old spins into two new spins, 
creating the sequence of configurations indicated by the ar- 
rows. 

FIGURE 2b. Configurations from Monte Carlo Simulations of the d = 2 king Model 
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(a) For p = 0.61, the percolation fraction P(p) = 0.5251. 

FIGURE 3a. Percolation Cluster (Largest Connected Component) in a Diluted Two-Dimensional 
400 x 400 Square Array, Just above the Percolation Threshold 

reduced by a factor of two in this example, the correla- 
tion length .$ is also divided by two. By analyzing the 
renormalized configurations to determine how rapidly 
the effective temperature moves away from the critical 
temperature, we can obtain a relationship between the 
correlation length and the effective temperature. This 
allows us to evaluate v in eq. (1) and, in fact, can also be 
used to evaluate o( and the power-law singularities for 
other properties of the system. 

rameter, scaling, and critical exponents, can be applied 
to situations far from the magnets or fluids usually 
studied in statistical mechanics. Percolation processes 
provide an excellent example. Consider a porous ran- 
dom material such as sandstone. If the pores comprise 
only a small fraction of the material’s volume, water 
will not penetrate the rock. However, if the pores con- 
stitute a sufficiently large fraction of the material, wa- 
ter flows from pore to pore and passes through macro- 
scopic distances of rock. 

PERCOLATION PHENOMENA The transition between these two types of behavior 
The concepts developed to treat critical phenomena, with increasing porosity, I - p (the portion of the rock 
especially the notions of correlation length, order pa- volume consisting of pores), is sharp, with a reproduci- 
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(b) For p = 0.595, P(p) = 0.3260. 

FIGURE 3b. Percolation Cluster (Largest Connected Component) in a Diluted Two-Dimensional 
400 x 400 Square Array, Just above the Percolation Threshold 

ble threshold value pc of the porosity. It is, in fact, a applied at the surface of a macroscopic sample, or as 
phase transition. This was first argued on intuitive the size of the largest connected cluster of pores. The 
grounds [l] and then demonstrated analytically in the three definitions have been shown to be equivalent in 
context of simplified models. the limit of macroscopic sample size. 

Several recent review articles have developed this 
connection in detail [3]. As in magnetic phase transi- 
tions, long-range phenomena (conduction of fluid) de- 
velop from short-ranged interactions (the interaction or 
connectedness of adjacent pores). There is a natural 
order parameter, usually called the percolation proba- 
bility P(p), which can be defined as the fraction of pores 
that are connected to the water-carrying portion of the 
rock, as the fraction of rock that is wetted by a fluid 

A correlation length t(p) can also be defined for this 
problem by evaluating the probability that two pores, 
located at x and y, are connected. Below the percolation 
threshold, this probability will fall off exponentially 
with spatial separation: 

gk Yl - ew 
-lx - YI 

( > E(pl , (131 

while g + P(p) for p > p( and while the limit is ap- 
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(a) For p = 0.61, as in Figure 3a, the backbone fraction B(p) = 0.2648. 

FIGURE 4e. Backbones (Largest Multiply Connected Component) for the Cluster Shown in Figure 3a 

proached with an exponential decay like that in eq. (13). 
Similarly, the percolation probability increases above the 
threshold in a macroscopic sample with a critical de- 
pendence, 

P(Pl - (P - PE P 'PC, (14) 
=o P < PC. 

As in the magnetic phase transitions, continuity be- 
tween the behavior of the correlation function both 
below and above the threshold implies that the correla- 
tion length E(p) diverges at p, just as in eq. (1). 

Since percolation is a geometric phenomenon, pic- 
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tures of the clusters obtained in the course of computer 
simulations can be informative. For example, Figure 3, 
on pages 368-369, shows in white against a black back- 
ground the largest clusters found in two simulations 
with p close to p<. Opposite edges of the system in 
Figure 3 and 4 are treated as connected. The increased 
correlation length as p approaches pc in Figure 3b 
should be apparent from the increasing size of the miss- 
ing regions. In this figure, E(p) is comparable to the size 
of the region shown. 

As is the case in conventional phase transitions, 
finite-size scaling can be used to analyze simulations of 
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(b) For p = 0.595, as in Figure 3b, B(p) = 0.0765. 

Sectio77 

FIGURE 4b. Backbones (Largest Multiply Connected Component) for the Cluster Shown in Figure 3b 

percolation. For example, if p - pC, so that the coher- 
ence length t(p) exceeds the linear dimension of the 
model L, we find 

P(p, L) - L-O”. (15) 
The largest connected component in this limit is a frac- 
tal object [7], since its volume P(p, L)Ld has an anoma- 
lous dependence on its linear dimension L. The expo- 
nent d - P/V is a fractal dimensionality characterizing 
the space in which percolation flow first occurs. 

Standard graph-theoretical algorithms are useful for 
analyzing the statistics of clusters generated in percola- 

April 1985 Volume 28 Number 4 

tion simulations. For example, actual fluid flow 
through a region of interconnected pores will only oc- 
cur in volumes across which a pressure differential can 
develop. If a volume can be disconnected from the bulk 
by plugging a single pore, then it will not support flow. 
All such “tag ends” can be disconnected from the per- 
colating region, represented as a large graph, by using 
standard backtracking methods for obtaining doubly 
connected components of undirected graphs [l]. The 
result of this analysis is shown in Figure 4, which de- 
picts the largest multiply connected components, or 
“backbones,” of the clusters shown in Figure 3. Further 
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(a) For 400 points, temperature T = 1 .O and the mean length 
per step I = 1.85. 

analysis can give information. on the shortest paths that 
cross the infinite cluster at threshold, or the number of 
parallel paths. These characteristics also show critical 
behavior at pc and can be related to experimental prop- 
erties of composites that are comprised of supercon- 
ducting and normal metallic grains. 

SPIN GLASSES 
Much recent work has been done on the effects of dis- 
order on conventional phase transitions, such as the 
transitions from gas to liquid to solid, or from a para- 
magnet (with atomic spins disordered) to a ferromagnet 
(with atomic spins aligned). The simplest sort of disor- 
der to model is dilution; in magnetic systems this can 
occur when magnetic atoms are diluted with nonmag- 
netic atoms. For small amounts of dilution, the effect is 
a quantitative change in, for example, the temperature 
at which ordering occurs. For greater degrees of dilu- 
tion, percolation effects can be observed. The magnetic 
atoms become separated into finite clusters of interact- 
ing atoms, isolated from one another, and the ordering 
temperature is reduced, tendi.ng continuously to zero at 
the percolation concentration. 

When the randomness in the system introduces con- 
flict between incompatible types of interactions, new 
physical phenomena are observed. In some magnetic 
alloys, the fact that the separation between magnetic 
atoms varies over a wide range not only weakens some 
of the interactions but causes some of the interactions 
to be ferromagnetic in sign, favoring parallel alignment 
of the atomic spins, whereas other interactions are anti- 
ferromagnetic, or opposite in sign. There is no general 
way that the spins can be made to satisfy all the inter- 
actions they are subject to in this situation, so such 
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(b) 400 pts., T = 0.3 and I = 1.04. 
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(c) 400pts.,T=Oand/=l. 

FIGURE 5. Solution of a Traveling-Salesman 
Problem by Simulated Thermal Annealing 

systems are termed “frustrated” [g]. Such disordered 
systems are highly degenerate and disordered at low 
temperatures. 

Magnetic systems of this type are termed spin glasses 
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because of the analogy between their magnetic state at 
low temperatures and the amorphous structures that 
result in quenching from the melt substances that are 
too disordered or viscous to crystallize. In principle, 
these degenerate pseudoground states are metastable, 
although it is possible to observe, when the tempera- 
ture is low enough, that the relaxation times associated 
with the decay of one such state into another become 
astronomically long. A spin glass is thus magnetically 
rigid, just as window glass is structurally rigid. 

Constructing and analyzing such glassy low-energy 
states are optimization problems having much in com- 
mon with traditional optimization problems in applied 
mathematics and engineering. Exact determination of 
the ground state of a model can be shown to be an 
NP-Complete problem in some simple cases, which 
means that heuristics are needed to study model sys- 
tems with thousands of spins. Early efforts relied on 
iterative improvement procedures of an obvious sort; 
eventually it became clear that the most efficient way 
to search for the low-energy states of a spin glass was to 
use Metropolis simulation to mimic the physical pro- 
cess of slow cooling through the temperature at which 
the spins freeze, and careful annealing in the ordered 
phase [5]. 

OPTIMIZATION 
This observation about spin glasses can be of use in 
optimizing engineering problems [4]: The frustration 
that introduces degeneracy and metastability into spin 
glasses is also a common feature of hard optimization 
problems for which a solution subject to conflicting 
constraints must be found. For example, in assigning 
places to thousands of circuits in a computer, we must 
place the circuits close together so that the wires 
needed to connect them will be as short as possible. We 
must also leave enough room between the circuits for 
the package to be able to accommodate the wire re- 
quired without overflowing. This problem clearly ex- 
hibits frustration, but the analogy to spin glasses im- 
plies that there must be many acceptable solutions to 
the problem if tliere are any. It should therefore not be 
necessary to find the absolute optimal solution. 

A more easily formalized optimization problem is the 
well-known traveling-salesman problem, which requires 
us to construct the shortest tour of a prescribed list of N 
cities. The frustration arises between keeping the path 
short and requiring it to be a tour. An example of the 
application of simulated annealing to a traveling- 
salesman problem is shown in Figure 5. 

For the problem to have a known solution, the cities 
in this example have been put on the points of a regu- 
lar 20 X 20 square grid. The optimal path can be no 
shorter than one grid spacing per step, and it is possible 
to convince oneself that such a tour is possible, To 
rearrange the salesman’s path, it suffices to select an 
arbitrary subsequence of points in the existing path and 
then to reverse the order in which they are traversed. 
This basic move is the simplest of a set introduced to 
the problem by Lin and Kernighan [6]. With the extra 

power of annealing, this is sufficient to obtain solutions, 
for problems with a few thousand cities, that are as 
good as the solutions found with more time-consuming 
exhaustive searches employing more elaborate moves. 

At high temperatures (Figure 5a), the salesman’s path 
follows the underlying grid for only a few steps at a 
time. At lower temperatures, the path is optimal for 
very long distances, with mistakes occurring in isolated 
local regions (Figure 5b). Such mistakes cannot be re- 
moved by the basic subsequence reordering move, but 
they do diffuse about until two defects meet and anni- 
hilate each other. Finally, the process concludes with 
one of the many possible exact minimum-length tours 
(Figure SC). 

The sequence of phenomena occurring from a high to 
a low temperature is quite like that occurring as liquids 
solidify, with a slowly growing distance of ordering at 
the high temperature, and the excess energy at the low 
temperatures associated with locally stable defects that 
can only be removed by diffusion to the surface or 
recombination. Experience with several optimization 
problems and the simulated annealing process for at- 
tacking them [4] suggests that the metaphor connecting 
statistical physics in disordered matter and the sorts of 
hard optimization problems that arise in the engineer- 
ing of complex systems is a profound one, capable of 
providing useful insights for the devising of effective 
heuristics. 
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