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ABSTRACT

Event ticket price prediction is important to marketing strategy for
any sports team or musical ensemble. An accurate prediction model
can help the marketing team to make promotion plan more effec-
tively and efficiently. However, given all the historical transaction
records, it is challenging to predict the sale price of the remain-
ing seats at any future timestamp, not only because that the sale
price is relevant to a lot of features (seat locations, date-to-event
of the transaction, event date, team performance, etc.), but also
because of the temporal and spatial sparsity in the dataset. For a
game/concert, the ticket selling price of one seat is only observable
once at the time of sale. Furthermore, some seats may not even
be purchased (therefore no record available). In fact, data sparsity
is commonly encountered in many prediction problems. Here, we
propose a bi-level optimizing deep neural network to address the
curse of spatio-temporal sparsity. Specifically, we introduce coars-
ening and refining layers, and design a bi-level loss function to
integrate different level of loss for better prediction accuracy. Our
model can discover the interrelations among ticket sale price, seat
locations, selling time, event information, etc. Experiments show
that our proposed model outperforms other benchmark methods
in real-world ticket selling price prediction.
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1 INTRODUCTION

Promotional campaign, a series of advertisements using various
marketing tools to promote an event (such as a concert or sports
match), plays an important role in reaching out to potential cus-
tomers. It can make the event better known in the relevant circles
and promote event ticket sales. A successful advertising campaign
cannot be executed in a vacuum and therefore, brands and busi-
nesses should carefully launch the campaign at the right moment.
This is important because timing is crucial to the success of any
public campaign. Among all the factors, predicting future ticket
sale price of the targeted event is one of the most important ones,
since it will lead to profit maximization if a campaign run right
before the ticket selling price reaching its peak. So the team can
decide when to get the most out of limited resources to promote
the event in advance.

However, predicting ticket sale price for a concert or sports
match is nontrivial, and it is different from traditional ticket price
prediction such as airline price prediction [6, 12, 13]. Airline ticket
price prediction focus on predicting the average price of a flight, or a
particular class (such as Economy Class), which doesn’t distinguish
the spatial difference between seats. But match/concert ticket price
is relevant to seat location since price can vary a lot for different
seats, and it is important to predict each seat’s selling price so
that the campaign plan can be more oriented to specific groups of
potential customers. Therefore predicting event ticket selling price
is a spatio-temporal analysis problem.

Spatio-temporal prediction has become a popular problem for a
wide range of settings ranging from weather/climate forecasting
[11, 20], video prediction [15, 18], traffic flow forecasting [21, 23-25]
to taxi demanding prediction [9, 22]. In spatio-temporal prediction,
measurements are often taken over space and time, while the model
is required to predict future target value at any location and time.

Different from the traditional spatio-temporal prediction prob-
lem, our problem has the following challenges:

(1) The available records of ticket transaction are sparse in both
space and time, in the sense that for any historical event i)
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Figure 1: Our Event Ticket Price Prediction (ETPP) Model. It consists of four modules. Module 1 is to coarsen the input to
mitigate the data sparsity. Module 2 is to learn the spatial dependency via ConvNet, while temporal dependency is explored
with event (match) information by RNN in Module 3. Finally Module 4 projects the coarsened prediction to original seat level,
and calculates the loss by a specially designed bi-level loss function.

the selling price for one seat was only observable once at
the time of sale, ii) it is not unusual that some seats didn’t
get sold, iii) the distribution of the transaction time is very
uneven.

(2) Event ticket selling price is relevant to multiple types of
information including temporal (transaction time), spatial
(seat locations) and event information (event date, number
of team stars, team’s recent performance, etc.).

Unfortunately, there is few research that aim at predicting the event
ticket selling price to solve these challenges.

In this paper, we target to solve the above challenges by propos-
ing Event Ticket Price Prediction (ETPP). The framework is shown
in Figure 1. Our research has the following contributions:

(1) We resolve the data sparsity problem by proposing data
coarsening and refining layers on both spatial and temporal
dimension. The coarsening layer converts the original sparse
input to a coarse but much less sparse format, so to avoid the
zero weighting problem of deep neural network on sparse
data. The refining layer maps the coarse resolution back
to original input level, so that the predicted value can be
directly compared with ground truth.

(2) Integrating the predicted values on both coarsened and orig-
inal level, we propose a bi-level optimization method, and
design a bi-level loss function that involves two levels of
predicted output, which provides better prediction accuracy.

(3) Our ETPP model systematically combines data coarsening
and refining layers, spatial and temporal modeling and a spe-
cial loss function. It considers multiple types of input (ticket
transaction history, event information, ticket information,
etc.), and outputs accurate prediction results on a real world
ticket transaction dataset.

2 OUR ETPP FRAMEWORK

In this section, we first define the problem formally, and then elab-
orate our ETPP in details. As shown in Figure 1, ETPP consists of
four modules. Module 1 converts the input data into coarse format
to mitigate the data sparsity. Then convolutional net (ConvNet) and
fully connected layers are applied in Module 2 to extract the spatial
dependency. Module 3 focuses on modeling temporal dependency
by recurrent neural network (RNN). Finally, Module 4 projects the
data resolution back to the original level and calculates the final
loss function.

2.1 Problem Statement

Given the historical records of ticket transactions, we want to pre-
dict the seats’ sale price at any time before the event. Each transac-
tion record includes the selling price, the transaction time and the
location of the corresponding seat, and the corresponding event in-
formation (such as event date, team’s recent performance, number
of team stars, etc.).

Suppose there are K historical events and the location has n
number of seats 1. For any event k € 1,2, ...K, we denote py(t,7,c)
as the ticket price of the seat at the r-th row and the c-th column,
with date-to-event ¢ as the transaction time. We use Py ; € R™1 to
denote all the seat prices at date-to-event ¢ (nans for certain seats
if there were no corresponding transactions at t).

Our goal is to design a model to predict Pg¢ s (c = 1,2,...)
ahead given all the available historical transactions P, and event
information J; (event date, team’s recent performance, number of
team stars, etc.) where k = 1,2, ..., K.

However, the historical record of ticket transaction is usually
very sparse in time and space, and most of Py ; are with empty
values because few transactions happened at ¢, or some seats didn’t

1We assume that all the events were held at the same location, which can be a stadium
(for sports match) or hall (for concert).
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Figure 2: Histogram across date-to-event of a certain seat’s
transactions for 246 historical events. Obviously, the distri-
bution is quite uneven, where most transactions happened
right before the event date, and very few happened three
months ahead.

even get sold for that event. Figure 2 shows the transaction his-
togram across date-to-event of a certain seat for 246 historical
events. Obviously, the distribution is quite uneven, where most
transactions happened right before the event date, and very few
happened three months ahead. It is also not difficult to see that Py ,
could be extremely sparse at certain date-to-event t. On the other
hand, any seat of an event can be only purchased once (assume
there is no cancellation or reselling). Therefore, the historical data
is very sparse in both time (date-to-event) and space (seat), which
makes traditional regression methods inapplicable. And existing
deep neural network also suffer from zero weighting problem on
such sparse data. To solve this problem, our first step is to propose
a coarsening layer on both temporal and spatial dimensions as
described in Section 2.2.

2.2 Module 1: Data Coarsening

To solve the data sparsity problem, here we introduce a data coars-
ening layer on both spatial and temporal dimension. Assuming the
event location is an auditorium, which has n seats in total, we first
deal with spatial sparsity by splitting n seats into m non-overlapping
grids GS = {gs1,9s2, ...,gsm }. Each grid gs; (i = 1,2, ..., m) consists
of a few seats gs; = {gsj(1,1)> 95i(1,2)> - 95i(2,1)> 9Si(2,2)> ---} Where
9Si(i,, i) denotes the seat in i,-th row and ic-th column in grid gs;.
This is illustrated in Figure 3.

In temporal dimension, the data availability is not evenly dis-
tributed. Figure 4(a) shows the date-to-event (DTE) histogram of
all the transactions in 246 historical events. Obviously it is not
reasonable to coarsen temporal data with one fixed-size. We no-
tice from Figure 4(a) that ticket transactions are rare when DTE
is large, and the frequency increases almost exponentially as DTE
becomes smaller (closer to the event). Visually speaking, the dis-
tribution shape in Figure 4(a) is very similar to the function of
exp(1/x), therefore we convert the scale in x axis from DTE to
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Figure 3: Module 1 splits the auditorium into m non-
overlapping grids. Each grid is later expanded back to seat-
level resolution in Module 4.
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17500 A

2
515000 -

12500 -

10000

3
8

Frequency of transact

5000

2500 1

2 3
Log(DTE+1)

(b) Transactions histogram after converting to Log(DTE+1)
Figure 4: Temporal conversion.

log(DTE + 1) % as shown in Figure 4(b). Now the values become

2Since DTE can be smaller than 1, therefore we use DTE + 1 to make everything
positive.
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more evenly distributed. We equally divide log(DTE + 1) into L
non-overlapping bins BT = {bty, bty, ..., bty } 3. Each time-bin bt;
represents a certain range in log(DTE + 1) scale.

From now on, we denote G(gs;, bt;) as the ticket price of grid
gs; at time bin bt; for event k, which is computed by the median
of all the available transactions for the seats at grid gs; at time-
bin btj. We denote Gy 3, € R™X1 = {Gy(gs1, btj), Gy (gs2. bt;),
...» Gk (gsm, bt;j)}, i.e. the median price collections of all the grids at
btj.

To conclude, this layer coarsens the seat-time to grid-bin reso-
lution. It is similar to average pooling layer which is usually used
in image modeling. However, there are two differences: 1) unlike
pooling layer, it doesn’t only compress spatial information but also
temporal information; 2) the motivation of pooling layer is to re-
duce the model size, but our coarsening layer is to mitigate the
spatio-temporal sparsity in the input data.

2.3 Module 2: Spatial Modeling

In Module 2, we employ a convolutional neural network (ConvNet)
to explore the spatial dependency of ticket selling prices.

First of all, we reorganize Gy t; into a two dimensional matrix
with the first dimension as the row-wise coordinate and the second
as the column-wise coordinate of grids (refer to Figure 3).

Then, we set the G 3, as (\’]8 py,» and feed it to a number of
0L

convolutional layers. Assuming that X]f_blr denotes the feature
e

maps in the (¢ — 1)-th convolutional layer, the output of ¢-th layer

is given by:

t _ 4 -1 4
X¢ = op (€ X[, +00), 1)

where * denotes the convolutional operation, o(-) is the activation
function of ReLU, C? denotes the convolutional filter and b is a
bias term at the £-th layer. The convolutional filters we used are
three kernels of size 1 X 3, three kernels of size 2 X 1 and three
kernels of size 2 X 3, and they all have zero-padding. The output
of the last convolutional layer is flattened to a vector, which we
denote as X, bt; € R™X1 Then a fully connected layer is applied
as below:

Dy ps; = of(Wp &g, bt + bp), 2

where Wp € R™ ™ is a weight layer, and bp € R™¥! is a bias
term. The spatial dependency of grid prices is now captured by
Dk,btj (S RmX1.

2.4 Module 3: Temporal Modeling

The spatial feature maps generated by Module 2 is temporally de-
pendent on the previous time bins. In Module 3 we use recurrent
neural network (RNN) to explore this temporal dependency. Specif-
ically, we choose Gated Recurrent Units (GRUs) among all the RNN
methods due to its comparable/better performance and less amount
of parameters [5, 19].

Given the output from Module 2, we concatenate Dy j 4 with
the event information 7. We denote the concatenated data as
5k,btj € R whered = m + q and q is dimensions of event

3We let the whole range of BT cover 95% of data, and all the data are added to their
closest bin respectively.
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information (such as event time, team’s recent performance and so
on) 4.

Specifically, given the previous hidden state Hj. bt;—1 € RMX1,
the current hidden state Hj p, t; s updated with:

Hi b1, = GRU(Dy b, Hic, bt -1): ®3)
where the GRU cell [5] is formulated as:
Zk.bt; = 0g(WeDp b, + Uz Hic pe;—1 + bz),

Tk,bt; = 0g(WrDg by, + UrHy pr;-1 + ), @
Hic,pt; = (1= 2k br,) © Hic br,—1

+ 2k, bt; © Oh(WhDi bt; + Un(ric,bt; © Hie,br;-1) + bz),

where z 4, € RP*1 is the update gate vector, Tk.bt; € RPX1 js the
reset gate vector, oy4(-) is tanh function, oy (+) is sigmoid function,
W;, W, and W}, are the weight matrices of size h X d, Uy, U, and
Uy, are the weight matrices of size h X h, and b;, b, and by, are the
bias vectors of size h X 1.

We then feed the output of GRU at each time bin Hj t; toa
fully connected dense layer:

Grk,bt; = WgHy, be; + b, ()

where W5 € R™%h and bg € R™X1 So ék,btj € R™1 js the
output of Module 3, which is the predicted grid price at time bin
bt ji-

Essentially, Module 2 and Module 3 jointly model the spatial
patterns of ticket transactions with temporal dependency.

2.5 Module 4: Data Refining

In Module 4, we expand the data from grid-level to seat-level. Firstly,
we expand 51(,1,0 € R™1 10 a vector of size n X 1, where n is the
total number of seats. Each grid is expanded to the full size of its
number of seats by duplicating the predicted grid price. Then we
concatenate the new vector with the corresponding seats’ coor-
dinates and date-to-event of the transactions column-wisely (as
additional channels), and denote the whole matrix as ék, bt; € RXe,
where the columns include the predicted seat prices (expanded from
(A?k’ bt_,-)’ the date-to-event of transactions and the spatial coordinates
of the seats.
Finally, we apply a series of fully connected layers:

Pipe; = 0f(Gy, o, W5 + bp)W5 + b, (6)
N exy 7 nxy a7 x1 7 nx1
where W5 eR Y,bP eR Y,WP e R¥*! and bP e R™4,

2.6 Our Loss Function

Here we design a special bi-level loss function to integrate the
two-level prediction output. The model has intermediate output
ék’ bt; ON grid-level prediction and final output I’J\k, bt; on seat-level
prediction. Although our final objective is to get better prediction of
seat price, we found that combining the grid-level into loss function
helps in getting better performance on the seat-level prediction.
We will provide further analysis in the experiment section.

Our final loss function consists of two parts, one for the coars-
ened targets (grid level), and one for the original targets (seat level):

4We use OneHotEncoder to convert categorical features (if there is any) into numerical.
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L=a ) m(Grpr, - Grpe)II

k,btj

o %)
+B D WnPrpe, = PrpeIIZ,
k,btj
where
0, if corresponding ground-truth is missing;

Ok - ®)

1, otherwise.

The first part is to measure the residuals between the predicted
and the actual grid price, while the second part is to measure the
residuals between the predicted and the actual seat price. In the grid
level, the sparsity is low and therefore most of the 1,, are 1. But
on the seat level, the ground truth is much more sparse and there-
fore only a small portion of data will be involved. Moreover, our
final objective is to get better accuracy on the seat level prediction,
therefore in practice we set f > a. We employ Adam optimizer to
minimize L.

3 RELATED WORK AND DISCUSSION

Price prediction is a great challenge due to the fact that it is an
immensely complex, chaotic and dynamic problem. There are many
studies from various areas aiming to take on that challenge and
machine learning approaches have been the focus of many of them.
Particularly, a consensus has been reached that price prediction is
a highly nonlinear and time-variant problem [1].

Modern nonlinear machine learning methods have often been
used in price prediction. For stock market price prediction [10,
16], random forest is claimed to have better performance than
Artificial Neural Network (ANN), Support Vector Machine (SVM),
and naive-Bayes model. Specifically in the work of [10], random
forest is proved to be robust in predicting future direction of stock
movement. On the other hand, Gradient Boosting Machine based
methods like XGBoost have shown good performance on price
prediction of crude oil, electricity and gold market [7, 8, 17]. It
is popular because it has comparatively low variance and is able
to recognize trends and fluctuations, and it can simultaneously
handle variables of the nature of time indexes and static exogenous
variables.

Recently, Deep Neural Networks have been successfully used
in many real world applications. Among all these methods, Re-
current Neural Networks (RNNs) have been proposed to address
time-dependent learning problems. In particular, Long Short Term
Memory (LSTM) and Gated Recurrent Units (GRU) are tailor-made
for time series price estimation [4, 14, 19].

However, event ticket price prediction is very special compared
with other price prediction problems, in the sense that the training
data is extremely sparse. For each historical event, there is at most
one transaction for any seat across time. And there are many times-
tamps that have no transaction available at all. The data sparsity
is a deteriorating factor for all training based methods, but in par-
ticular for neural network based methods, of which performance
heavily depends on the availability of large training data [19]. For
example, Convolutional Neural Network (ConvNet/CNN) discovers

SAC 20, March 30-April 3, 2020, Brno, Czech Republic

the spatial dependency in the neighborhood content. But simply ap-
plying it to the sparse transaction data at each timestamp will lead
to all zero weights due to the weight sharing problem. Therefore,
although there are many recent research that explore deep learning
in the direction of spatio-temporal prediction [11, 20-22, 26], none
of them is applicable for event ticket price prediction due to the
zero weighting problem.

4 EXPERIMENT

In this section, we demonstrate the performance of our ETPP by a
thorough comparison with a number of popular baselines and its
variants on actual ticket transaction dataset.

4.1 Experiment Setup

A Ticket Transaction Dataset from NBA

Over the last couple of years, National Basketball Association (NBA)
is growing in popularity. It is the most followed sports league on
social media with more than 150 million followers. The average
NBA ticket price for the 2018 — 2019 season is up 14.01% from
the average ticket price of $78.00 during the 2015 — 2016 season.
Therefore there is urgent need for any of the NBA teams to design a
ticket price prediction model for successful promotional campaign.

We use nine datasets to test our model. The data we use is from
one NBA team’s ticket transaction database. It involves all the
available transactions from season 2014 — 2015 to 2018 — 2019. In
total there are over 180, 000 transaction records from 246 historical
matches. Each record has the ticket sale price, seat location, and
the information of the corresponding match. It is also worth to
mention that the input and the price are all standardized during
preprocessing.

To simulate practical use, backtesting is used in the experiment
to test our prediction accuracy. We build nine different datasets
to backtest our model by selecting nine representative dates to
separate the data. For each season we define three dates to represent
starting of the season (Nov 1st), mid-season (Jan 1st), and late season
(Feb 1st). In total we choose nine representative dates, from Nov 1st
2016 to Feb 1st 2019. For each representative date, we choose the
14 matches right after that date as testing set, 10 matches before
that date as validation set, and all the data before the validation set
for training.

Evaluation Metric

We use Mean Squared Error (MSE) and Mean Absolute Percentage
Error (MAPE) as the evaluation metrics in our experiment. MSE
is one of the most popular regression metrics. It is the second
moment of the error, and thus incorporates both the variance of
the estimator (how widely spread the estimates are from one data
sample to another) and its bias (how far off the average estimated
value is from the truth). We include it here since we apply MSE-like
loss function in our model design, and for the other baselines we
also use MSE as the loss function. MSE loss is defined as:

T
1 )
MSE = = Zj:(p,- - pi)% ©)

where p (p) is the actual (predicted) price of the transaction and T
is the total number of transactions.
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On the other hand, MAPE is included to account for the big
differences in ticket price for different matches. This metric takes
the relative errors of ticket price into consideration, since some
ticket prices are in the thousands while some are as low as less than
100 dollars. Especially, the data doesn’t contain any zero (there is
no free ticket). So it is always meaningful to calculate MAPE. MAPE
loss is defined as:

T N

1 Pi —Pi
MAPE = — —, 10
TZ" > (10)

where p (p) is the actual (predicted) price of the transaction and T
is the total number of transactions.

Since not all the baselines we included generate grid-level output,
we only compare the seat-level output which are available in all
models. For each of the nine datasets, we run every method 10 times
and calculate the average MSE and MAPE. And we also measure
the standard error of MSE and MAPE across the nine datasets for
each method.

Baseline Methods
We compare our ETPP method with the following six baselines.

o GameMedian: Tickets sales usually start long before the
match date. Therefore we are able to use the median of the
sold tickets of each game as a naive prediction model.

o SectionMedian: A slightly-improved but still naive model
treats the median for loge and balcony seats separately. How-
ever, any further area segregation is difficult due to data
sparsity.

o Linear Model (Linear): It is a multiple linear regression ap-
proach for modeling the relationship between ticket prices,
seat location and match information. But it treats transac-
tions temporal-independently with each other.

e Random Forest (RNFR) [10]: An ensemble technique with the
use of multiple decision trees and Bootstrap Aggregation. It
can successfully predict the price change direction in stock
market [10].

o XGBoost (XGB) [3]: An improved method based on popular
Gradient Boosting Machine that has been applied on house
price prediction [2].

o Gated Recurrent Unit Network (GRU) [19]: GRU is a popular
RNN model that has been used for price prediction [19].
For each game we concatenate all the ticket transactions to
formulate a time series and feed these time series into the
GRU model used in [19].

Besides comparing against popular baselines, we are also in-
terested in verifying the necessity of the key components of our
design. Therefore we include the following variants of ETPP in our
comparison:

e ETPP;: ETPP framework without Module 3 (temporal mod-
eling).

e ETPP,: ETPP framework without Module 2 (spatial model-
ing).

e ETPP5;: ETPP framework with seat-level loss function only
(no grid-level loss).

o ETPP: The whole ETPP framework.

Fei Huang and Hao Huang

The hyper-parameters of our ETPP are tuned according to the best
performance on validation set. Specifically, the number of bins L is
set to 20, the hidden dimensions (h) in GRU is set to 30, y in Module
4 is set to 7, @ and f in our loss function (Equation (7)) are set to
0.3 and 0.7. For all the baselines, we tune the parameters according
to validation set performance and to the best of our effort.

200
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Figure 5: The convergence of our ETPP.

4.2 Convergence of Our ETPP

Before comparing against different baselines, it is necessary to show
the convergence of our ETPP method. We plot the training loss
and validation loss across training epochs in Figure 5. It shows that
both the training loss and validation loss converge well, proving
that our ETPP model is reasonably stable.

4.3 Comparison of Prediction Performance

Figure 6 shows the full comparison result on the average MSE and
MAPE together with the standard error on the nine datasets. We
have the following observations:

i) Obviously, our ETPP is superior to all the baselines, on both
MSE and MAPE. Specifically, ETPP’s MSE and MAPE is over
20% lower than XGB, which performs the best among all base-
lines. Meanwhile, our standard error is also lower or compara-
ble to the best performance from the other methods.

ii) It is not surprising that GameMedian has the worst perfor-
mance, since it does not use any information from historical
matches. SectionMedian improves a lot from the local spatial
statistics in seat neighborhood. This proves that spatial depen-
dency is one of the key factors in ticket price prediction.

iii) At first it may be surprising to see that popular RNN model like

GRU fails miserably in this problem. But it can be explained by

the curse of data sparsity. The concatenation of all the ticket
transactions along time axis without any coarsening returns
extremely sparse data. Besides, any two consecutive transac-
tions are probably far away with each other in spatial position.
RNN model is unable to explore the temporal dependency with
such sparse and intermittent data.

Among the traditional regression methods, nonlinear ones
like Random Forest (RNFR) and XGBoosting (XGB) clearly
outperform linear regression (Linear), which shows that the

~

iv
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Figure 6: Result comparsion

ticket prediction is (closer to) a nonlinear problem. XGB is
slightly better than RNFR, which may be because that in terms
of training objective, Boosted Trees(GBM) tries to add new
trees that compliment the already built ones. This normally
gives better accuracy with less trees.

v) From the comparison between different variants of ETPP, we
can clearly see that the two-level loss function, spatial modeling
(ConvNet) and temporal modeling (GRU) all contribute to the
superior performance of ETPP.

4.4 Effect of Different Coarsening Resolution

In Section 2.2 we describe the coarsening in both spatial and tempo-
ral dimensions. Here we discuss the effect of different coarsening
resolution.

While splitting space into grids is usually with prior knowledge
or guidance (e.g. by the auditorium layout), there can be differ-
ent options to split along the temporal dimensions. We already
explained our strategy in Section 2.2 of using log-scale in time
axis. Here we want to show the effect of using different number of
bins (L). Figure 7 shows MAPE of our ETPP with different values
of L. The best result comes with the setting that is not too big or
small. The reason is that: very small L leads to much less sparsity
but fewer samples in time series, which results in dropping useful
information; On the other hand, setting L too big increases sparsity
and makes model unstable. In our experiment we find that L = 20
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Figure 7: MAPE with different number of time bins.

gives the best prediction performance for the real-world dataset we
used here.

5 CONCLUSION

In this work, we target on solving the curse of sparsity in predicting
event ticket sale price. We design a deep neural network frame-
work which first coarsens the sparse input to dense format, then
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explores the spatial and temporal dependency, and finally expands
the intermediate output back to the original format. Furthermore a
bi-level loss function is proposed to get better prediction accuracy.
Experiments on real world ticket transaction data proves that our
method outperforms the popular baselines in price prediction.
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