
Lightweight Network Architecture for Real-Time Action
Recognition

Alexander Kozlov
alexander.kozlov@intel.com

Intel Corp.
Nizhny Novgorod, Russia

Vadim Andronov∗
vadimadr@gmail.com

Intel Corp.
Nizhny Novgorod, Russia

Yana Gritsenko
yana.gritsenko@intel.com

Intel Corp.
Nizhny Novgorod, Russia

ABSTRACT
In this work we present a new efficient approach to Human Action
Recognition called Video Transformer Network (VTN). It leverages
the latest advances in Computer Vision and Natural Language Pro-
cessing and applies them to video understanding. The proposed
method allows us to create lightweight CNN models that achieve
high accuracy and real-time speed using just an RGB mono cam-
era and general purpose CPU. Furthermore, we explain how to
improve accuracy by distilling from multiple models with differ-
ent modalities into a single model. We conduct a comparison with
state-of-the-art methods and show that our approach performs on
par with most of them on famous Action Recognition datasets. We
benchmark the inference time of the models using the modern infer-
ence framework and argue that our approach compares favorably
with other methods in terms of speed/accuracy trade-off, running
at 56 frames per second (FPS) on CPU. The models and the training
code are available1.

CCS CONCEPTS
• Computing methodologies→Activity recognition and un-
derstanding;

KEYWORDS
Human action recognition, CNN, self-attention, Transformer, Open-
VINO

ACM Reference Format:
Alexander Kozlov, Vadim Andronov, and Yana Gritsenko. 2020. Lightweight
NetworkArchitecture for Real-TimeAction Recognition. In The 35th ACM/SIGAPP
Symposium on Applied Computing (SAC ’20), March 30-April 3, 2020, Brno,
Czech Republic. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3341105.3373906

1 INTRODUCTION

∗At the time of his work in the company.
1https://github.com/opencv/openvino_training_extensions/tree/develop/pytorch_tool
kit/action_recognition
2Billion of multiply-accumulate operations

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SAC ’20, March 30-April 3, 2020, Brno, Czech Republic
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6866-7/20/03. . . $15.00
https://doi.org/10.1145/3341105.3373906

0 10 20 30 40 50 60
GMACs

60

62

64

66

68

70

72

74

Ki
ne

tic
s V

id
eo

@
1

MobilenetV2-VTN-RGB
ResNet-34-VTN-RGB
SE-ResNeXt-101-32x4d-VTN-RGB
ResNet34-3D-RGB (16 x 112 x 112)
R(2+1)D (16 x 112 x 112)
I3D
S3D-G
NL C2D

Figure 1: Accuracy vs complexity trade-off for different
methods on Kinetics-400 validation set. First three models
are the variants of the proposed VTNmethod. ResNet-34 3D
with a similar number of GMAC2(accepts smaller resolution
inputs) is presented for comparison. We also included sev-
eral state-of-the-art methods: I3D [9], R(2+1)D [48], S3D-G
[54], NL-C2D [53].

The latest advances in the Computer Vision domain are definitely re-
lated to the development of Deep Learning (DL) methods [24, 43, 46]
which show great results on many tasks such as Image Classifi-
cation [14] and Segmentation [12], Object Detection [16, 33], etc.
There is a tendency nowadays to create more and more sophisti-
cated pipelines [7, 23, 58], combining quite complex components
which solve the task well but require a massive amount of calcu-
lations and power at the same time. On the other hand, since the
times of AlexNet [31] and VGG [43] where a vanilla convolution
was used as a basic building block, new lightweight primitives have
been proposed [10, 27, 28, 57], allowing to reduce the theoretical
complexity but retain or even improve the final accuracy. However,
video-level tasks, such as Human Action Recognition, which is be-
ing discussed in this work, require to consider temporal structure

2074

https://doi.org/10.1145/3341105.3373906
https://doi.org/10.1145/3341105.3373906
https://github.com/opencv/openvino_training_extensions/tree/develop/pytorch_toolkit/action_recognition
https://github.com/opencv/openvino_training_extensions/tree/develop/pytorch_toolkit/action_recognition
https://doi.org/10.1145/3341105.3373906
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3341105.3373906&domain=pdf&date_stamp=2020-03-30

of input data by aggregating information from multiple frames in
order to solve action ambiguities (opening/closing the door). This
inevitably incurs extra computational costs during inference of the
model. Nevertheless, few studies [8] pay attention to the complexity
of the algorithm while maximizing accuracy. Therefore, creating a
solution that can achieve high accuracy providing a fast inference
speed would be a relevant task, especially in the case of low-power
devices used for edge computing (at the edge).

Following this idea, we propose a lightweight architecture for
Action Recognition (AR) which can run in real-time on a regular
CPU, performing on par with heavy methods, such as 3D CNN
[9, 47, 48]. In support of this, we provide a comparison (see Fig. 1
and Section 4.3) of our model with the state-of-the-art methods and
verify its accuracy on modern benchmarks, such as Kinetics [29],
UCF-101 [44], and HMDB-51 [32].

Shortly, our contributions can be summarized as follows:
• A new lightweight CNN architecture for real-time Action
Recognition that achieves results comparable to state-of-the-
art methods.

• Comparison of modern approaches to Action Recognition.
• A method for improving the accuracy of an existing model
by accommodating information from additional modality
without a discernible increase in complexity.

2 RELATED WORK
Currently, there are multiple methods that solve the AR problem
with certain quality.

One of the examples is the two-stream framework that fuses
information from spatial and temporal nets [18, 42]. Spatial net uses
RGB frame as input and represents an ordinary classification CNN
working on a frame level, whereas temporal net receives multiple
stacked optical flow (OF) frames. Calculating OF with traditional
algorithms, such as TVL1 [56], requires extra resources, but there
are several ways to avoid it. For example, OF can be extracted with
additional sub-network [45] or RGB difference [52] can be used as
an alternative motion representation.

Another popular group of methods is related to the use of 3D
primitives like 3D Convolution, 3D Batch Normalization, 3D Pool-
ing, and others. They generalize original operations introducing
an additional dimension T , which indicates the sequence of frames.
One of the first architectures that leveraged these primitives for the
application to AR, is C3D [47]. Another famous 3D CNN, which
saturated UCF-101 benchmark [44], is I3D [9]. It benefits from pre-
training on a large-scale ImageNet [14] dataset by inflating trained
2D filters into 3D. Although methods based on 3D convolutions
allow improving results in terms of accuracy, the computational
expenses may achieve dozens of GFLOPs. Another substantial draw-
back is that at some level of the network only a small number of
weights inside the convolutional kernels have a significant impact
on the output signal regarding their contribution to the absolute
value of activations making utilization of resources ineffective. This
problem was mentioned in [48, 54] where authors proposed decom-
position techniques and mixed architectures that combine 3D and
2D operations on different levels of the network.

Recurrent neural networks (RNN), LSTMs [26], and GRUs [11]
have been regarded as the default starting point for many sequence

modeling problems, such as machine translation or language mod-
eling [21]. Many significant results have been achieved in several
challenging tasks by means of employing recurrent networks and
attention mechanism [4, 41]. Not surprisingly, several approaches
to video classification that model sequences with recurrent connec-
tions or gated units have been proposed [15, 40, 55]. These models,
while showing comparable results on many benchmarks [9], seem
to be more suitable for online prediction and thus real-time ap-
plications, because feature vector computed for the frame can be
reused for predicting classification label for multiple time-windows
containing this frame.

Several viable alternative approaches to sequence modeling have
been proposed recently. These approaches, for example convo-
lutional [5] or fully-attentional (e.g. Transformer [49]) networks,
achieve better results on many tasks while addressing significant
shortcomings of RNNs such as sequential computing or gradient
vanishing. Later this approach was adopted in [20] to improve the
framework of action localization and classification in videos.

We adopt recently proposed Transformer network in our work
as a more elaborate way for sequence modeling. This allowed us to
attain high accuracy of recognizing human actions, retaining the
performance, that is sufficient for real-time applications.

3 APPROACH
In this section, we describe a designed approach to AR problem in
details as well as discuss some improvements that help to boost the
accuracy of our baseline architecture without significantly increas-
ing the complexity.

3.1 Architecture overview
Video Transformer Network (see Fig. 2) consists of two parts: the
first is the encoder that processes each frame of input sequence
independently with 2D CNN in order to get frame embeddings,
and the second is the decoder that integrates intra-frame temporal
information in a fully-attentional feed-forward fashion, producing
the classification label for the given clip. ResNet-34 is used [24] as
a baseline architecture for the encoder in most of our experiments.
We reuse parameters of all convolutional layers to maximize the
benefit of transfer learning from image classification tasks. Global
average pooling is then applied to the resulting feature maps to get
the frame embeddings of size d (that is equal to 512 in our case),
which are then transformed by the decoder, by repeatedly applying
multi-head self-attention and convolutional blocks. In multi-head
self-attention block, a temporal interrelationship between frames is
modeled by informing each frame representation by representation
of other frames using the attention mechanism. It consists of several
sequential operations. First, vectors of frame representations are
mapped to multiple key, value, and query spaces using different
learned affine transformations. Each triple of queryQ ∈ Rt×dk , key
K ∈ Rt×dk , valueV ∈ Rt×dv matrices (where t is the sequence size
and dk , dv are the dimensions of key and value space accordingly)
is then transformed to the corresponding head output using the
scaled multiplicative attention as following:

headi = softmax(
QKT√
dk

)V (1)

2075

Figure 2: Overview of the VTN architecture. t input frames are fed to CNN encoder and global pooled to get frame embeddings.
Then the decoder block (see in details in Fig. 3) is applied N times. In the end, the clip logits are produced by averaging all
frame logits.

Each head output is then concatenated and passed to the con-
volutional block that consists of two convolutions with kernel of
size 1 (position-wise feedforward) and residual connection. Result-
ing frame representations are then refined by applying the same
procedure multiple times. As we found experimentally, four stacks
of such decoder blocks are sufficient for maximizing classification
accuracy, and the further increase of the number of blocks did not
lead to improvement. In order to produce action confidences for
the current clip, a fully-connected layer is applied to all elements of
the sequence. Resulting scores are then averaged and normalized
with softmax function producing the clip prediction.

3.2 Multimodal knowledge distillation
As it was discussed above, the fusion of results of models that
receive inputs with different modalities is a common approach to
improve the accuracy of Action Recognition algorithm. But in most
cases, it leads to a substantial increase in computational complexity
due to several reasons. First, it requires to calculate a new modality,
which itself may be a hard task, especially in case of the optical flow
where commonly used algorithms perform costly iterative energy
minimization. Second, since the same architecture is used to do
prediction using the second modality, the complexity of the method
is doubled. Therefore, both issues make applying of multimodal
solutions difficult in real-world applications.

On the other hand, using the RGB difference in place of the
optical flow results in almost the same performance [52], which has
been verified by our experiments. At the same time, it requires much
lower computational resources that makes using this modality more
suitable in conjunction with a still RGB data.

Knowledge distillation [25] is the procedure that designated to
help optimization of the student network by providing extra su-
pervision from a larger model or an ensemble of models (teacher).
There are successful applications of this technique for reducing
the complexity of a larger teacher network [37] or integrating
the performance of an ensemble of models into a single student
[6, 25]. However, we hypothesize whether it is possible to transfer
knowledge from multiple models working on different modalities

Table 1: Results of knowledge distillation (KD) from two-
stream (fusion of two models) ResNet-34-VTN teacher on
Mini-Kinetics dataset. The single model that works with
stacked modalities improves its accuracy when trained as a
student in knowledge distillation setup. However, RGB-only
model does not benefit from KD.

Model Video@1 GMAC
Fused RGB + RGB-diff (teacher) 78.2 7.51
RGB 75.2 3.77
RGB with KD 75.2 3.77
Stacked RGB + RGB-diff 75.2 3.88
Stacked RGB + RGB-diff with KD 76.0 3.88

(two-stream teacher) to a single student. In order to better under-
stand this, we ran several experiments where knowledge from two
ResNet-34 based VTN models working with RGB and RGB differ-
ence is distilled to the single RGB model and to the model which
receives stacked RGB and RGB difference inputs. We also tried to
train a model that operates on stacked input without extra supervi-
sion from knowledge distillation. Results are shortly summarized
in Table 1. The model working on stacked inputs outperforms the
single modality model when trained with knowledge distillation.
We suppose that the main reason for that is that motion represen-
tation, learned by RGB-difference subnetwork in the two-stream
teacher, are not discovered by RGB-only model, yet they signifi-
cantly contribute to model performance. Note that this technique
does not allow matching the performance of the two-stream model.
However, it significantly reduces the complexity compared with
the original two-stream solution.

4 EXPERIMENTS
In this section we present a study of the proposed method. Kinetics-
400 is considered as the primary benchmark. However, the smaller
Mini-Kinetics subset that was introduced in [54] is also used for

2076

Figure 3: The detailed overview of decoder block used in
VTN. We use M = 2 self-attention heads on the scheme for
simplicity. Each head independently transforms input se-
quence embeddings to its query (q), key (k), value (v) triplet
(that are rows of Q, K, and V matrices accordingly) using
three trainable linear transformations and applies the self-
attention operation. In order to produce output sequence, re-
sulting vectors are concatenated and passed to the block of
two convolutions with the kernel of size 1 and residual con-
nection around those convolutions.

faster experimentation. We also evaluated our models on UCF-101
and HMDB-51 and evaluated the inference speed on CPU.

4.1 Implementation details
We train and validate our models on 16-frame input sequences that
are formed by sampling every second frame from the original video,
therefore the total temporal receptive field of our model equals to
32 frames. We tried longer sequences by adding or skipping more
frames, but this only resulted in an increased clip accuracy, not the
video. In order to calculate video classification accuracy (Video@1),
we extracted all non-overlapping 32 frame segments and averaged
prediction on these segments.

Frames are scaled in a way, that the shorter side becomes equal
to 256. We randomly crop 224×224 with four different scales during

training, as described in [51], and use central 224× 224 crop during
the test time. Adam optimizer [30] with the momentum of 0.9 and
weight decay of 0.0001 is used. Training is started with the learning
rate of 10−4, which is decayed by a factor of 10 when validation
loss reaches a plateau. Models are trained until validation loss stops
decreasing, which is usually happened within 50 epochs.

4.2 Model hyperparameters
We varied the structure of our decoder block in order to come up
with one that maximizes performance on Mini-Kinetics dataset
and believed that the same parameter settings would maximize
efficiency on other datasets.

First of all, we evaluated how the number of stacked decoder
blocks affects accuracy. We trained models with 1,3,4,5 and 6 blocks,
and determined that 4 blocks result in the maximal accuracy and
the higher number of blocks does not further boost the metric.
We also experimented with sharing parameters between blocks by
applying one block recurrently, as suggested in [13], but it did not
lead to performance improvement. We varied the number of heads
in multi-head self-attention, and dimension of query, key dk , and
value dv space, M = 8 heads with dk = dv =

d
M gave the best

results. We also tried to add trainable linear transformation after
concatenation of heads and to use layer normalization in different
locations, but these changes did not affect the accuracy.

4.3 Comparison with other methods
In order to better understand capabilities of the proposed approach,
we compare it with methods described in Section 2. For a fair com-
parison, we take ResNet-34 architecture and extend it to the case of
3D networks and two-stream methods in the way described below.

The first model we compare with is ResNet-34 3D which is de-
scribed in [22]. It repeats a common ResNet architecture, but instead
of 2D Convolutions and Pooling layers, it utilizes their 3D analogs.
A global Average Pooling operation over three dimensions is ap-
plied at the end of the network in order to get a representation
vector, which is fed to a fully-connected layer producing the CNN
output. Vanilla ResNet-34 pre-trained on ImageNet is used to ini-
tialize its 3D analog where convolutional kernels are repeated over
temporal dimension T , as proposed in [9].

The next approach that we consider is a two-stream model that
is represented by a fusion of two ResNet-34 CNNs trained on RGB
and OF inputs. The OF model is almost the original ResNet-34, but
its first convolutional layer receives 32-channels input, formed by
X andY components of pre-calculated optical flow for 16 sequential
frames. To initialize this layer we average the first convolutional
kernel of the RGB model pre-trained on ImageNet over the channel
dimension and repeat it 32 times.

We also tried a two-stream model where two fused CNNs were
trained on RGB and RGB difference inputs since the calculation of
the latter is much cheaper than the optical flow. In this case, the
motion model receives 48-channels input of RGB differences from
16 consecutive frames.

The last model examined in our comparison is the ResNet-34 fol-
lowed by three stacked LSTM cells operating on independent frame
embeddings. As before, we use the ImageNet pre-trained model for
initialization, but learn LSTM parameters from scratch. We found

2077

Table 2: Comparison of different approaches to Action Recognition on Mini-Kinetics dataset with further finetuning on UCF-
101 split 1 (Accuracy Video@1). All models are based on the ResNet-34, with the input resolution of 224x224 and 16-frame
inputs. Inference time was measured on Intel CoreTM i7-8700 CPU @ 2.90GHz and expressed in Frames Per Seconds.

Model Mini-Kinetics UCF-101 GMAC FPS Million Parameters
3D CNN 72.9 86.4 50.2 5 63.5M

Fused RGB and OF 74.3 89.8 8.53 32 42.8M
Fused RGB and RGB-diff 73.7 88.3 9.1 30 42.9M

Stacked LSTMs 72.0 86.6 3.7 55 27.6M
VTN (ours) 75.2 89.0 3.8 56 29.0M

Table 3: Comparison with the state-of-the-art on Kinetics-
400 dataset.

Method Video@1

BNInception+TSN-RGB [52] 69.14
I3D-RGB [9] 72.1
I3D-TwoStream [9] 75.7
S3D-G [54] 74.7
R(2+1)D-TwoStream [48] 75.4
R(2+1)D-RGB [48] 74.3
NL-I3D-ResNet-101-RGB [53] 77.7

MobileNetV2-VTN-RGB 62.5
ResNet-34-VTN-RGB 68.3
ResNet-34-VTN-RGB+RGBDiff 71.0
SE-ResNeXt-101-VTN-RGB 69.5
SE-ResNeXt-101-VTN-RGB+RGDiff 73.5

this model quite simple but representative at the same time. We
also tried to apply a visual attention mechanism, as suggested in
[40], but it did not improve the performance.

The comparison of the describedmodels and our proposedmethod
is shown in Table 2. For the sake of convenience, we also provide a
theoretical complexity and inference time for all models. The input
resolution is set to 224x224, and the sequence size is 16 frames for
all models. The models were trained with Adam optimizer until val-
idation loss reaches the plateau. The obtained results show that our
VTN model outperforms others on Mini-Kinetics dataset and works
on par with the two-stream method. We find this fact surprising
because we believe that 3D Convolutional model should perform
better because it consists of operations that can learn temporal
dependencies at every layer and has a higher capacity regarding
the number of parameters.

Another interesting result is that the two-stream RGB-difference
model shows the performance that is close to the OF-based model
while saving a large number of calculations. These findings corre-
spond to the results of [22, 36]. Nevertheless, our VTN approach is
attractive in terms of speed/accuracy trade-off.

4.4 Comparison with state-of-the-art

3Optical flow calculation is not included in the complexity estimation.
4Author’s implementation (https://github.com/yjxiong/tsn-pytorch) uses 10-crop TTA
during testing.

To compare with other state-of-the-art models we assessed our ap-
proach on Kinetics-400 dataset. In addition to the baseline ResNet-
34-VTN, we used a larger model employing SE-ResNeXt-101 (32x4d)
architecture for the encoder, which is, however, still very cheap
in terms of a number of multiply-accumulates in comparison with
3D CNNs. Another interesting question is the potential of the pro-
posed method in optimizing a model for mobile devices and what
associated drop in accuracy it would incur. To tackle this question
we tested our approach with the lightweight MobileNetV2 [39]
encoder.

Since fusion of prediction from streams with different modalities
(e.g. RGB and optical flow or RGB and RGB difference) allowed
improving results in many published works, we experimented with
enhancing the results of our RGB model by combining it with
the analogous RGB difference model. We subtracted normalized
adjacent frames and trained the ResNet34-VTN model on this data.
This allowed us to improve the results of the ResNet34-VTN model
by a margin of 2.4%.

The results for the Kinetics-400 validation set are presented in
Table 3. The breakthrough I3D model [9] outperforms ResNet-34
VTN and SE-ResNeXt-101 (32x4d) VTN only by a small margin of
3.5% and 2.1% accordingly, thus our method still shows competitive
results while being computationally significantly cheaper for online
prediction scenarios.

We also provide results on the popular UCF-101 and HMDB-
51 datasets. We fine-tuned models trained on Kinetics-400 for 20
epochs with smaller learning rate of 10−5. Mean video accuracies
over three validation splits are presented in Table 4.

Computational complexity versus accuracy on Kinetics-400 for
some state-of-the-art methods and various variants of VTN is
shown in Fig. 1. Since we primarily focus on the online predic-
tion scenario (i.e. when the classification label is required for every
subsequent frame) we consider the number of operations needed
to execute the encoder on one frame as well as operations for the
whole decoder. On the other hand, 3D convolutional models extract
features from adjacent frames and require to execute the entire
network for each new frame. Thus our method is more attractive
in terms of accuracy/complexity for real-time applications.

4.5 Inference speed
Since theoretically faster models do not necessarily correspond
to higher inference speed [34, 35, 38], we also evaluate the actual
inference time to prove the feasibility of the proposed method for
real-time applications. Currently, there are several frameworks

2078

Table 4: Comparison with other methods (Accuracy
Video@1) on UCF-101 and HMDB-51 (average metric over
all splits). Methods of the first set of rows do not use
Kinetics pre-training.

Method UCF-101 HMDB-51

IDT [50] 86.4 61.7
C3D [47] 85.2 -
Two-Stream [42] 88.0 59.4
Two-Stream Fusion + IDT [19] 93.5 69.2
BNInception+TSN-RGB [52] 91.1 -
P3D [52] 88.6 -
ST-ResNet + IDT [17] 94.6 70.3

I3D-RGB [9] 95.6 74.8
I3D-TwoStream [9] 98.0 80.7
S3D-G [54] 96.8 75.9
R(2+1)D-TwoStream [48] 97.3 78.7

ResNet-34-VTN-RGB 90.8 63.5
SE-ResNeXt-101-VTN-RGB 92.2 67.2
ResNet-34-VTN-RGB+RGBDiff 95.0 71.3

SE-ResNeXt-101-VTN-RGB+
RGBDiff 95.0 71.6

Table 5: Inference time of various Video Transformer Net-
works with OpenVINO on Intel CoreTM i7-8700 CPU @
2.90GHz.

Model FPS GMAC

ResNet-34-VTN-RGB 56 3.77

Stacked RGB+RGBDiff
ResNet-34 VTN 51 4.2

ResNet-50-VTN-RGB 49 4.25
MobileNetV2-VTN-RGB 177 0.4

available, such as Nvidia Tensor RT [1] or Intel® OpenVINOTM

Toolkit [3], which can highly optimize DL model for particular
hardware. Since we primarily focus on models suitable for edge
computing, we chose OpenVINO and its DL Deployment Toolkit as
the inference engine for our solution. OpenVINO can import models
from many DL frameworks as well as ONNX [2] representation
which we use to convert models from PyTorch framework which is
used in all our experiments.

Table 5 shows the inference time on CPU of several models
that employ the proposed approach. Faster than real-time speed is
achieved for all models, making this method promising for edge
computing.

5 CONCLUSIONS
In this work, we have proposed a new Video Transformer Network
architecture for real-time Action Recognition. We have shown that
adopting methods from Natural Language Processing along with

using an appropriate CNN for Image Classification helps to achieve
accuracy on-par with state-of-the-art methods. Moreover, it has
been demonstrated that the proposed approach favorably compares
with other approaches, such as 3D Convolution-based models or
two-stream methods. Specifically, it allows utilizing computational
resources more effectively by embedding each input frame to lower-
dimensional high-level feature vector and then making a conclusion
about the action operating only on embedding vectors by means
of self-attention. This method allows achieving real-time inference
on a general-purpose CPU, providing capabilities for using AR
algorithms at the edge. Our research also demonstrates that the self-
attention mechanism is quite universal and can be applied to many
tasks, such as Natural Language Processing, Speech Recognition or
Computer Vision.

REFERENCES
[1] [n. d.]. NVIDIA TensorRT Programmable Inference Accelerator. https://developer.

nvidia.com/tensorrt.
[2] [n. d.]. ONNX. https://onnx.ai/.
[3] [n. d.]. OpenVINO Toolkit. https://software.intel.com/en-us/openvino-toolkit.
[4] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-

chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473 (2014).

[5] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. 2018. An empirical evaluation
of generic convolutional and recurrent networks for sequence modeling. arXiv
preprint arXiv:1803.01271 (2018).

[6] Cristian Bucilua, Rich Caruana, and Alexandru Niculescu-Mizil. 2006. Model
compression. In Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 535–541.

[7] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. 2016. Realtime
multi-person 2d pose estimation using part affinity fields. arXiv preprint
arXiv:1611.08050 (2016).

[8] Joao Carreira, Viorica Patraucean, Laurent Mazare, Andrew Zisserman, and
Simon Osindero. 2018. Massively Parallel Video Networks. In The European
Conference on Computer Vision (ECCV).

[9] Joao Carreira and Andrew Zisserman. 2017. Quo vadis, action recognition? a
new model and the kinetics dataset. In Computer Vision and Pattern Recognition
(CVPR), 2017 IEEE Conference on. IEEE, 4724–4733.

[10] F. Chollet. 2017. Xception: Deep Learning with Depthwise Separable Convolu-
tions. In CVPR. 1251–1258.

[11] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014.
Empirical evaluation of gated recurrent neural networks on sequence modeling.
arXiv preprint arXiv:1412.3555 (2014).

[12] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus En-
zweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. 2016.
The cityscapes dataset for semantic urban scene understanding. In Proceedings of
the IEEE conference on computer vision and pattern recognition. 3213–3223.

[13] Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz
Kaiser. 2018. Universal transformers. arXiv preprint arXiv:1807.03819 (2018).

[14] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. 2009. ImageNet: A
Large-Scale Hierarchical Image Database. In CVPR.

[15] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach,
Subhashini Venugopalan, Kate Saenko, and Trevor Darrell. 2015. Long-term
recurrent convolutional networks for visual recognition and description. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
2625–2634.

[16] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. 2010.
The PASCAL Visual Object Classes (VOC) Challenge. International Journal of
Computer Vision 88, 2 (2010), 303–338.

[17] Christoph Feichtenhofer, Axel Pinz, and Richard Wildes. 2016. Spatiotemporal
residual networks for video action recognition. In Advances in neural information
processing systems. 3468–3476.

[18] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. 2016. Convolutional
two-stream network fusion for video action recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 1933–1941.

[19] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. 2016. Convolutional
two-stream network fusion for video action recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 1933–1941.

[20] Rohit Girdhar, Joao Carreira, Carl Doersch, and Andrew Zisserman. 2019. Video
action transformer network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 244–253.

2079

https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
https://onnx.ai/
https://software.intel.com/en-us/openvino-toolkit

[21] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. 2016. Deep
learning. Vol. 1. MIT press Cambridge.

[22] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. 2018. Can spatiotemporal
3D CNNs retrace the history of 2D CNNs and ImageNet. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT,
USA. 18–22.

[23] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. 2017. Mask
r-cnn. In Computer Vision (ICCV), 2017 IEEE International Conference on. IEEE,
2980–2988.

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[25] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the Knowledge in
a Neural Network. arXiv:arXiv:1503.02531

[26] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[27] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Wei-
jun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mo-
bileNets: Efficient Convolutional Neural Networks forMobile Vision Applications.
arXiv:1704.04861. arXiv:arXiv:1704.04861

[28] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J
Dally, and Kurt Keutzer. 2016. Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and< 0.5 mb model size. arXiv preprint arXiv:1602.07360 (2016).

[29] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra
Vijayanarasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, et al. 2017.
The kinetics human action video dataset. arXiv preprint arXiv:1705.06950 (2017).

[30] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[31] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet Classifi-
cation with Deep Convolutional Neural Networks. In Advances in Neural Infor-
mation Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Wein-
berger (Eds.). Curran Associates, Inc., 1097–1105. http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

[32] Hildegard Kuehne, Hueihan Jhuang, Estíbaliz Garrote, Tomaso Poggio, and
Thomas Serre. 2011. HMDB: a large video database for human motion recog-
nition. In Computer Vision (ICCV), 2011 IEEE International Conference on. IEEE,
2556–2563.

[33] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L.
Zitnick. 2014. Microsoft COCO: Common objects in context. In ECCV. 740–755.

[34] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Chang-
shui Zhang. 2017. Learning efficient convolutional networks through network
slimming. In Computer Vision (ICCV), 2017 IEEE International Conference on. IEEE,
2755–2763.

[35] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. 2018. Shufflenet
v2: Practical guidelines for efficient cnn architecture design. arXiv preprint
arXiv:1807.11164 (2018).

[36] AJ Piergiovanni and Michael S. Ryoo. 2018. Representation Flow for Action
Recognition. arXiv:arXiv:1810.01455

[37] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang,
Carlo Gatta, and Yoshua Bengio. 2014. Fitnets: Hints for thin deep nets. arXiv
preprint arXiv:1412.6550 (2014).

[38] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. Inverted residuals and linear bottlenecks: Mobile networks
for classification, detection and segmentation. arXiv preprint arXiv:1801.04381
(2018).

[39] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
4510–4520.

[40] Shikhar Sharma, Ryan Kiros, and Ruslan Salakhutdinov. 2016. Action recognition
using visual attention. (2016).

[41] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le,
Geoffrey Hinton, and Jeff Dean. 2017. Outrageously large neural networks: The
sparsely-gated mixture-of-experts layer. arXiv preprint arXiv:1701.06538 (2017).

[42] Karen Simonyan and Andrew Zisserman. 2014. Two-stream convolutional net-
works for action recognition in videos. In Advances in neural information process-
ing systems. 568–576.

[43] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. arXiv:arXiv:1409.1556

[44] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. 2012. UCF101: A
dataset of 101 human actions classes from videos in the wild. arXiv preprint
arXiv:1212.0402 (2012).

[45] Shuyang Sun, Zhanghui Kuang, Lu Sheng, Wanli Ouyang, and Wei Zhang. 2018.
Optical flow guided feature: A fast and robust motion representation for video
action recognition. In The IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR)(June 2018).

[46] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.

Going deeper with convolutions. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 1–9.

[47] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri.
2015. Learning spatiotemporal features with 3d convolutional networks. In
Proceedings of the IEEE international conference on computer vision. 4489–4497.

[48] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, and Manohar
Paluri. 2018. A Closer Look at Spatiotemporal Convolutions for Action Recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 6450–6459.

[49] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Processing Systems. 5998–6008.

[50] Heng Wang and Cordelia Schmid. 2013. Action recognition with improved
trajectories. In Proceedings of the IEEE international conference on computer vision.
3551–3558.

[51] Limin Wang, Yuanjun Xiong, Zhe Wang, and Yu Qiao. 2015. Towards good
practices for very deep two-stream convnets. arXiv preprint arXiv:1507.02159
(2015).

[52] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou Tang, and
Luc Van Gool. 2016. Temporal segment networks: Towards good practices for
deep action recognition. In European Conference on Computer Vision. Springer,
20–36.

[53] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. 2017. Non-local
neural networks. arXiv preprint arXiv:1711.07971 10 (2017).

[54] Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and Kevin Murphy. 2018.
Rethinking spatiotemporal feature learning: Speed-accuracy trade-offs in video
classification. In Proceedings of the European Conference on Computer Vision
(ECCV). 305–321.

[55] Joe Yue-Hei Ng, Matthew Hausknecht, Sudheendra Vijayanarasimhan, Oriol
Vinyals, Rajat Monga, and George Toderici. 2015. Beyond short snippets: Deep
networks for video classification. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 4694–4702.

[56] Christopher Zach, Thomas Pock, and Horst Bischof. 2007. A duality based
approach for realtime TV-L 1 optical flow. In Joint Pattern Recognition Symposium.
Springer, 214–223.

[57] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. 2017. ShuffleNet:
An Extremely Efficient Convolutional Neural Network for Mobile Devices.
arXiv:arXiv:1707.01083

[58] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, XiaogangWang, and Jiaya Jia. 2017.
Pyramid scene parsing network. In IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR). 2881–2890.

2080

http://arxiv.org/abs/arXiv:1503.02531
http://arxiv.org/abs/arXiv:1704.04861
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://arxiv.org/abs/arXiv:1810.01455
http://arxiv.org/abs/arXiv:1409.1556
http://arxiv.org/abs/arXiv:1707.01083

	MAIN MENU
	Go to Previous View
	Help
	Search
	Print
	Author Index
	Keyword Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 12.60 points
 Normalise (advanced option): 'original'

 32

 D:20200106120622
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 12.6000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 0
 1

 1

 HistoryList_V1
 qi2base

