
ar
X

iv
:1

91
2.

05
82

8v
1

 [
cs

.L
O

]
 1

2
D

ec
 2

01
9

Formal Verification of Debates in Argumentation Theory

Ria Jha
Imperial College London, UK
ria.jha15@imperial.ac.uk

Francesco Belardinelli
Imperial College London, UK &

Université d’Evry, France
fbelard@ic.ac.uk

Francesca Toni
Imperial College London, UK

f.toni@imperial.ac.uk

ABSTRACT

Humans engage in informal debates on a daily basis. By express-
ing their opinions and ideas in an argumentative fashion, they are
able to gain a deeper understanding of a given problem and in
some cases, find the best possible course of actions towards re-
solving it. In this paper, we develop a methodology to verify de-
bates formalised as abstract argumentation frameworks. We first
present a translation from debates to transition systems. Such tran-
sition systems can model debates and represent their evolution
over time using a finite set of states. We then formalise relevant
debate properties using temporal and strategy logics. These formal-
isations, along with a debate transition system, allow us to verify
whether a given debate satisfies certain properties. The verifica-
tion process can be automated using model checkers. Therefore,
we also measure their performance when verifying debates, and
use the results to discuss the feasibility of model checking debates.

CCS CONCEPTS

• Theory of computation→Modal and temporal logics; Ver-
ification by model checking; •Computingmethodologies→
Temporal reasoning;

1 INTRODUCTION

Humans engage in informal debates on a daily basis. By expressing
their opinions and ideas in an argumentative fashion, they are able
to gain a deeper understanding of a given problem and, in some
cases, find the best possible course of actions towards resolving it.

Verifying a debate gives us the ability to learn about its over-
all outcome. It allows us to reason about the strategies available
to a participant as well as to determine the acceptability of some
argument they have made. Given a debate, we can verify relevant
properties such as “the proponent will be able to refute any attack
from the opponent” or “the proponent has a strategy such that it
will eventually win the debate”.

A key technique for verifying properties of debates is model
checking. Model checking is a verification technique that has been
developed over the last thirty years [3, 10]. This process includes
developing and examining the full model of a system to ensure that
it satisfies a specific property, which is normally expressed in some
logic-based language. Typically, this procedure is completely auto-
mated. While there are model checking tools and techniques that
have been developed for verification of properties of general tran-
sition systems [9, 20], to the best of our knowledge, methodologies
for the formal verification of debates have not yet been considered
.

In this paper, we develop a novel methodology to verify debates
formalised as abstract argumentation frameworks. We first present
a translation from debates to transition systems. Such transition

systems can model debates and represent their evolution over time
using a finite set of states. We then formalise relevant debate prop-
erties using various flavours of temporal logics. These formalisa-
tions, along with a debate transition system, allow us to verify
whether a given debate is able to satisfy certain properties. The
verification process can be automated using model checkers. Thus,
we also measure the performance of model checkers when verify-
ing debates, and use the results to discuss the feasibility of model
checking debates.

Related work. On the formal analysis of debates in Argumen-
tation Theory, [22] and [12] consider debates between two agents,
the proponent and the opponent. In [22] a debate between the two
agents is formalised as a turn-based game with the purpose of de-
termining the acceptability of the initial argument put forward by
the proponent. An agent may put forward all the arguments that
can be made legally according to the rules of the game, in order to
refute its counterpart’s argument. The proponent winning such a
game, where all arguments have been made legally, indicates that
its initial argument is acceptable. The debates introduced in [12]
can be used for the same purpose. Unlike [22], the proponent must
behave deterministically and only select a single argument to re-
fute its counterpart.Moreover, [12] introduces several debate prop-
erties which, if satisfied, indicate the initial argument’s acceptabil-
ity.

In this paper, we present a translation for the debates in [22]
into transition systems. We then formalise certain debate proper-
ties [12] so that they can be interpreted on these transition sys-
tems. These formalisations take into consideration the notion of a
deterministic proponent, as introduced in [12]. This enables us to
reason about the different strategies available to the proponent in
a debate.

There has not been much work done in the development of for-
mal methods for the verification of debates. [4] models debates
between agents, where each agent holds private, possibly infinite,
argumtentation frameworks. Thus, agents are able to exchange ar-
guments and build a public framework. Then, [4] looks at formally
expressing and verifying relevant properties of abstract argumen-
tation frameworks. However, it does not consider the notion of
dispute trees nor acceptability conditions, as we do in this paper.

Other works include [17], where abstract argumentation frame-
works are treated as Kripke frames [16]. [17] then uses modal logic
to formalise notions of argumentation theory including conflict-
freeness and admissibility. However, as with [4], no attempts are
made to formally verify the acceptability of arguments.

Structure of the Paper. In Sec. 2.1 we present the basics of
Argumentation Theory [11], including the various semantics, as
well as the notion of dispute tree introduced in [22]; while Sec. 2.2
is devoted to the preliminaries on model checking temporal and

http://arxiv.org/abs/1912.05828v1

Semantics Criteria

conflict-free iff there are no a,b ∈ E such that (a,b) ∈ Att

admissible iff it is conflict-free
and every argument in E is acceptable w.r.t. E.

complete iff it is admissible
and it contains all arguments acceptable w.r.t. E

grounded iff it is complete
and minimal w.r.t. set inclusion

preferred iff it is admissible
and maximal w.r.t. set inclusion

ideal iff it is admissible
and a subset of every preferred extension

Table 1: Semantics of argumentation frameworks.

strategy logics. In Sec. 3 we define a translation from debates in Ar-
gumentation Theory [22] to Interpreted Systems [16], and in Sec. 4
we formalise various winning conditions as formulas in Strategy
Logic [23]. Finally, in Sec. 5 we evaluate the performance of our ap-
proach against state-of-the-art argumentation reasoners. We con-
clude in Sec. 6 and discuss directions for future work.

2 PRELIMINARIES

In this section we present preliminary materials on abstract argu-
mentation (Sec. 2.1) and verification by model checking (Sec. 2.2),
which will be used in the rest of the paper.

2.1 Abstract Argumentation

To provide debates with a formal vest, we consider abstract argu-
mentation frameworks as introduced in [11].

Definition 2.1 (AF). An (abstract) argumentation framework is a
pair AF = 〈Arдs,Att〉 where:

• Args is a set of arguments a,b, c,
The internal structure of each argument a ∈ Arдs is ab-
stracted and the arguments are perceived as atomic entities.

• Att ⊆ Arдs ×Arдs is a binary (attack) relation on Arдs .

Given an argumentation framework, it is possible to compute
the “acceptable” sets of arguments, referred to as extensions. No-
tably, [11, 12] present several extension-based semantics. An ex-
tension E ⊆ Arдs computed under a particular semantics must
fulfil some specific criteria. We start with the notion of acceptable
argument.

Definition 2.2 (Acceptability). An argument a ∈ Arдs is accept-
able with respect to set E ⊆ Arдs iff for each argument b ∈ Arдs

that attacks a, there is some argument c ∈ E that attacks b . In other
words, a is defended by E.

In Table 1 we present the different semantics and the criteria
that a given set E ⊆ Arдs must fulfill under each of them [11, 12].

Example 2.3. As an example of an argumentation framework,
consider AF = 〈{a,b,c,d,e,f,g}, Att〉 with Att = {(a, b), (b, a), (b, b),
(d, c), (e, f), (f, e), (f, d), (g, f)}.

An argumentation framework can also be depicted as a graph
with nodes and directed edges. The nodes represent the arguments

P: c O: d

P: e O: f

P: e

P: g

P: f

O: g

O: e P: f

Figure 2: The dispute tree induced by argument c, generated

using AF in Fig. 1.

and the directed edges represent an attack from one argument to
another. See Fig. 1 for a representation of framework AF . Given
this framework, we can compute the acceptable sets of arguments
under the different semantics:

• The complete extensions are {c, e, g}, {a, c, e, g}.
• The grounded extension is {c, e, g}.
• The preferred extension is {a, c, e, g}.
• The ideal extension is {a, c, e, g}.

a

b

c d e

f д

Figure 1: The abstract argumentation framework AF in Ex-

ample 2.3.

The acceptability of some argument a under the grounded, pre-
ferred, or ideal semantics can be determined by constructing a dis-
pute tree, where a is the root argument [22]. Each branch in a dis-
pute tree is a sequence of attacking arguments, which are put for-
ward by the proponent and the opponent in a turn based fashion.
A branch in a dispute tree is finite when the last played argument
is unattacked. Otherwise, the branch may be infinitely long.

Definition 2.4 (Dispute Tree). Given an argumentation frame-
work AF = 〈Arдs,Att〉 and an argument a ∈ Arдs , a dispute tree
T induced by a is a tree of arguments where

(1) The root node of T is a, played by the proponent.
(2) For all x,y ∈ Arдs , x is a child of y iff (x,y) ∈ Att .
(3) Each node is labelled either P orO, for the proponent or the

opponent, indicating the player that put forward the argu-
ment.

Example 2.5. Consider the argumentation framework AF de-
picted in Fig. 1. The argument c induces a single dispute tree using
Def. 2.4, which is shown in Fig. 2.

Within such a dispute tree, we can find subtrees that are the
result of an agent applying one of its strategies.

2

Definition 2.6 (Strategy). Given AF = 〈Arдs,Att〉, a strategy

σ : Arдs ⇀ Arдs is a partial function that maps an argument x ∈

Arдs to one of its attackers, if there are any.

In a dispute tree T , induced by argument a, the proponent can
apply some strategy σ from a to obtain a subtreeTσ where:

• The root argument of Tσ is a.
• For any argument i played by the opponent, the proponent
must play at most one argument, σ (i).

To justify a’s membership to some extension, the proponent
must have a winning strategy σ . By applying σ from a, the propo-
nent can guarantee acceptability of a under a particular semantics.

Definitions 2.7, 2.8, and 2.9 define the grounded, admissible, and
ideal winning strategies, respectively [12]. For these definitions,
consider a dispute tree T , induced by some argument a.

Definition 2.7 (GroundedWinning Strategy). A strategy σ ap-
plied at root a is a grounded winning strategy iff:

• Every opponent node in Tσ has exactly one child.
• Every dispute within Tσ is finite.

To justify membership of a in a preferred extension, it suffices
to show that a belongs to some admissible extension [22].

Definition 2.8 (Admissible Winning Strategy). A strategy σ

applied at root a is an admissible winning strategy iff:

• Every opponent node in Tσ has exactly one child.
• No argument is labelled by both the proponent and the op-
ponent.

Definition 2.9 (Ideal Winning Strategy). A strategy σ applied
at root a is an ideal winning strategy iff:

• σ is an admissible winning strategy.
• There does not exist an admissible winning strategy σ ′ for
any argumentb ∈ Opp(Tσ), which is the set of all arguments
played by the opponent in Tσ .

Example 2.10. Consider the argumentation framework in Fig. 1
and the dispute tree T in Fig. 2, which shows that the proponent
has a choice when attacking arguments d and f . As a result, there
are three strategies available to the proponent: σ1,σ2, and σ3. By
applying each of these strategies from c , we obtain the subtrees
Tσ1 ,Tσ2 , and Tσ3 , respectively. The dispute tree Tσ1 is depicted in
Fig. 3 whereasTσ2 andTσ3 are depicted in Fig. 4 and 5, respectively.
We find that the dispute trees Tσ1 and Tσ3 satisfy the properties
described in Def. 2.8 and therefore σ1, and σ3 are both admissible
winning strategies. Whereas, only Tσ3 satisfies the properties in
Def. 2.7 and so σ3 is the only grounded winning strategy. Finally,
according to Def. 2.9, σ1 and σ3 are also ideal winning strategies.

2.2 Verification by Model Checking

An interpreted system is a transition system that allows us to rea-
son about the behaviour and strategies of agents in a multi agent
system [21]. Given a set Σ = {1,.., n} of agents and a special agent
Env for the environment, let Aд = Σ ∪ {Env}.

Definition 2.11 (Interpreted System). An interpreted system is a
tuple IS = 〈(Li ,Acti , Pi , ti)i ∈Aд, I ,h〉 where:

P: c O: d P: e O: f P: e

Figure 3: The sub dispute treeTσ1 induced by c in Ex. 2.10.

P: c O: d P: f

O: g

O: e P: f

Figure 4: The sub dispute treeTσ2 induced by c in Ex. 2.10.

P: c O: d P: e O: f P: g

Figure 5: The sub dispute treeTσ3 induced by c in Ex. 2.10.

• For each agent i ∈ Σ, Li is the set of all possible local states
of i . The local state of each agent i ∈ Σ is private. For agent
Env, its set of local states is referred to as LEnv and may be
observed by the other agents. We refer to the local states of
the agents in Aд collectively as a global state д ∈ L1 × . . . ×

Ln × LEnv .
• For each agent i ∈ Aд, Acti is the set of all actions available
to i . The set Act = Act1 × . . . ×Actn × ActEnv refers to the
joint actions for all the agents in Aд.

• Protocol Pi : Li × LEnv → 2Acti is a function for an agent
i ∈ Σ, which takes the local states of i and Env as its input
and return all actions for i that are enabled at the given state.

• ti : Li × LEnv ×Act → Li is a deterministic transition func-
tion for agent i ∈ Σ, which describes the evolution of i’s
local state. Using the local states of i and Env, along with
the enabled actions of all the agents, it returns the “next”
local state for agent i. In particular, ti (li , lEnv ,α) is defined
iff αi ∈ Pi (li , lEnv). Similarly, the transition function for
the environment Env is tEnv : LEnv × Act → LEnv . A
global transition function t : G × Act → G, where G ⊆

L1 × . . . × Ln × LEnv refers to the set of reachable global
states, combines the output of the local transition functions
and provides the next accessible global state of the system.
In particular, t(д,α) =

∏
i ∈Aд ti (дi ,дEnv ,α).

• I ⊆ L1× . . .×Ln×LEnv is the initial set of global states. The
set G ⊆ L1 × . . . × Ln × LEnv refers to all the global states
that are reachable from I through the transition function t .

• h : AP → 2G , where AP is a set of atomic propositions, is a
valuation function.

Strategy Logic (SL) is a logic used to reason about strategies of
agents in multi agent systems [23]. Consider an interpreted system
IS , its agents Aд, and fix a set Var of variables for strategies. Each
variable xi ∈ Var is typed according to an agent i ∈ Aд.

Definition 2.12 (SL syntax). The syntax of SL is presented be-
low:

ϕ F p | ¬ϕ | ϕ ∨ ϕ | Xϕ | Gϕ | ϕUϕ | ∃xiϕ

The strategy quantifier ∃xi is read as “there exists a strategy
xi ” while ∀xi ::= ¬∃xi¬ can be read as “for all strategies xi ”.
The intuitive meaning of the linear-time operators is standard [3]:
Xϕ is read as “at the next moment ϕ holds”, Gϕ as “always ϕ”,

3

and ϕUϕ′ as “ϕ until ϕ′. The operator Fϕ is read as “ϕ eventu-
ally holds”, which may be equivalently expressed as ⊤Uϕ. In in-
terpreted systems, each agent i ∈ Σ is assumed to have its own
strategy fi : Li × LEnv → Acti such that fi (li , le) ∈ Pi (li , le). Sim-
ilarly, Env can also have a strategy fEnv : LEnv → ActEnv to de-
termine its next action. Stri refers to the set of strategies available
to agent i ∈ Aд. We can use an assignment to associate a variable
xi ∈ Var , for i ∈ Aд, to one of its strategies fi . An assignment
χ : Var → Str , for Str =

⋃
i ∈Aд Stri , is a function mapping each

variable xi ∈ Var to a strategy fi ∈ Stri . Given χ , xi ∈ Var ,
and i’s strategy fi , χ [xi 7→ fi] denotes the new assignments on
dom(χ) ∪ {xi }.

From an assignment χ and a global state s in IS , we can obtain
an outgoing path λ from s , known as a play. A play is the unique
possible outcome obtained from each agent i ∈ Aд, applying the
strategy that they are assigned to in χ , from s . We use χ -s to denote
a play from a global state s , with respect to χ .

Definition 2.13 (SL semantics). Given IS , its current global state
s , an assignment χ , an SL formula ϕ, the semantics of SL are given
below. Note that for a play λ, λ[i] refers to the global state occur-
ring in the i-th position in λ, for i ≥ 0.

(IS, χ , s) |= p iff s ∈ h(p)

(IS, χ , s) |= ¬ϕ iff (IS, χ , s) 6|= ϕ.
(IS, χ , s) |= ϕ1 ∨ ϕ2 iff (IS, χ , s) |= ϕ1 or (IS, χ , s) |= ϕ2.
(IS, χ , s) |= ∃xiϕ iff for some strategy fi ∈ Stri ,

(IS, χ [xi 7→ fi], s) |= ϕ

(IS, χ , s) |= Xϕ iff (IS, χ , λ[1]) |= ϕ
(IS, χ , s) |= Gϕ iff for all i ≥ 0, (IS, χ , λ[i]) |= ϕ
(IS, χ , s) |= ϕ1Uϕ2 iff for some i ≥ 0, (IS, χ , λ[i]) |= ϕ2 and

for all 0 ≤ j < i , (IS, χ , λ[j]) |= ϕ1

A sentence ϕ is satisfied in IS if for all initial global states д ∈ I ,
(IS, ∅, i) |= ϕ, where ∅ refers to an empty assignment.

Alternating-Time Temporal Logic (ATL) is a branching time tem-
poral logic that is used for strategic reasoning in a multi agent sys-
tem [1]. ATL can be seen as a syntactic fragment of SL, where for-
mulas 〈〈A〉〉ϕ, forA = {i1, . . . , ik } ⊆ Aд, is defined as∃x1 . . . ∃xk∀xk+1
. . . ∀xnϕ: “the coalition A of agents has a joint strategy to enforce
some property ϕ, regardless of the behaviour of the other agents
in Aд \A”.

Computation Tree Logic (CTL) is another branching-time tem-
poral logic that is strictly less expressive than ATL [3]. CTL can be
considered as a syntactic fragment of ATL as it only allows quantifi-
cation either over all or over a single path in an interpreted system.
Within CTL, the quantifier A refers to all paths in the system, and
is equivalent to path quantifier 〈〈∅〉〉 in ATL. The quantifier E refers
to the existence of an individual path in IS and is equivalent to the
ATL quantifier 〈〈Aд〉〉, where Aд is the set of all agents within the
interpreted system.

Given a finite-state model IS of a system and a formal property
ϕ that the system must satisfy, model checking is an automated
verification technique that can be used to check whether IS |= ϕ

[3], where IS |= ϕ iff for all д ∈ I , (IS,д) |= ϕ. There are several
model checking tools available that can be used for the verifica-
tion of multi-agent systems, including MCMAS [18, 20], which is

a model checker tailored on interpreted systems. A variant of MC-
MAS,MCMAS-SLK [5], will be used in the experimental evaluation
in Sec. 5.

3 CONSTRUCTING INTERPRETATION
SYSTEMS FROM DEBATES

In order to verify a debate using model checking, a transition sys-
tem representing the debate is required. The transition system should
be able to represent the debate’s state at all points in time and also
represent its evolution. Once the transition system has been gener-
ated, it can then be used to verify certain properties of the debate.

This section provides a translation for a dispute tree T , as de-
scribed in Def. 2.4, to an interpreted system IST as per Def. 2.11.
An advantage of this approach is that we can use a single inter-
preted system IST to verify the existence of a winning strategy σ

in T for the proponent, under multiple semantics. We can do this
in one step by formally expressing the properties of the subtreeTσ
under the different semantics, and checking whether IST satisfies
them.

In order to construct IST , we require an abstract argumentation
framework AF = 〈Arдs,Att〉, where Arдs is finite. Furthermore,
we require the dispute treeT , induced by some argument a ∈ Arдs ,
whose acceptability we would like to determine.

Definition 3.1 (The Interpreted System IST). Given an abstract
argumentation framework AF = 〈Arдs,Att〉 and corresponding
dispute tree T starting in argument a ∈ Arдs , the interpreted sys-
tem IST = 〈(Li ,Acti , Pi , ti)i ∈AдT , IT ,hT 〉 is comprised of:

• Set AдT = {Pro,Opp,Env} of agent including the propo-
nent Pro, the opponent Opp, and the environment, Env.

• For every agent in AдT , the set of local states are:
– LPro = Args;
– LOpp = Arдs ∪ {empty};
– LEnv = {Pro,Opp} × Arдs × AttSeen, where AttSeen ⊆

2Att

Theunique initial state of the system is (a,empty, (Opp,a, ∅)),
indicating that argument a has been put forward by Pro.
Therefore, IT = {(a,empty, (Opp,a, ∅))}.

• The set of actions available to agents Pro and Opp is ActPro
= ActOpp = {attackxy | (x,y) ∈ Att} ∪ {nothinд}. Whereas,
the set of actions available to Env is ActEnv = {nothinд}.

• The protocol functions for Pro and Opp determine the avail-
able actions that the agents may perform, based on their
current local state and the local state of environment Env:

PPro(_, (turn, last, _)) =

attacks(last), if turn = Pro and

attacks(last), ∅

{nothinд} otherwise

where attacks(y) = {attackxy | attackxy ∈ ActPro} and _
indicates that the input provided is not used in the function.
Symmetrically,

POpp (_, (turn, last, _)) =

attacks(last), if turn = Opp and

attacks(last), ∅

{nothinд} otherwise

where attacks(y) = {attackxy | attackxy ∈ ActOpp }.

4

Unlike the standard agents, Env only has one action avail-
able: PEnv (_, _, _) = {nothing}.

• The transition functions determine the evolution of the de-
bate, based on the agents’ actions and their current local
state:
– tPro(, (Pro, y, _), (attackxy ,nothinд,nothinд)) = x

– tOpp (, (Opp, y, _), (nothinд,attackxy ,nothinд)) = x

– tEnv ((Pro, y, attacksSeen), (attackxy ,nothinд,nothinд)) =
(Opp, x, attacksSeen∪{(x,y)})

– tEnv ((Opp, y, attacksSeen), (nothinд,attackxy ,nothinд))=
(Pro, x, attacksSeen∪{(x,y)})

• For each argument b ∈ Arдs , we consider two propositional
atoms, Prob and Oppb . The global states д ∈ G of IST at
which these atoms hold are described by the valuation func-
tion hT :
– hT (Prox) = {д ∈ G | lPro(д) = x and lEnv (д) is a tuple of
the form (Opp,x, _)}

– hT (Oppx) = {д ∈ G | lOpp (д) = x and lEnv (д) is a tuple
of the form (Pro,x, _)}

where lPro , lOpp , and lEnv are functions that return the
local states of Pro, Opp and Env respectively from a given
global state д ∈ G.

The interpreted system IST , for a dispute treeT , evolves as each
player selects an argument to play. The local states for proponent
Pro and opponent Opp therefore store their most recently played
argument. Both agents may select any argument in the set Arдs .
The root argument of T , which is played by the proponent, is the
initial local state of Pro; whereas the initial local state of Opp is
empty. This state takes into consideration the case where Opp has
not yet put forward an argument, while Pro has already played a.
The initial state of Env also indicates that a has already been played
and Opp must now find an argument attacking a.

At any given point in time, exactly one agent Pro orOpp plays an
argument. Thus, we use Env to store information about the agent’s
turn. Moreover, Env also tracks the most recently played argument
in the dispute as well as the attacks seen so far.

In T, each player attacks their counterpart’s argument made in a
single dispute, with an argument of their own. Pro andOpp have ac-
tions for all attacks available in the abstract argumentation frame-
workAF , which may be enabled depending on their private local
state along with the information stored in the local state of Env.

For each (x,y) ∈ Att , there is a corresponding action attackxy .
The action nothing is also available, which an agent may select
when it is their counterpart’s turn or when their counterpart’s
most recently played argument in the dispute is unattacked. This is
indicated in the protocol functions above, where the only enabled
action for an agent is nothing, when it is their counterpart’s turn
to play. Otherwise, the agent must find all actions corresponding
to an attack against the most recently played argument, last. This
information is stored in the local state of Env, which Pro and Opp

may observe.
The transition functions for Pro and Opp update their private

local states, to their most recently played argument, based on the
action taken by all of the agents. The states of Pro and Opp will not
change if their chosen action is nothing. Similarly, the local state
of Env is updated according to the actions taken by the standard

agents. All three variables stored by Env are updated simultane-
ously.

Finally, the valuation function above describes the states at which
the propositional atoms hold. These atoms indicate the most re-
cently played argument at a global state, and by which agent.

4 FORMALISING WINNING CONDITIONS ON
DISPUTE TREES

In this section, we formalise the dispute tree properties in Def. 2.7,
2.8, and 2.9. These formulae can be interpreted on debate transition
systems to verify the existence of a winning strategy σ under a
particular semantics.

Consider an abstract argumentation framework AF = 〈Arдs,

Attacks〉 and an argument a ∈ Arдs . Let T be the dispute tree in-
duced by a. By translating T according to Def. 3.1, we obtain the
interpreted system IST with initial state s0. Further,Var refers to a
fixed set of variables with p,o, e ∈ Var . Finally, the set of paths ob-
tained by applying strategy fi , for some agent i ∈ {Pro,Opp,Env},
from state s in IST is referred to as out(s, { fi }).

4.1 Grounded Winning Strategy

For verifying the existence of a grounded winning strategy σ in T
by using IST , ATL is used to formalise the dispute tree properties
in Def. 2.7.

Theorem 4.1. The proponent has a grounded winning strategy σ

in T iff IST |= 〈〈{Pro}〉〉F
(∨

i ∈Arдs
AG(Proi)

)
.

The formula in Theorem 4.1 states that Pro has a strategy f from
the initial state s0 in IST , such that every path λ in out(s0, { f })

must have a steady state sk (k ≥ 0) along the path, where Pro

will play some argument i ∈ Arдs that is unattacked. We use the
CTL universal quantifier A instead of its ATL equivalent 〈〈∅〉〉 for
readability.

Proof. Let DT refer to the set of disputes beginning at a in the
dispute tree T , where each dispute is a sequence of attacking ar-
guments. For example, if δ ∈ DT is an infinite sequence a0,a1, . . .,
then for all i ≥ 0, (ai+1,ai) ∈ Att . With an abuse of notation, we
write a ∈ δ to say that argument a occurs in δ . Similarly, we write
si ∈ λ, for i ≥ 0, to say that state si occurs in path λ in IST .
=⇒ Consider the set DTσ ⊆ DT of disputes for a grounded

winning strategy σ . Each dispute δ ∈ DTσ corresponds to a path
λ = s0, s1, Consequently, there exists a set P of paths from s0
that is associated with the set DTσ of disputes.

Select an arbitrary path λ ∈ P . The dispute δ ∈ DTσ corre-
sponding to λ must be finite as it occurs in Tσ . This implies that
there is a terminating argument y ∈ δ labelled by the proponent.
Accordingly, there must be a state sk ∈ λ, for k ≥ 0, such that
(IST , sk) |= Proy .

Then, select an arbitrary path λ′ from sk and a state sk′ ∈ λ′, for
k ′ ≥ k . As y is the winning argument, there is no further action
associatedwith an attack from either agent. The disputemust have
reached a steady state and therefore, (IST , sk′) |= Proy . This holds
for all k ′ ≥ k . As this holds for an arbitrary λ′, it must hold for all

5

possible paths from sk and so we have (IST , sk) |= AG(Proy). Thus,
we also have (IST , sk) |=

∨

i ∈Arдs
AG(Proi) (1).

As (1) holds for an arbitrarily chosen path, then for all other
paths in P there must exist a state sk (k ≥ 0) where (1) holds. (2)

Finally, as the proponent has a winning strategy σ , there is a
corresponding strategy f for Pro in IST that allows Pro to select
an action deterministically at each state. P is the result of applying
f from the initial state s0 and so we have that out(s0, { f }) = P (3).

From (2) and (3), it follows that IST |= 〈〈{Pro}〉〉F
(∨

i ∈Arдs
AG(Proi)

)
.

As λ was selected arbitrarily, every other path in out(s0, { f })must
also be a translation of a finite dispute δ ∈ DT (3). That is, there
is a set DTσ ⊆ DT of finite disputes, where each dispute in DTσ
is translated to a path in out(s0, { f }). The disputes in DTσ form a
subtree Tσ , with a being the root argument, where:

• Every opponent node has exactly one child. An opponent
node always has a child as the terminating argument in each
dispute inTσ , labelled by the proponent. An opponent node
must have no more than one child as Tσ is associated with
out(s0, { f }), the set of paths obtained from Pro always se-
lecting one action at each state.

• Every dispute in Tσ is finite. This is shown as (2).

�

By Theorem 4.1, we can check whether the proponent has a
grounded winning strategy in T , and therefore whether the argu-
ment at the root of T is acceptable according to the grounded se-
mantics, by model checking the corresponding ATL formula on
IST .

4.2 Admissible Winning Strategy

For verifying the existence of an admissible winning strategy σ

using IST , SL is used to formalise the dispute tree properties in
Def. 2.8.

Theorem 4.2. The proponent has an admissible winning strategy

σ in T iff IST |= ∃p ∀e
(
ϕ1

∧
ϕ2

)
where

ϕ1 = ∀oG
(∧

i ∈Arдs

¬G(Oppi)
)

ϕ2 =
∧

i ∈Arдs

(
∃o F (Proi) ⇒ ∀oG(¬Oppi)

)

Proof. Note that Pro(δ) refers to the set of arguments played
by the proponent in a dispute δ .

Let StrPro , StrOpp be the set of strategies available to Pro and
Opp.
=⇒Agent Promust have a strategy fPro ∈ StrPro such that every
path λ = s0, s1, .. in the set out(s0, { fPro}) corresponds to a dispute
δ ∈ DTσ , where s0 is the initial state of IST . (1)
The environment Env only has one action available, which does
not affect the evolution of the debate. This means that Env only has
one strategy, fEnv , where it always selects the action nothinд. As
fEnv does not impact the evolution of the debate, the set of paths
obtained from Pro and Env applying their strategies fPro and fEnv
from s0, must still be out(s0, { fPro})). (2)

Using Var , we define a new assignment χ0 where χ0(p) = fPro
and χ0(e) = fEnv .
We select an arbitrary strategy fOpp ∈ StrOpp forOpp, map vari-
able o to fOpp (χ1 = χ0[o 7→ fOpp]). We now have a complete as-
signment, χ1, as every agent has been assigned a strategy.
From χ1, we obtain the (χ1-s0) play λ ∈ out(s0, { fPro}). Then, we
select a state sk ∈ λ, where k ≥ 0.
For each i ∈ Arдs :
• Assume that (IST , χ1, sk) |= G(Oppi). This means that for all
states sk′ ∈ λ′ (k ′ ≥ k), where λ′ is the χ1-sk play, it holds that
(IST , χ1, sk′) |= Oppi . This implies that Pro has no further ac-
tions available that could correspond to an attack against i . This
suggests that the dispute δ ∈ DTσ corresponding to λ contains
a terminating argument i that is labelled by the opponent (3).

• (3) contradicts the initial assumption that there exists an admis-
sible winning strategy σ , as δ contains an opponent node i that
does not have a child.

• Therefore, we have that (IST , χ1, sk) |= ¬G(Oppi).
We have that (IST , χ1, sk) |=

∧

i ∈Arдs
¬G(Oppi). This must hold for

all sk ∈ λ (k ≥ 0) so that the initial assumption, that the propo-
nent has an admissible winning strategy σ is not contradicted. As

a result, we also have that (IST , χ1, s0) |= G
(∧

i ∈Arдs
¬G(Oppi)

)
.

The strategy fOpp was chosen arbitrarily. It must be the case
that for all strategies f ′

Opp
∈ StrOpp , it holds that (IST , χ0, [o 7→

f ′
Opp

], s0) |= G
(∧

i ∈Arдs
¬G(Oppi)

)
.

It follows that (IST , χ0, s0) |= ∀oG
(∧

i ∈Arдs
¬G(Oppi)

))
. (4)

We have assignment χ0. For each i ∈ Arдs :
• Assume that (IST , χ0, s0) |= ∃o F (Proi). This means that Opp
must have some strategy fOpp ∈ StrOpp that allows this as-
sumption to hold. We associate Opp’s strategy fOpp ∈ StrOpp
to variable o and obtain an assignment χ1 (χ1 = χ0[o 7→ fOpp]).
Let λ ∈ out(s0, { fPro})) be the χ1-s0 play and let δ ∈ DTσ be the
dispute corresponding to λ.

• There exists a state sk ∈ λ (k ≥ 0)where it holds that (IST , χ2, sk) |=
Proi . Accordingly, we have that the proponent plays argument
i in δ at some stage.

• There must be no dispute δ ′ ∈ DTσ where i is labelled by the
opponent, as σ is admissible. (5)

• For each strategy f ′
Opp

∈ StrOpp available to Opp, we obtain a

new assignment χ1 from χ0 (χ1 = χ0[o 7→ f ′
Opp

]). According to

(5), for the χ1-s0 play λ′ ∈ out(s0, { fPro}), there must not exist
a state sk′ ∈ λ (k ′ ≥ 0) where it holds that (IST , χ1, sk′) |= Oppi .
This means that (IST , χ1, s0) |= G(¬Oppi). (6)

• As (6) holds for each strategy f ′
Opp

available to Opp, it must be

the case that (IST , χ0, s0) |= ∀oG(¬Oppi).
We have (IST , χ0, s0) |=

∧

i ∈Arдs
∃o F (Proi) ⇒ ∀oG(¬Oppi). (7)

From (4) and (7), we have that (IST , χ0, s0) |=
(
ϕ1

∧
ϕ2

)
. (*)

From (1), (2), and (*) it follows that IST |= ∃p ∀e
(
ϕ1

∧
ϕ2

)
.

⇐= Pro has some strategy fPro ∈ StrPro and Env has its only
strategy fEnv , which does not affect the evolution of the system.
We obtain a set of paths out(s0, { fPro}) from the initial state s0,

6

when bothPro and Env apply their strategies. The set out(s0, { fPro})
corresponds to a set of disputes DTσ ⊆ DT .
We have an assignment χ0 where χ0(p) = fPro and χ0(e) = fEnv .
We have that:

(IST , χ0, s0) |= ∀oG
(∧

i ∈Arдs

¬G(Oppi)
))

(1)

(IST , χ0, s0) |=
(∧

i ∈Arдs

∃o F (Proi) ⇒ ∀oG(¬Oppi)
))

(2)

Select an arbitrary strategy fOpp ∈ StrOpp . We obtain a new com-
plete assignment χ1 = χ0[o 7→ fOpp]. We now have a (χ1-s0) play
λ ∈ out(s0, { fPro}). We have that (IST , χ1, sk) |=

∧

i ∈Arдs
¬G(Oppi),

for all sk ∈ λ (k ≥ 0). This implies that for all i ∈ Arдs there
exists at least one state sk′ ∈ λ′, where λ′ is the χ1-sk play and
k ′ ≥ k , such that (IST , χ1, sk′) 6|= Oppi . This suggests that Pro has
been able to counter attack any argument i that was put forward
byOpp in λ. Accordingly, the dispute δ ∈ DTσ that corresponds to
λ does not contain opponent nodes with zero children. (3)
From (1), we know that (3) must hold for all strategies available to
Opp. Therefore, for all plays λ ∈ out(s0, { fPro}), their correspond-
ing disputes δ ∈ DTσ do not contain opponent nodes with zero
children (*).
We have assignment χ0. Select an arbitrary dispute δ ∈ DTσ . The
play λ ∈ out(s0, { fPro}) that corresponds to δ must be obtained
from some complete assignment χ1 = χ1[o 7→ fOpp], where fOpp ∈

StrOpp is some strategy ofOpp (4).
For some argument b ∈ Pro(δ), there must exist a state sk ∈ λ

(k ≥ 0) such that (IST , χ1, sk) |= Prob . This gives us (IST , χ1, s0) |=
F (Prob). Given (4), we have that (IST , χ0, s0) |= ∃o F (Proi) (5).
From (2) and (5), we have that (IST , χ0, s0) |= ∀oG(¬Oppb) (6).
For some strategy f ′

Opp
∈ StrOpp available to Opp, we obtain a

new complete assignment χ1 = χ0[o 7→ f ′
Opp

]. We know that for

all states sk (k ≥ 0) in the χ1-s0 play λ′ ∈ out(s0, { fPro}), it must
hold that (IST , χ1, sk) |= ¬Oppb . Accordingly, the dispute δ

′ that
corresponds to λ′ must not have b labelled by the opponent. From
(6), we know that for every strategy f ′

Opp
∈ StrOpp available to

Opp, the χ1-s0 play λ′ ∈ out(s0, { fPro}) corresponds to a dispute
δ ′ ∈ DTσ where b has not been labelled by the opponent. This
means that there is no disputeδ ′ ∈ DTσ , where the opponent labels
b (7).
As b was arbitrary, (7) must hold for every argument b ∈ Pro(δ)

(8).
As δ was also selected arbitrarily, (8) must hold for every dispute
δ ∈ DTσ (**).
We have that:
• Every opponent node inTσ has children. The number of children
must be exactly one asTσ is associated with out(s0, { fPro}), the
set of paths obtained from Pro always selecting one action at
each state. This was shown in (*).

• No argument is labelled by both the proponent and the oppo-
nent. This was shown in (**).

Hence, σ must be an admissible winning strategy in T .

�

Intuitively, the formula in Theorem 4.2 states that Pro has a strat-
egy f in IST such that

(1) ϕ1 is satisfied. The subformulaϕ1 states that for any strategy
f ′ applied by Opp, the resulting play λ does not contain a
steady state sk (k ≥ 0) that is associated with an argument
played byOpp. Thus, for any i ∈ Arдs , λ must not contain a
steady state sk where a propositional atom Oppi holds.

(2) ϕ2 is satisfied. The subformula ϕ2 states that for any two
plays λ, λ′ ∈ out(s0, { f }), no argument i ∈ Arдs must be
put forward by both agents. As a result, if Proi holds at some
state sk ∈ λ (k ≥ 0), then there must be no state sk′ ∈ λ′

(k ′ ≥ 0) where Oppi holds.

4.3 Ideal Winning Strategy

For verifying the existence of an ideal winning strategy σ using
IST , SL is used to formalise the dispute tree properties in Def. 2.9.

Theorem 4.3. The proponent has an ideal winning strategy σ in

T iff IST |= ∃p ∀e
(
ϕ1

∧
ϕ2

∧
ϕ3

)
, where ϕ1 and ϕ2 are the same as

in the statement of Theorem 4.2, and

ϕ3 = ∀oG
((∨

i ∈Arдs

Oppi

)
⇒ ¬∃o

(
ϕ3.1

∧
ϕ3.2

))

where

ϕ3.1 = ∀pG
(∧

j∈Arдs

¬G(Proj)
)

ϕ3.2 =
(∧

j∈Arдs

∃p F (Proj) ⇒ ∀pG(¬Oppj)
)

Proof. Pro(δ) refers to the set of arguments played by the pro-
ponent in a dispute δ , while Opp(δ) refers to the set of arguments
played by the opponent in δ .Opp(Tσ) refers to the set of arguments
played by the opponent in the tree Tσ .

Let StrPro , StrOpp be the set of strategies available to Pro and
Opp.
=⇒Agent Promust have a strategy fPro ∈ StrPro such that every
path λ = s0, s1, .. in the set out(s0, { fPro}) corresponds to a dispute
δ ∈ DTσ , where s0 is the initial state of IST . (1)
The environment Env only has one action available, which does
not affect the evolution of the debate. This means that Env only has
one strategy, fEnv , where it always selects the action nothinд. As
fEnv does not impact the evolution of the debate, the set of paths
obtained from Pro and Env applying their strategies fPro and fEnv
from s0, must still be out(s0, { fPro}). (2)
Using Var , we define a new assignment χ0 where χ0(p) = fPro
and χ0(e) = fEnv .
As σ must be admissible, we have that:

(IST , χ0, s0) |= ϕ1 (3)

(IST , χ0, s0) |= ϕ2 (4)

Please see the proof of Theorem 4.2 for (3) and (4).
We have assignment χ0. Select an arbitrary strategy fOpp ∈ StrOpp .
We associate fOpp to variable o such that we obtain assignment χ1
= χ0[o 7→ fOpp]. As every agent has now been assigned a strategy,
we have an χ1-s0 play λ ∈ out(s0, { fPro}). Select an arbitrary state
sk ∈ λ (k ≥ 0).

7

Assume that (IST , χ1, sk) |=
∨

i ∈Arдs
Oppi .

Now, assume that (IST , χ1, sk) |= Oppi , where i is an argument in
Arдs (5).

Also, assume that (IST , χ1, sk) |= ∃o
(
ϕ3.1

∧
ϕ3.2

)
(6).

From (6), we know that Opp has some strategy f ′
Opp

∈ StrOpp .

We now obtain a new assignment χ2 = χ1[o 7→ f ′
Opp

]. It holds that

(IST , χ2, sk) |= ϕ3.1
∧
ϕ3.2 (7).

Let out(sk , { f
′
Opp

}) be the set of paths from sk , obtained fromOpp

applying its strategy f ′
Opp

. The set out(sk , { f
′
Opp

}) corresponds to

a subtreeTσ ′ ofT where i is the root node labelled by the opponent
and σ ′ is a strategy of the opponent from i . We select some strategy
fPro ∈ StrPro for Pro and assign it to the variable p, such that χ3
= χ2[p 7→ fPro]. From (7), we now have that (IST , χ3, sk) |= ϕ3.1
(8).
Let λ′ ∈ out(sk , { f

′
Opp

}) be the χ3-sk play. According to (8), for

all sk′ ∈ λ′ (k ′ ≥ k), it holds that (IST , χ3, sk′) |=
∧

j∈Arдs
¬G(Proj).

This implies thatOpp is able to counter attack any argument played
by Pro in λ′. Hence, the dispute δ ′ ∈ DTσ ′ that is associated with
λ′ does not contain proponent nodes with zero children (9).
According to (8), (9) must hold for any strategy fPro ∈ StrPro
available to Pro. Therefore, all plays λ′ ∈ out(sk , { f

′
Opp

}) corre-

spond to a dispute δ ′ ∈ DTσ ′ , where there is no proponent node
with zero children. The number of children for each proponent
node must be exactly one asTσ ′ is associated with out(sk , { fOpp }),
the set of paths obtained from Opp always selecting one action at
each state. (*)
We have assignment χ2. Select an arbitrary dispute δ ′ ∈ DTσ ′ .
The play λ′ ∈ out(s0, { f

′
Opp

}) that corresponds to δ ′ must be ob-

tained from some assignment χ3 = χ2[p 7→ fPro]), where fPro ∈

StrPro is some strategy of Pro (10).
The assignment χ3 is complete, as every agent has been assigned
a strategy.
For some argument b ∈ Pro(δ ′), there must exist a state sk′ ∈ λ′

(k ′ ≥ k) where (IST , χ3, sk′) |= Prob . This gives us (IST , χ3, sk) |=
F (Proi).
From (10), we have (IST , χ2, sk) |= ∃p F (Prob) (11).
From (11) and (7), we obtain (IST , χ2, sk) |= ∀pG(¬Oppb) (12).
For some strategy f ′

Pro
∈ StrPro available to Pro, we obtain a

new complete assignment χ3 = χ2[p 7→ f ′
Pro

]. We know that for
all states sk′ (k

′ ≥ k) in the χ3-sk play λ′′ ∈ out(sk , { f
′
Opp

}), it

must hold that (IST , χ3, sk′) |= ¬Oppb . Accordingly, the dispute
δ ′′ ∈ DTσ ′ that corresponds to λ′′ must not have b labelled by
the opponent. From (12), we know that for every strategy f ′

Pro
∈

StrPro , the χ7-sk play λ′′ ∈ out(sk , { f
′
Opp

}) corresponds to a dis-

pute δ ′′ ∈ DTσ ′ where b has not been labelled by the opponent.
This means that there is no dispute δ ′′ ∈ DTσ ′ , where the oppo-
nent labels b (13).
(13) must hold for every argument b ∈ Pro(δ ′) (14).
As δ was also selected arbitrarily, (13) must hold for every dispute
δ ∈ DTσ ′ (**). From (*) and (**), it follows that σ ′ is an admissible
winning strategy for an opponent node i (15).
(15) contradicts the initial assumption that σ is ideal as i has an
admissible winning strategyσ ′. Therefore, the assumptionmade in

(6) does not hold andwe have that (IST ,χ1, sk) |= ¬∃o
(
ϕ3.1

∧
ϕ3.2

)

(16).
The assumption in (5) can be made about any argument i ∈ Arдs

and would still lead to (16).

We have that (IST , χ1, sk) |=
(∨

i ∈Arдs
Oppi

)
⇒ ¬∃o

(
ϕ3.1

∧
ϕ3.2

)

(17).
(17) must hold for all sk ∈ λ, where k ≥ 0, as sk was selected arbi-

trarily. As a result, we have that (IST , χ1, s0) |= G
((∨

i ∈Arдs
Oppi

)
⇒

¬∃o
(
ϕ3.1

∧
ϕ3.2

))
(18).

This implies that there is no admissible winning strategy for any
of the nodes labelled by the opponent in δ ∈ DTσ , the dispute that
is associated with λ (19). This means that for all other strategies
fOpp ∈ StrOpp , (19) must hold.

We have (IST , χ0, s0) |= noo(Opp,o)G
((∨

i ∈Arдs
Oppi

)
⇒ ¬ϕ2

)

(20).
We have (3), (4), and (20). From (1) and (2), it follows that:

IST |= ∃p ∀e
(
ϕ1

∧
ϕ2

∧
ϕ3

)
.

⇐= Pro has some strategy fPro ∈ StrPro and Env has its only
strategy fEnv , which does not affect the evolution of the system.
We obtain a set of paths out(s0, { fPro}) from the initial state s0,
when bothPro and Env apply their strategies. The set out(s0, { fPro})
corresponds to a set of disputes DTσ ⊆ DT .
We have an assignment χ0 where χ0(p) = fPro and χ0(e) = fEnv .
We have that

(IST , χ0, s0) |= ϕ1 ∧ ϕ2 (1)

(IST , χ0, s0) |= ∀oG
((∨

i ∈Arдs

Oppi

)
⇒ ¬∃o

(
ϕ3.1

∧
ϕ3.2

))
(2)

Let Tσ be the dispute tree, with root a, constructed from the set
of disputes DTσ . The proof of Theorem 4.2 shows that if (1) holds,
then σ must be admissible (*).
ConsiderOpp(Tσ). There are two cases:Opp(Tσ) , ∅ (Case 1) and
Opp(Tσ) = ∅ (Case 2).
(Case 1) Select an arbitrary disputeδ ∈ DTσ . The play λ ∈ out(s0, { fPro})

that corresponds toδ must be obtained from some complete assign-
ment χ1 = χ0[o 7→ fOpp], where fOpp is some strategy available
to Opp.
We select some argument b ∈ Opp(δ) arbitrarily. There must be a
state sk ∈ λ (k ≥ 0) such that (IST , χ1, sk) |= Oppb (3).
From (3), it holds that (IST , χ1, sk) |=

∨
i ∈Arдs Oppi (4).

From (4) and (2), we have that (IST , χ1, sk) |= ¬ϕ2.
Consider a strategy f ′

Opp
∈ StrOpp . The set out(sk , { f

′
Opp

}) cor-

responds to a set of disputesDTσ ′ , which can be used to construct a
dispute treeTσ ′ where b is the root and is labelled by the opponent.
We now show that the opponent’s strategy σ ′ is not an admissible
winning strategy for b .
Let χ2 = χ1[o 7→ f ′

Opp
]. We have (IST , χ2, sk) 6|= ϕ3.1

∧
ϕ3.2 .

This implies that one of two, or both, could hold:

(IST , χ2, sk) 6|= ϕ3.1 (5)

(IST , χ2, sk) 6|= ϕ3.2 (6)

8

Consider the first case, which is the statement in (5). There must
exist some strategy f ′

Pro
∈ StrPro such that

(IST , χ3, sk) 6|= G
(∧

j∈Arдs ¬G(Proj)
)
, where χ3 = χ2[p 7→ f ′

Pro
].

Theremust exist some state sk′ ∈ λ′ (k ′ ≥ k), where λ′ ∈ out(sk , { f
′
Opp

})

is the χ3-sk play, such that (IST , χ3, sk′) 6|=
∧
j∈Arдs ¬G(Proj). This

implies that for some argument j ∈ Arдs , we have that for all
sk′′ ∈ λ′ (k ′′ ≥ k ′), (IST , χ3, sk′′) |= Proj . This shows that there
are no attacks available against j.
Accordingly, there exists a dispute δ ′ ∈ DTσ ′ , that corresponds to
λ′, where j is the terminating argument labelled by the proponent.
As j has no children, σ ′ cannot be an admissible winning strategy
of the opponent, for b (**).
Consider (6). There must be some argument j ∈ Arдs such that
(IST , χ2, sk) 6|= ∃p F (Proj) ⇒ ∀pG(¬Oppj). This means that we
have the following:

(IST , χ2, sk) |= ∃p F (Proj) (7)

(IST , χ2, sk) 6|= ∀pG(¬Oppj) (8)

(7) implies that there exists a strategy f ′
Pro

∈ StrPro such that
(IST , χ3, sk) |= F (Proj), where χ3 = χ2[p 7→ f ′

Pro
]. In the χ3-sk

play λ′ ∈ out(sk , { f
′
Opp

}), there must exist a state sk′ (k
′ ≥ k)

such that (IST , χ3, sk′) |= Proj . Accordingly, the dispute δ ′ ∈ DTσ ′

that corresponds to λ′ contains an argument j that is labelled by
the proponent (9).
(8) implies that there exists a strategy f ′′

Pro
∈ StrPro such that

(IST , χ3, sk) 6|= G(¬Oppj), where χ3 = χ2[p 7→ f ′′
Pro

].
Therefore, there must exist a state sk′′ ∈ λ′′ (k ′′ ≥ k), where λ′′ ∈
out(sk , { f

′
Opp

}) is a χ3-sk play, such that (IST , χ3, sk′′) |= Oppj .

Accordingly, the dispute δ ′′ ∈ DTσ ′ that corresponds to λ′′ con-
tains an argument j that is labelled by the opponent (10).
From (9) and (10), it follows that σ ′ cannot be admissible as the
same argument is labelled by both the proponent and the opponent
(***).
As the strategy f ′

Opp
was selected arbitrarily, it must be the case

that (**) and (***) hold for any f ′
Opp

∈ StrOpp (12).

Similarly, b ∈ Opp(δ) was selected arbitrarily. This means that
(12) must hold for any argument i ∈ Opp(δ) (13).
Finally, (13) must hold for any dispute δ ∈ DTσ and this implies
that for any argument i ∈ Opp(Tσ), the opponent does not have
an admissible winning strategy for i (14).
Consider the second case, where Opp(Tσ) = ∅. In this case, we
find that the root argument a of T (and also Tσ) is unattacked.
There are no opponent nodes that could have an admissible win-
ning strategy (15).
We have (*), and from (14) and (15) it follows that σ must be an
ideal winning strategy for a in T .

�

Intuitively, the formula above states that Pro has a strategy f in
IST such that

(1) ϕ1 and ϕ2 are satisfied. These two formulas are presented in
Theorem 4.2. In particular, f is guaranteed to be an admis-
sible winning strategy.

(2) ϕ3 is satisfied. The subformula ϕ3 is used to verify that Opp
does not have a strategy f ′ from any state sk ∈ λ (k ≥ 0)

that satisfiesOppi , where λ ∈ out(s0, { f }) and i ∈ Arдs , that
corresponds to an admissible winning strategy for i .

Discussion. In Theorem 4.1, we are able to express the exis-
tence of a groundedwinning strategy inATL. The problemofmodel
checking an ATL formula is P-complete [1], while the problem of
deciding membership of an argument to a grounded extension is in
P [14]. This suggests that it is possible to express the acceptability
conditions in Def. 2.7 using ATL. On the other hand, we require
the strictly more expressive SL for admissible and ideal winning
strategies as deciding membership under both of these semantics
is a significantly harder problem [13, 14]. In this contribution, we
do not explore whether the latter notions can also be formalised
in ATL as such a problem would require a substantial amount of
work, possibly an impossibility result, which is beyond the scope
of the present paper. We only observe that, since formulas ϕ2 an
ϕ3.2 refer to counterfactual situations, it is unlikely that these can
be expressed in ATL, where counterfactuals are not readily express-
ible.

5 EXPERIMENTAL RESULTS

In this sectionwe compare the performance ofMCMASandMCMAS-
SLK [5], a model checker that supports a fragment of SL, to the
performance of argumentation solvers in determining the accept-
ability of a given argument.

The International Competition on Computational Models of Ar-
gumentation (ICCMA) 2017 [24] focused on several tasks involv-
ing abstract argumentation frameworks, one of which included
determining whether some argument is acceptable under a given
semantics. For each of the semantics, the solvers submitted were
ranked according to their performance in all tasks. The top rank-
ing solvers for the grounded, preferred, and ideal semantics were
the open source solvers CoQuiAAS [19], ArgSemSAT [6, 8], and
Pyglaf [2] respectively.

In our experiments we used AFBenchGen2 [7], an open source
generator of random abstract argumentation frameworks. Attacks
are selected randomly between any two arguments a and b [15]
by providing the generator a probability p (0 ≤ p ≤ 1), which
determines the likelihood of an attack from a to b and vice versa.
For each generated framework AF , we selected an argument a ∈

Arдs randomly and determined its acceptability.
All tests were ran on a machine running Linux kernel version

4.15.0-50, with 16GB RAM and an Intel Core i7-6700 3.40GHz Pro-
cessor CPU. A timeout of 1800s was set for each test.

5.1 Grounded Semantics

This section compares the performance of MCMAS to that of Co-
QuiAAS in determiningmembership of some argument in the grounded
extension. The results are presented in Table 2.

Using AFBenchGen2, we generated 10 argumentation frameworks
per probability interval. Each framework was automatically trans-
lated to an interpreted system, onwhich wemodel checked an ATL
formula ϕ based on the argumentation framework and the formal-
isation in Theorem 4.1.

While the results provided by MCMAS were consistent with
those of CoQuiAAS, Table 2 shows that CoQuiAAS was consider-
ably faster in determining membership in the grounded extension.

9

Argumentation Framework MCMAS CoQuiAAS

Args (n) Prob. attack (p) Avg exec. time (s) Avg reachability (s) Model checking (s) Avg exec. time (s)

20
0.0 ≤ p < 0.5 0.1742 0.1190 0.0131 0.0046
0.5 ≤ p < 1.0 1.4473 1.1280 0.3013 0.0048

40
0.0 ≤ p < 0.5 3.6242 2.2740 0.2493 0.0049
0.5 ≤ p < 1.0 11.581 7.7710 3.7900 0.0050

60
0.0 ≤ p < 0.5 617.72 586.54 30.291 0.0050
0.5 ≤ p < 1.0 1532.4 1471.3 59.229 0.0055

80
0.0 ≤ p < 0.5 1683.1 1583.6 98.175 0.0057
0.5 ≤ p < 1.0 Timed out Timed out Timed out 0.0062

Table 2: The performance of MCMAS compared to the performance of CoQuiAAS

Argumentation Framework MCMAS-SLK ArgSemSAT

Args (n) Prob. attack (p) Avg exec. time (s) Avg reachability (s) Model checking (s) Avg exec. time (s)

6
0.0 ≤ p < 0.5 0.1700 0.0010 0.1866 0.0055
0.5 ≤ p < 1.0 122.65 0.0010 121.39 0.0067

8
0.0 ≤ p < 0.5 0.3470 0.0359 0.2493 0.0062
0.5 ≤ p < 1.0 274.88 0.1860 270.42 0.0065

10
0.0 ≤ p < 0.5 Memory error 0.1803 Memory error 0.0071
0.5 ≤ p < 1.0 Memory error 0.5306 Memory error 0.0076

Table 3: The performance of MCMAS-SLK compared to the performance of ArgSemSAT

This is unsurprising as MCMAS, unlike CoQuiAAS, is a general
purpose model checker. In addition, the table shows that on aver-
age, most of the execution time for MCMAS was spent generating
the setG of reachable states, rather than performing model check-
ing. Computing the set of reachable states is one of the factors that
can greatly impact the performance of MCMAS [20]. We observed
that an increase in the number of arguments as well as the size of
the attack relation is positively correlated with the amount of time
spent by MCMAS in generating G. This was expected, as a larger
attack relation implies that at any state, agents are likely to have a
greater number of actions enabled, resulting in an increase in the
size of G. Finally, the tests that timed out from 80 arguments on-
ward were unable to reach the model checking step as their reach-
able state space was not fully generated.

5.2 Preferred Semantics

In this sectionwe compare the performance ofMCMAS-SLK against
that of ArgSemSAT in determining acceptability of some argument
under the preferred semantics. The results are shown in Table 3.

There were 10 argumentation frameworks generated per proba-
bility interval and translated to interpreted systems, as in Sec. 5.1.
An SL formula ϕ, based on the corresponding framework and the
formalisation in Theorem 4.2, was used to verify the existence of
an admissible winning strategy. The results provided by MCMAS-
SLK were consistent with those returned by ArgSemSAT. As ex-
pected, ArgSemSAT was considerably faster than MCMAS-SLK.
Compared to Sec. 5.1, the argumentation frameworks used were
significantly smaller due to the higher model checking complexity
of SL[5]. With smaller frameworks, MCMAS-SLK did not require
as much time to generate the set of reachable states. Consequently,

most of the execution time was spent model checking. For frame-
works with less than 10 arguments, we found that an increase in
the value of p had an significant impact on the average execution
time.

Finally, we found that for most frameworks that consisted of 10
or more arguments, MCMAS-SLK ran out of memory when verify-
ing the property ϕ, rather than timing out. This may be due to the
high model checking complexity of SL as well as an increase in the
size of formula ϕ, which is positively correlated with the number
of arguments in the framework.

5.3 Ideal Semantics

In this sectionwe compare the performance ofMCMAS-SLK against
that of Pyglaf in determining acceptability of some argument un-
der the ideal semantics. The SL formula ϕ used for verifying a de-
bate was based on the framework generated as well as the formal-
isation in Theorem 4.3.

The results are presented in Table 4. Compared to Sec. 5.2, we
observed more timeouts. This may be due to the size of ϕ, which
would be much larger than the SL formula used to verify member-
ship in a preferred extension, as in Sec. 5.2. The formula ϕ would
have also required more strategy assignments compared to the for-
mula used in the previous section [5].

6 CONCLUSIONS

In this paper, we developed a methodology to verify debates for-
malised via abstract argumentation frameworks. By building on
previous works on debates in abstract argumentation [12, 22], in

10

Argumentation Framework MCMAS-SLK pyglaf

Args (n) Prob. attack (p) Avg exec. time (s) Avg reachability (s) Model checking (s) Avg exec. time (s)

6
0.0 ≤ p < 0.5 0.2111 0.0010 0.2101 0.0570
0.5 ≤ p < 1.0 131.66 0.0013 130.31 0.0600

8
0.0 ≤ p < 0.5 0.3700 0.0210 0.2493 0.0590
0.5 ≤ p < 1.0 Memory error 0.1777 Memory error 0.0633

10
0.0 ≤ p < 0.5 Memory error 0.3151 Memory error 0.0582
0.5 ≤ p < 1.0 Memory error 0.6240 Memory error 0.0681
Table 4: The performance of MCMAS-SLK compared to the performance of Pyglaf

Sec. 3 we introduced a translation from debates to interpreted sys-
tems [16]. Then, in Sec. 4 we formalised various winning condi-
tions as formulas in ATL and SL[23]. Finally, in Sec. 5 we evaluated
the performance of our approach against state-of-the-art argumen-
tation reasoners. While the experimental results point to a consid-
erable gap in performance between the proposed model checking
approach and traditional argumentation reasoners, this is not sur-
prising as model checker are general purpose tools. Nonetheless,
we deem the present contribution theoretically relevant under at
least two aspects. Firstly, we provided an automated translation
from debates to interpreted systems amenable to formal verifica-
tion. Secondly, we captured various winning conditions in debates
as formulas in well-known logic-based languages. We believe that
these two contributions can pave the way for a wider application
of verification techniques in Argumentation Theory, particularly
in cases where argumentation frameworks are more naturally rep-
resented as debates.

We plan to develop the results in this paper further. Particularly,
we are interested in formalising winning conditions for other ar-
gumentation semantics, as well as improving the performance of
the verification procedures and tools.

Acknowledgements. F. Belardinelli acknowledges the support
of ANR JCJC Project SVeDaS (ANR-16-CE40-0021).

REFERENCES
[1] R. Alur, T. A. Henzinger, and O. Kupferman. 2002. Alternating-time Temporal

Logic. J. ACM 49, 5 (2002), 672–713.
[2] M. Alviano. 2018. The Pyglaf Argumentation Reasoner. In Technical Commu-

nications of the 33rd International Conference on Logic Programming (ICLP 2017),
Vol. 58. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany,
2:1–2:3.

[3] C. Baier and J.-P. Katoen. 2008. Principles of model checking. MIT press.
[4] F. Belardinelli, D. Grossi, and N. Maudet. 2015. Formal Analysis of Dialogues

on Infinite Argumentation Frameworks. In Proceedings of the 24th International
Conference on Artificial Intelligence (IJCAI’15). AAAI Press, 861–867.

[5] P. Čermák, A. Lomuscio, F. Mogavero, and A. Murano. 2014. MCMAS-SLK: A
Model Checker for the Verification of Strategy Logic Specifications. In Computer
Aided Verification. Springer International Publishing, Cham, 525–532.

[6] F. Cerutti, M. Giacomin, and M. Vallati. 2014. ArgSemSAT: Solving Argumenta-
tion Problems Using SAT. COMMA 14 (2014), 455–456.

[7] F. Cerutti, M. Giacomin, and M. Vallati. 2016. Generating structured argumen-
tation frameworks: Afbenchgen2. Frontiers in Artificial Intelligence and Applica-
tions, Vol. 287. IOS Press, 467–468.

[8] F. Cerutti, M. Giacomin, M. Vallati, and T. Zanetti. 2017. ArgSemSAT-2017.
http://argumentationcompetition.org/2017/ArgSemSAT.pdf .

[9] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R.
Sebastiani, and A. Tacchella. 2002. NuSMV2: An Open-Source Tool for Symbolic
Model Checking. In Proceedings of the 14th International Conference on Computer
Aided Verification (CAV02) (LNCS), Vol. 2404. Springer-Verlag, 359–364.

[10] E. M. Clarke, O. Grumberg, and D. A. Peled. 1999. Model Checking. The MIT
Press, Cambridge, Massachusetts.

[11] P. M. Dung. 1995. On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games. Artificial
intelligence 77, 2 (1995), 321–357.

[12] P. M. Dung, P. Mancarella, and F. Toni. 2007. Computing ideal sceptical argu-
mentation. Artificial Intelligence 171, 10 (2007), 642–674.

[13] P. Dunne. 2009. The computational complexity of ideal semantics. Artif. Intell.
173 (12 2009), 1559–1591.

[14] P. Dunne and M. Wooldridge. 2009. Complexity of Abstract Argumentation. In
Argumentation in Artificial Intelligence. Springer US, 85–104.

[15] P. Erdös and A. Rényi. 1959. On random graphs I. Publ. Math. Debrecen 6 (1959),
290–297.

[16] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. 1995. Reasoning about Knowl-
edge. MIT Press, Cambridge.

[17] D. Grossi. 2010. On the Logic of Argumentation Theory. In Proceedings of the 9th
International Conference on Autonomous Agents and Multiagent Systems: Volume
1 - Volume 1 (AAMAS ’10). International Foundation for Autonomous Agents
and Multiagent Systems, Richland, SC, 409–416.

[18] VAS Group. 2015. MCMAS v1.2.2: User Manual.
https://vas.doc.ic.ac.uk/software/mcmas/manual.pdf. [Online. Accessed
19-11-2018].

[19] J. Lagniez, E. Lonca, and J. Mailly. 2017. CoQuiAAS v2.0: Taking
Benefit from Constraint Programming to Solve Argumentation Problems.
http://argumentationcompetition.org/2017/CoQuiAAS.pdf . [Online. Accessed
19-11-2018].

[20] A. Lomuscio, H. Qu, and F. Raimondi. 2017. MCMAS: an open-source model
checker for the verification of multi-agent systems. International Journal on
Software Tools for Technology Transfer 19, 1 (2017), 9–30.

[21] A. Lomuscio and F. Raimondi. 2006. Model Checking Knowledge, Strategies,
and Games in Multi-agent Systems. In Proceedings of the Fifth International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS ’06). ACM,
New York, NY, USA, 161–168.

[22] S. Modgil and M. Caminada. 2009. Proof Theories and Algorithms for Abstract
Argumentation Frameworks. Springer US, Boston, MA, 105–129.

[23] F. Mogavero, A. Murano, G. Perelli, and M. Y. Vardi. 2014. Reasoning About
Strategies: On the Model-Checking Problem. ACM Trans. Comput. Logic 15, 4
(Nov. 2014), 34:1–34:47.

[24] M. Thimm. 2018. International Competition on Computational Models of Argu-
mentation (ICCMA). http://argumentationcompetition.org/2017/index.html.

11

http://argumentationcompetition.org/2017/ArgSemSAT.pdf
https://vas.doc.ic.ac.uk/software/mcmas/manual.pdf
http://argumentationcompetition.org/2017/CoQuiAAS.pdf
http://argumentationcompetition.org/2017/index.html

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Abstract Argumentation
	2.2 Verification by Model Checking

	3 Constructing Interpretation Systems from Debates
	4 Formalising Winning Conditions on Dispute Trees
	4.1 Grounded Winning Strategy
	4.2 Admissible Winning Strategy
	4.3 Ideal Winning Strategy

	5 Experimental Results
	5.1 Grounded Semantics
	5.2 Preferred Semantics
	5.3 Ideal Semantics

	6 Conclusions
	References

