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ABSTRACT
Synthetic Biology is an interdisciplinary field that utilizes well-

established engineering principles, ranging from electrical, con-

trol and computer systems, for analyzing the biological systems,

such as biological circuits, enzymes, pathways and controllers. Tra-

ditionally, these biological systems, i.e., the genetic circuits are

analyzed using paper-and-pencil proofs and computer-based simu-

lations techniques. However, these methods cannot provide accu-

rate results due to their inherent limitations such as human error-

proneness, round-off errors and the unverified algorithms present

in the core of the tools, providing such analyses. In this paper, we

propose to use higher-order-logic theorem proving as a comple-

mentary technique for analyzing these systems and thus overcome

the above-mentioned issues. In particular, we propose a higher-

order-logic theorem proving based framework to formally reason

about the genetic circuits used in synthetic biology. The main idea

is to, first, model the continuous dynamics of the genetic circuits

using differential equations. The next step is to obtain the systems’

transfer function from their corresponding block diagram repre-

sentations. Finally, the transfer function based analysis of these

differential equation based models is performed using the Laplace

transform. To illustrate the practical utilization of our proposed

framework, we formally analyze the genetic circuits of activated

and repressed expressions of protein.

CCS CONCEPTS
• Bioinformatics and Computational Biology → Computa-

tional methods for microbiology and synthetic biology; • Com-
putational methods for microbiology and synthetic biology
→ Synthetic biology; • Synthetic biology→ Biological circuits;
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1 INTRODUCTION
Nowadays, engineering principles [18] are being widely adapted in

analyzing biological systems [12], signaling pathways [5] (a group

of molecules working together to control various functions of a

cell) and biological circuits [6] (the biological parts of a cell mimick-

ing the logical functionality that is performed in electrical circuits)

etc. For example, control systems laws [20] are used for analyzing

biological systems, i.e., genetic circuits and bio-controllers. The

amalgamation of such interdisciplinary fields into synthetic biol-

ogy [6] allows designing and analyzing these systems in an efficient

manner.

The analysis of these systems, i.e., biological circuits and bio-

controllers, requires modeling their dynamics, representing the

interaction of their different components, using differential equa-

tions. Next, the transfer functions of these systems, providing their

dynamics in the frequency domain are extracted from their block

diagram representations [19], which are commonly used in control

systems. Finally, the Laplace transform is used to perform the fre-

quency domain (transfer function based) analysis of these systems

based on their differential equation models.

Traditionally, these biological systems, i.e., biological circuits,

networks and pathways, are analyzed using the paper-and-pencil

proof [9] and computer based numerical [11] and simulation meth-

ods [12]. However, the paper-and-pencil proof methods are prone

to human error and the chances of errors increase while analyz-

ing the larger systems. Similarly, the computer-based numerical

techniques are based on the unverified numerical algorithms that

are present in the core of the associated tools. Also, the simulation-

based methods suffer from the limited computational resources

and computer memory issues. Thus, considering the safety-critical

nature of biological systems, these conventional methods cannot

be relied upon for their accurate analysis.

Formal methods [15] are computer-based mathematical tech-

niques used for the modeling, specification and verification of the

systems. They have been widely adopted for the rigorous anal-

ysis of the complex real-world systems [4, 21]. They are mainly

of two types, i.e., model checking [15] and theorem proving [15].

Model checking involves the development of a state-space model
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Figure 1: Proposed Framework

of the underlying system and the verification of its intended behav-

ior by the properties specification in an appropriate logic. It has

been extensively used in the area of synthetic biology for formally

analyzing the biological circuits and their associated feedback con-

trollers [7, 17, 26]. However, it suffers from the inherent state-space

explosion problem [8] and thus is not suitable for analyzing larger

systems. On the other hand, higher-order-logic theorem proving

involves constructing a mathematical model of the system based on

higher-order logic and verification of its intended properties using

deductive reasoning. It has been used to formal reason about the bio-

logical systems and molecular pathways. Ahmad el at. [3] proposed

a formalization of Zsyntax using HOL theorem prover. Moreover,

they utilized their proposed framework for formally analyzing the

TP53 degradation pathway and Glycolytic leading from D-Glucose

to Fructose-1,6-bisphosphate. Recently, Rashid et al. [21] developed

a framework, using the HOL Light theorem prover, which provides

the formal support for the reaction kinetic based dynamical analy-

sis of the biological systems. However, their proposed framework

cannot model and analyze the genetic circuits.

In this paper, we propose to use higher-order-logic theorem prov-

ing [15] for formally analyzing the genetic circuits used in synthetic

biology as shown in Figure 1. The first step is to model the contin-

uous dynamics of the genetic circuits using differential equations.

The next step requires the transfer function of these systems that

can be obtained from their corresponding block diagram representa-

tions. Finally, the Laplace transform is used to perform the transfer

function based analysis of the differential equation based models of

these circuits. To illustrate the practical utilization of our proposed

framework, we formally analyze the genetic circuits of activated

and repressed expressions of protein using HOL Light.
The rest of the paper is organized as follows: We provide an

introduction about the HOL Light theorem prover, multivariate cal-

culus and the Laplace transform theories of HOL Light in Section 2.

Section 3 presents the formalization of block diagram represen-

tations of the biological circuits. We provide our formal analysis

of the genetic circuits of activated and repressed expressions of

protein using HOL Light in Section 4. Finally, Section 5 concludes

the paper.

2 PRELIMINARIES
This section presents a brief introduction to the HOL Light proof
assistant and its multivariate calculus and the Laplace transform

theories, which are extensively used in the rest of the paper.

2.1 Theorem Proving and HOL Light Theorem
Prover

Theorem proving is a widely used formal verification method that

involves developing the proofs of the mathematical theorems using

a computer program (called theorem prover) [14]. Theorem proving

systems have been commonly utilized for formally verifying the

properties of both hardware and software systems [4, 24]. Based on

the expressiveness requirement, these properties are modeled as

theorems using propositional, first-order or higher-order logic. For

example, the higher-order logic provides more expressiveness by

allowing additional quantifiers. Moreover, it is best suited for con-

ducting the mathematical analysis based on theories of multivariate

calculus and the Laplace transform.

HOL Light [13] is an interactive theorem prover for developing

the formal proofs of the mathematical concepts expressed in the

form of theorems. It is implemented in Objective CAML (OCaml),

which is a functional programming language, with an aim of au-

tomating the mathematical proofs [10]. It has a very small logical

kernel of approximately 400 lines of OCaml code and has types,

terms, axioms, inference rules and theorems as its main components,

which are a part of its theory. Every new theorem in a theory is

verified using the basic axioms and the primitive inference rules or

already verified theorems, providing the soundness of this method.

2.2 Multivariable Calculus and Laplace
Transform Theories

HOL Light presents an extensive support for analyzing the systems

using theories of multivariable calculus and the Laplace transform.

Table 1 provides some definitions from HOL Light’s theory of the

Laplace transform, which includes the Laplace transform, Laplace

existence and the exponential-order conditions. Interested readers

can refer to [21–23, 25] for more details about this theory. It is

extensively utilized in our formal analysis of the biological circuits.
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Table 1: Laplace Transform

Mathematical Form Formalized Form

Laplace Transform

L[f (t)] = F (s) =∫ ∞
0

f (t)e−stdt , s ϵ C

⊢def ∀s f. laplace_transform f s =
integral {t | &0 <= drop t}

(λt. cexp (−−(s ∗ Cx (drop t))) ∗ f t)

Laplace Existence

f is piecewise smooth and is of

exponential order on the posi-

tive real line

⊢def ∀s f. laplace_exists f s ⇔
(∀b. f piecewise_differentiable_on

interval [lift (&0),lift b]) ∧
(∃M a. Re s > drop a ∧ exp_order_cond f M a)

Exponential-order Condition
There exist a constant a and a

positive constant M such that

| f (t)| ≤ Meat

⊢def ∀f M a. exp_order_cond f M a ⇔ &0 < M ∧
(∀t. &0 <= t ⇒

||f (lift t)|| <= M ∗ exp (drop a ∗ t))

3 FORMALIZATION OF BLOCK DIAGRAM
REPRESENTATIONS OF BIOLOGICAL
CIRCUITS

In this section, we present our formalization of block diagram rep-

resentations of the biological circuits. These definitions enable us

to formally model the block diagrams of a generic biological circuit

in the s-domain and thus to find out the transfer function of any

biological circuit. The presented formalization is basically inspired

from the block diagrams of the control systems [2, 16].

Configuration 1: The transfer function of a sum of two compo-

nents (subsystems) of a biological circuit, which can be any proteins

or genes, in the case of a genetic circuit, is equal to the product of

the transfer function of the individual components. We formalize

this configuration for an arbitrary (N ) number of components of a

circuit as follows:

Definition 3.1. Series Components

⊢def ∀Ci. series_comp [C1; C2; ...; CN] =
N∏

i=1
Ci

The function series_comp accepts the transfer functions of the

individual components of the circuit as a list of complex numbers

and returns the transfer function of the overall circuit as a product

of all individual transfer functions.

Configuration 2: The summation junction for various compo-

nents of a biological circuit is an addition module that provides the

summation of the transfer functions of the individual components.

We formalize this configuration for an arbitrary number (N ) of

components of a circuit, having transfer functions represented by

a list of complex numbers as follows:

Definition 3.2. Components as Summation Junction

⊢def ∀Ci. summ_jun [C1; C2; ...; CN] =
N∑

i=1
Ci

Configuration 3: The pickoff point configuration is the represen-

tation of a component of a biological circuit to a parallel branch of

components. We model this configuration in HOL Light as follows:

Definition 3.3. Components as Pickoff Point

⊢def ∀α Ci. pick_point [C1; C2; ...; CN] =
[α ∗ C1; α ∗ C2; ...; α ∗ CN]

The function pick_point accepts the transfer function of the

first component as a complex number and the transfer functions

of the components in parallel as a list of complex numbers, and

returns the corresponding transfer functions corresponding to the

equivalent block diagram representation as a list of complex num-

bers.

Configuration 4: The feedback block configuration is the funda-

mental representation for modeling the closed loop controllers for

the biological circuits. Due to the presence of the feedback signal, it

is primarily represented by an infinite summation of branches that

consist of serially connected components. We formalize the transfer

function of each branch as the following HOL Light function:

Definition 3.4. Transfer Function of a Branch

⊢def ∀α β N. branch_tf α β N =
N∏

i=0
series_comp [α ; β]

The function branch_tf takes the forward path transfer function
α (a protein or gene), the feedback path (feedback signal) transfer

function β and the number of the branch (N ), and returns a complex

number representing the transfer function of the N th
branch.

Next, we formalize the feedback block representation using our

function branch_tf as follows:

Definition 3.5. Feedback Block Representation of Components

⊢def ∀α β. feedback_block α β =

series [α;
∞∑
k=0

branch α β k]

The function feedback_block accepts the forward path transfer
function α and the feedback path transfer function β and returns the

transfer function by forming the series network of the final forward

path transfer function and the summation of all the possible infinite

branches.

Our formalization of the foundational configurations, presented

above [1], enables us to formally model the block diagram repre-

sentations of the generic biological circuits as will be illustrated in

the next section.
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4 FORMAL ANALYSIS OF THE GENETIC
CIRCUITS

Gene expression is a technique for transmitting information from

the passive deoxyribonucleic acid (DNA) to the active proteins,

which are widely used for performing majority of the tasks required

for a human life at cellular level. The process of this transmission

is performed in two steps. In the first step, a section of DNA is read

out into ribonucleic acid (RNA) and is known as transcription. The

second step, namely translation, involves conversions of a short

strand of transcribed RNA into protein. This process is usually reg-

ulated in synthetic systems by transcription factors (TFs), which

control the initiation rate of the transcription of a gene and its

corresponding expression. TFs are of two types, namely activators

and repressors. Activators increase the transcription rate, whereas

the repressors inhibit transcription. We use our proposed formal-

ization for formally analyzing the genetic circuits of the activated

and repressed expressions of protein.

4.1 Activated Expression of Protein
The genetic circuit of the activated expression of protein is depicted

in Figure 2(a). It involves the interaction of the incoming activating

TF A with its promoter and the regulation of the expression of gene

Y producing the protein Y. The block diagram representation of the

activated expression is shown in Figure 2(c), by a gain block of +γ ∗x
with x = A.

Y

YA

Y

YR
(a)

(b)

± γx
*

(c)

Y(s)U(s) s + α 
1

Figure 2: (a) Genetic Circuit Diagram of Activated Expres-
sion (b) Genetic Circuit Diagram of Repressed Expression (c)
Block Diagram Representation for a Single Gene with Acti-
vated and Repressed Expressions

The dynamical model of the activated expression of protein

is mathematically expressed as the following linear differential

equation:

dy

dt
+ αy = γ ∗Au (1)

The corresponding transfer function is represented as:

Y (s)
U (s) =

γ ∗A
s + α

(2)

In order to model the dynamical behaviour, we first model the

linear differential equation of order n as:

Definition 4.1. Differential Equation of Order n
⊢def ∀n f t. differ_equat_order_n lst f t =

vsum (0..n) (λk. EL k [α1;α2;...;αk] ∗
higher_order_derivative k f t)

The function differ_equat_order_n accepts the order of the
linear differential equation n, list of coefficients lst, a differentiable
function f and the differentiation variable t and returns the linear

differential equation of order n.
Now, we model the dynamical behaviour of the activated expres-

sion as the following HOL Light function:

Definition 4.2. Dynamical Model of Activated Expression

⊢def ∀α. olst_de_ae α = [Cx α; Cx (&1)]
⊢def ∀γA∗. ilst_de_ae γA

∗ = [Cx γA
∗]

⊢def differ_equat_ae u y t α γA
∗ ⇔

differ_equat_order_n 1 (olst_de_ae α) y t =
differ_equat_order_n 0 (ilst_de_ae γA

∗) u t

To formally verify the transfer function of the activated expres-

sion based on its dynamical model, we first model its block diagram

representation using our formalization in HOL Light as:

Definition 4.3. Block Diagram Representation of Activated Ex-

pression

⊢def ∀α γA
∗. bdr_ae α γA

∗ = series_comp
[
γA

∗
;

Cx(&1)
s + Cx α

]
Next, we verify the transfer function of the activated expression

based on its block diagram representation as the following HOL
Light theorem:

Theorem 4.1. Transfer Function of Activated Expression

⊢thm ∀α γA
∗. [A]: (s + Cx α) , Cx (&0)

⇒ bdr_ae α γA
∗ =

γA
∗

s + Cx α

The proof of the above theorem is based on Definition 3.1 along

with some arithmetic reasoning. Now, we formally verify the trans-

fer function, obtained from Theorem 4.1 based on the dynamical

model as follows:

Theorem 4.2. Dynamical Model Implies Transfer Function

⊢thm ∀α γA
∗ y u s.

[A1] : &0 < γA
∗ ∧ [A2] : &0 < α ∧

[A3] : ∀t. differentiable_higher_deriv u y t ∧
[A4] : laplace_exists_higher_deriv u y ∧
[A5] : zero_init_cond u y ∧
[A6] : (∀t. differ_equat_ae u y t α γA

∗) ∧
[A7] : (laplace_transform u s , Cx (&0)) ∧

[A8] :
(

Cx(&1)
s + Cx α

, Cx(&0)
)

⇒ laplace_transform y s

laplace_transform u s
=

γA
∗

s + Cx α

Assumptions A1-A2 model the positivity conditions on circuit’s

parameters. Assumptions A3-A4 provide the differentiability and
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condition of the existence of the Laplace transform of the higher-

order derivative of y up to order 1 and and the function u, respec-
tively. Similarly, Assumption A5 models the zero initial conditions

for y and u. Assumption A6 presents the dynamical behaviour of

the activated expression. Assumptions A7-A8 ensure that the de-

nominator of the transfer function, presented in the conclusion of

the above theorem, provides a valid expression. Finally, the con-

clusion provides the transfer function of the activated expression.

The proof of the above theorem is done almost automatically using

the automatic tactic TF_TAC, which is developed in our proposed

formalization.

4.2 Repressed Expression of Protein
Figure 2(b) depicts the genetic circuit of the repressed expression

of protein. It involves the interaction of the incoming repressing TF

A with its promoter and the regulation of the expression of gene Y
producing the protein Y. The block diagram representation of the

repressed expression is shown in Figure 2(c), by a gain block of −γ ∗x
with x = R. The dynamical model of the repressed expression of

protein is mathematically expressed as:

dy

dt
+ αy = −γ ∗Ru (3)

The corresponding transfer function is represented as:

Y (s)
U (s) =

−γ ∗R
s + α

(4)

We formally verified the block diagram representation of re-

pressed expression, its transfer function based on its block diagram

and its dynamical model and the details about this verification can

be found at [1].

Due to the undecidable nature of the higher-order logic, the veri-

fication results presented above involved manual interventions and

human guidance. However, we developed the tactic TF_TAC [1] to
automate the verification of the transfer functions of the biological

circuits. The distinguishing feature of our formal analysis is that

all of the verified theorems are of generic nature, i.e., all of the

functions and variables are universally quantified and thus can

be specialized based on the requirement of analyzing the biolog-

ical circuits. Whereas, in the case of computer based simulations

and numerical methods, we need to model each case individually.

Moreover, the inherent soundness of the theorem proving method

ensures that all the required assumptions are explicitly present

along with the theorem. Similarly, due to the high expressiveness of

the higher-order logic, our approach allows us to model the dynam-

ics of the biological circuits involving differential and derivative

(Equations (1), (3)) in their true form, whereas, in their model check-

ing based analysis [26] they are discretized and modeled using a

state-transition system, which may compromise the accuracy and

completeness of the corresponding analysis.

5 SUMMARY
In this paper, we proposed a higher-order-logic theorem proving

based framework for analyzing the dynamical behaviour of the bio-

logical circuits. We formalized the dynamical model and the block

diagram representations of the biological circuits, such as the acti-

vated and repressed expressions of the protein. Finally, we formally

verified their transfer functions based on their dynamical models

and their associated block diagram representations. In future, we

aim to formally verify some more control systems properties of the

biological circuits, such as, sensitivity and stability etc.
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