
Request for Comments: Conversation Patterns in Issue Tracking
Systems of Open-Source Projects

Michael Rath
DLR Institute of Data Science / Technical University

Ilmenau
Jena / Ilmenau, Germany

michael.rath@tu-ilmenau.de

Patrick Mäder
Technical University Ilmenau

Ilmenau, Germany
patrick.maeder@tu-ilmenau.de

ABSTRACT
Issue tracking systems play an important role in developing soft-
ware systems. They provide a central place to store and maintain
different development artifacts. Various studies are concerned with
the contained bug reports, features, the relations among them and
traces to the projects code base. However, an issue tracker can also
be used as a communication channel between project contributors
by attaching comments to issues. Less is known on how users ac-
tually utilize this functionality. In this paper, we study more than
270,000 comments from twelve open-source projects. We analyze
to what extend comments are used and then study the structure
occurring in threads of comments. Based on the order of comments
and participating contributors, we identified three patterns of con-
versation: monolog, feedback, and collaboration. Our results show
that most conversations are collaborations among two or more
developers discussing the issue.

KEYWORDS
Human Factors, Issue Tracking Systems, Comments, Developer
Communication

ACM Reference Format:
Michael Rath and Patrick Mäder. 2020. Request for Comments: Conversation
Patterns in Issue Tracking Systems of Open-Source Projects. In The 35th
ACM/SIGAPP Symposium on Applied Computing (SAC ’20), March 30-April 3,
2020, Brno, Czech Republic. ACM, New York, NY, USA, 4 pages.

1 INTRODUCTION
Issue tracking systems (ITS) are widely used in the development
process of commercial and open-source systems (OSS) [19]. ITS
enable the development team to record and track the status of
issues in the project [12], with issue being one of the basic artifacts
managed by the system. The trackers replace a variety of dedicated
tools used for elicitation and analysis of development artifacts,
and provide a shared environment where team members can ask
for advice and share opinions useful for maintenance activities or
design decisions [9].

Communication among developers is vital, because of the impor-
tant role ITS play in the development and the large amount of data
stored there. A relevant part of an issue, e. g. a feature request, is
its textual description written by the creator (issue reporter). This
information alone might not be sufficient to implement and resolve

This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in SAC ’20,
http://dx.doi.org/10.1145/3341105.3374056.
© 2020 Copyright held by the owner/author(s).

the particular requirement in code. Social interaction is necessary
to clarify technical aspects and resolve organizational dependencies.
The documentation [4] of a prominent ITS states that “comments
are a useful way to record additional details about an issue and to
collaborate with team members”. To address these needs, ITS allow
to attach comments on issues and therefore serve as a communi-
cation channel [1] in addition to other systems, such as mailing
lists [17] and chat systems [18]. However, the issue tracker is more
suited for this purpose and allows to provide information in the
context of artifacts, i. e. the respective issue. Together, the issue and
its comments (comment thread) provide a consolidated view of the
entire issue history.

While issue artifacts are extensively studied in the field of bug
localization [21, 22], feature localization [11], feature request de-
tection [8] and requirements traceability [15, 16], less is known on
how comments are used in this regard. Murgia et al. [9] identified
comments as potential data source for emotion mining. In [10], the
authors state that stakeholders use comments to discuss issues and
to amend technical details. Ko et al. investigated the influence of
comments on issue resolution [6] and making design decisions [7].
Both studies only involve a small number of bug reports. Knauss
et al. [5] analyzed about 1,200 comments of one project to identify
patterns in requirements discussions. They identified a set of six
requirement clarification patterns. Our work is on a much larger
scale and does not focus on a particular artifact type.

In this explorative study, we investigate how comments are uti-
lized in twelve OSS. We hereby intentionally solely focus on textual
data available in the respective ITS, and don’t consider communi-
cation outside of them, which already were targeted in multiple
studies [2, 17]. Therefore, we study the structure of contained com-
ment threads. Specifically, we try to answer the following research
questions:
RQ-1 Who participates in ITS comment threads?
RQ-2 Which conversation patterns exist in comment threads?
We found three conversation patterns, whereas collaboration among
multiple users is the dominant one.

2 METHODOLOGY
After motivating our study with an example, we define concepts
used throughout this paper, and introduce our dataset.

Example thread of comments. Figure 1 shows an example of an
issue1 with comments retrieved from the issue tracker of the data-
base project Derby. The box on top represents the issue typed as
improvement. The issue’s main properties are a short summary and
1DERBY-6752: https://issues.apache.org/jira/browse/DERBY-6752

https://issues.apache.org/jira/browse/DERBY-6752

, , M. Rath et al.

Issue
Improvement DERBY-6752
Reporter: Alice Assignee: Bob
Created: 30/Sep/14 19:40 Resolved: 31/Jul/16 19:26
Summary:AutoloadedDriver tries to load a non-existent class, Autoloaded-
Driver40
Description: This happens in a static initialization block at the start of
AutoloadedDriver. Is this dead code?

Comments
#1 Comment by Carol 01/Oct/14 21:02
It might be dead code, Alice. Work for DERBY-1984 as part of revision
1494482 seems to have removed AutoloadedDriver40.

#2 Comment by Bob 31/Jul/16 00:08
I attached the patch for this issue. All tests are clean.

#3 Comment by jira-bot 31/Jul/16 19:25
Commit 1754680 from Dave in branch ‘code/trunk’ [https://svn.apache.
org/r1754680]
DERBY-6752: Derby tries to load non-existent class AutoloadedDriver40
This patch was contributed by Bob [. . . rest of commit message]

#4 Comment by Dave 31/Jul/16 19:26
Looks great on my system, too. Thanks for cleaning this up! Marked fixed.

Figure 1: Example of improvement DERBY-6752 with thread
of comments showing collaboration among the developers.

a longer textual description. Additionally, meta data exists about
participating users2: Alice, the reporter of the issue and Bob, the
assignee, i. e. the developer responsible for resolving the issue. Each
of the four responding comments has three properties: the author
(commenter), a timestamp of creation, and the comment text. The
sequential list of comments ordered by date resembles a thread,
which we also denote as conversation. In the example, two addi-
tional users Carol and Dave are commenting, next to the issue’s
assignee Bob. There is also an automatically generated comment
by the non-human contributor jira-bot.

Studied Contributors. The issue reporters, issue assignees and all
commenters are contributors and usually human. In this case, we de-
note them as users. However, non-human contributors – bots – also
comment (see Section 3), but do not report issues or are assigned
to handle them. A (project) developer is a user with project specific
knowledge capable to resolve the respective issue. Therefore we
assume all assignees are developers.

Studied Sets of Issues. To systematically study comments, we
divide the set of all project’s issues denoted by Iall into several
subsets (see Fig. 2). The subset Icom contains all issues that are
commented and thus provides insights if and to what extend the
comments are used in the respective project. We further divide
this set in three distinct subsets: issues that are only commented
by one user (Isel f , monolog), ones where a user provides feed-
back (If eed), and those where multiple users are collaborating
(Icoll). Icoll is further divided based on participating users: the issue
reporter Icoll ,R , the issue assignee Icoll ,A, or also additional other
users Icoll ,O . At last, comments are also programmatically created
2We replaced names with generic ones to respect privacy.

Iall

Ifeed
Iself Icoll

Ibot Icoll,A

Icoll,R

Icoll,O

Icom= Iself ∪ Ifeed ∪ Icoll

Figure 2: Venn diagram with set of all issues Iall of a project,
as well as different studied subsets.

Table 1: Overview of the dataset

Contributors Issues Com- Per Issue†

Project Dev1 Users |Iall |
|Icom |

|Iall |
ments C̄ maxC Cr maxCr

derby 125 1,009 6,969 0.95 59,829 8.9 177 2.8 23
drools 69 1,402 5,103 0.67 9,763 2.8 38 1.6 13
groovy 65 2,677 8,137 0.84 25,345 3.7 52 2.0 26
infini.2 86 620 8,422 0.54 17,298 3.8 92 1.7 10
log4j2 9 1,029 2,144 0.92 13,335 6.9 125 2.5 21
maven 61 2,659 5,073 0.87 17,298 3.8 307 2.3 51
pig 337 1,038 5,234 0.90 29,896 6.3 133 2.6 24
rest.3 33 829 1,649 0.70 4,565 4.0 55 1.9 15
seam2 52 1,414 5,031 0.80 12,574 3.0 48 1.8 15
teiid 27 310 4,899 0.96 16,808 3.5 45 1.6 8
weld 47 527 2,518 0.65 5,341 3.2 44 1.8 10
wildfly 340 3,988 24,566 0.70 59,719 3.5 83 1.8 17

79,745 0.79 271,791
1Developers, 2infinispan, 3resteasy, †mean and max number of

comments C and distinct commenters Cr per issue

by bots and may occur in any conversation. Thus, Ibot intersects
all aforementioned sets.

Study Setup. For our quantitative analysis, we obtained and pre-
processed data from 12 open-source projects. We chose Atlassian
Jira [3] as issue tracker, because it is the most widely used ITS
tool [10]. Searching for projects, we considered two major publicly
available hosting providers: the Apache Software Foundation and
JBoss. We aimed for projects containing a substantial number of
issues and comments. We selected seven projects previously used in
studies [14] and added five comparable projects (regarding number
of issues and domains). The Jira platform offers a RESTful web
service, which allows to interact with the system programmatically.
We implemented a collector utilizing the provided application pro-
gramming interface (API). For every project we downloaded the
issues and the attached comments for our analysis. Every issue
in Jira has a type property which allows to model and distinguish
different artifacts. Jira has a predefined list of types containing bug,
feature, improvement, and task. The majority of issues use one of
these types. However, new issue types can be configured as needed
for a project. We mapped these to a fifth type denoted as other.

Data Demographics. Table 1 gives an overview of the dataset. It
lists the number developers, as a subset of all users, the number
of issues and comments, the average (C̄) and maximum number of
comments (maxC) and the average (Cr) and maximum number of
commenters (maxCr) per issue. For example, project Derby has
6,969 issues assigned to 125 developers, overall 59,829 comments
and nearly all issues (95%) are commented. An average comment

https://svn.apache.org/r1754680
https://svn.apache.org/r1754680

Request for Comments , ,

thread contains 8.9 comments (C̄) posed by 2.8 distinct commenters
(Cr). The longest thread contains 177 comments and the maximum
number of users in a Derby comment thread is 23. The ratio of
commented issues varies per project and is lowest for project In-
finispan with about 54%. 66% of these uncommented issues in the
project are resolved by the person which also reported this issue.
Thus there seems no reason the comment. This pattern is also found
in projects Drools, Resteasy, andWeld. However, the majority
of issues (80% on average per project) is commented and each issue
has on average 4 comments.

3 WHO IS COMMENTING?
In this section we take a closer look at the contributors discussing
an issue and define three patterns of conversations. Due to space
limitations, only a few results tables are included here. Additional
results, especially the pattern distribution per issue type across the
projects, are part of our published dataset [13].

3.1 Non-Human commenters (Bots) Ibot
In the last years, bots started to play an important role in many
software development contexts [20]. They are used to support de-
velopers in making decisions and for coordination by aggregating
information from other tools used by the project, such as the ver-
sion control system, and put it in the comment thread. Further they
automate repetitive tasks in software development (see third com-
ment in Fig. 1). Our shared dataset contains further details about
the bots we identified in the projects [13]. In the remaining part of
the paper all comments created by bots are excluded as we focus
on conversations of the developers in the projects.

3.2 Self-commented Issues (Monolog) Isel f
By taking a closer look at our data, we found many issues involve
only one person. Thus, the author of the issue (reporter), the person
responsible to resolve it (assignee) and all users commenting on
the issue are the same person. We denote this behavior as self
commented issue (monolog), visualized on the left in Figure 3. The
proportion of monologs per project are shown in Table 2 column
|Isel f |
|Icom |

. On average, one out of six (15%) of all commented issues are
monologs. The practice of self commenting is present independent
of the issue type. In our dataset they mostly occur in issues typed as
tasks (cf. [13]). Task often have a well defined goal and thus can be
handled directly by the developer without further communication.

3.3 Discussed Issues (Collaboration) Icoll
In this section we focus on comment threads, where users are
collaborating with each other. We define collaboration is present
in a comment thread when at least two distinct users interact in
specific patterns. Considering four users UR (issue reporter), UA
(issue assignee), and UO1 , UO2 (two other users), we differentiate
three types of collaboration:

(1) With reporter Icoll ,R : UR comments after UO1 commented
the issue, with UR , UO1. This also covers that the other
user is the assignee, i. e.UO1 = UA.

Table 2: Proportion of commented issues Icom withmonolog
Isel f , feedback If eed and collaboration Icoll threads.

Mono. Feed. Collab. Collaboration Details
Project |Isel f |

|Icom |

|If eed |
|Icom |

|Icoll |
|Icom |

|Icoll ,R |
|Icom |

|Icoll ,A |

|Icom |

|Icoll ,O |

|Icom |

derby 0.10 0.23 0.67 0.27 0.19 0.44
drools 0.22 0.48 0.30 0.09 0.24 0.05
groovy 0.08 0.46 0.46 0.12 0.25 0.21
infinispan 0.18 0.52 0.30 0.13 0.17 0.10
log4j2 0.19 0.25 0.56 0.29 0.19 0.32
maven 0.11 0.45 0.44 0.12 0.16 0.27
pig 0.03 0.31 0.66 0.34 0.14 0.35
resteasy 0.08 0.50 0.43 0.13 0.32 0.13
seam2 0.13 0.49 0.38 0.14 0.21 0.15
teiid 0.36 0.34 0.30 0.10 0.20 0.06
weld 0.15 0.47 0.38 0.14 0.24 0.13
wildfly 0.17 0.44 0.39 0.14 0.21 0.16
Average 0.15 0.41 0.44 0.17 0.21 0.20

(2) With assignee Icoll ,A: UA comments after UO1 commented
the issue, withUA , UO1.

(3) Among Others Icoll ,O : At least two other users besides the
reporter and assignee are commenting, i. e.
∃ UO1,UO2 ∈ {all commenters} \ {UA,UR }.

Figure 3 illustrates typical examples for each collaboration type.
The introduced collaboration types are overlapping (see Fig 2). For
example there might be collaboration with the reporter as well as
among other users co-occurring in the same conversation. This
is the case in the motivating example shown in Fig 1, where Bob
(reporter) posts a comment after Carol (other user 1) and later
Dave (other user 2) also comments. On average, half (44%) of all
commented issues exhibit collaboration (see Table 2) and thus this
is the dominant type of conversation in the dataset. Regarding the
discussed issue type (cf. [13]), collaboration is the most used form
of conversation (41% on average). Improvements and (49%) and bug
reports (46%) have the highest share of collaboration.

3.4 Responses on Issues (Feedback) If eed
We denote conversations which are neither monologs nor collabo-
rations as feedback. There, a user different from the reporter com-
ments on the issue, which differentiates feedback from monolog.
As only one user comments, there is no form of interaction in the
thread (see Figure 3). For example, feature RESTEASY-14313 summa-
rized with “Add SNI support for netty4 integration” gives a concrete
example. There, a user different from assignee and reporter com-
ments “I’ve merged your PR, thanks.”, providing feedback for the
assignees pull request (PR). Next to collaboration, feedback is on
average the second most (41%) conversation type in our dataset
(see Table 2). In regard to the commented issue, feedback is used
in 40% of conversations independent of the issue type (cf. [13]).
However, conversations about features and bug reports are more
often categorized as feedback (≥ 40%), than conversations about
any other issue type.

3https://issues.jboss.org/browse/RESTEASY-1431

https://issues.jboss.org/browse/RESTEASY-1431

, , M. Rath et al.

Reporter: Alice
Assignee: Alice

Reporter: Alice
Assignee: Bob

Alice

Alice

Bob

Reporter: Alice
Assignee: Bob

Reporter: Alice
Assignee: Bob

Reporter: Alice
Assignee: Bob

Carol

Alice

Carol

Bob

Carol

Dave

Monolog Feedback Collaboration
With Reporter With Assignee Among Others

Issue

Comment(s)
t

Figure 3: Types of conversation along with one example found in comment threads.

Key Takeaway (RQ1) Next to humans, comment threads are
enriched by bot generated messages to bundle further informa-
tion about an issue such as implementation activities or test
statuses.
Key takeaway (RQ2) Collaborations are the most prominent
form of conversation. Improvements require collaboration with
the issues reporter, wheres bug reports require collaboration
with the assignee. Feedback is the second most conversation
type. It has no clear prevalence for a specific issue type, and is
present in 40% of all issue conversations. Last, in monologs all
comments are given by the reporter of the issue, which is also
the assignee. This pattern is more of found in tasks rather than
in bug reports.

4 CONCLUSION AND FUTUREWORK
Open source users utilize issue tracking systems (ITS) to store and
maintain development artifacts such as bug reports and features.
The ITS also serves as communication channel among the users,
as it allows to create comments on the contained issues. Our study
focuses on how users of open-source systems (OSS) use these com-
ments for their work. We analyzed over 269,000 comments mined
from 12 open-source projects. Besides humans, comments are also
generated by robots aggregating additional information collected
from various data sources such as the projects’ version control sys-
tem. By defining three conversation patterns (monologs, feedback,
and collaboration), we studied the communication structure in com-
ment threads. Our results show that collaboration, i. e. multiple
users work together in order to resolve the issue, is used the most.
In a future work we will focus on the content and topics discussed
in the identified conversation patterns.
Our dataset along with additional material is available online [13].

AcknowledgementWe are funded by the DFG grantMA 5030/3-1, the DLR
grants D/943/67258261 and D/943/67262000, and BMBF grant 01IS18074E.

REFERENCES
[1] Dane Bertram, Amy Voida, Saul Greenberg, and Robert Walker. 2010. Commu-

nication, collaboration, and bugs: the social nature of issue tracking in small,
collocated teams. In Proc. of the 2010 ACM conference on Computer supported
cooperative work.

[2] Swapna Gottipati, David Lo, and Jing Jiang. 2011. Finding relevant answers
in software forums. In 26th IEEE/ACM International Conference on Automated
Software Engineering (ASE).

[3] JIRA 2018. JIRA. https://www.atlassian.com/software/jira. (2018).
[4] JIRA Documentation 2018. Commenting on an Issue. https://bit.ly/2CXZRaQ.

(2018).
[5] Eric Knauss, Daniela E. Damian, Germán Poo-Caamaño, and Jane Cleland-Huang.

2012. Detecting and classifying patterns of requirements clarifications. In 2012

20th IEEE International Requirements Engineering Conference (RE).
[6] Andrew J. Ko and Parmit K. Chilana. 2010. How power users help and hinder

open bug reporting. In Proc. of the 28th Int. Conf. on Human Factors in Computing
Systems, CHI.

[7] Andrew J. Ko and Parmit K. Chilana. 2011. Design, discussion, and dissent in
open bug reports. In iConference 2011, Inspiration, Integrity, and Intrepidity.

[8] ThorstenMerten,Matus Falis, Paul Hübner, Thomas Quirchmayr, Simone Bürsner,
and Barbara Paech. 2016. Software Feature Request Detection in Issue Tracking
Systems. In 24th IEEE Int. Requirements Engineering Conf., RE.

[9] Alessandro Murgia, Parastou Tourani, Bram Adams, andMarco Ortu. 2014. Do de-
velopers feel emotions? an exploratory analysis of emotions in software artifacts.
In 11th Working Conference on Mining Software Repositories, MSR.

[10] Marco Ortu, Giuseppe Destefanis, Bram Adams, Alessandro Murgia, Michele
Marchesi, and Roberto Tonelli. 2015. The JIRA Repository Dataset: Understanding
Social Aspects of Software Development. In Proc. of the 11th Int. Conf. on Predictive
Models and Data Analytics in Software Engineering, PROMISE.

[11] D. Poshyvanyk, Y.-G. Gueheneuc, A. Marcus, G. Antoniol, and V. Rajlich. 2007.
Feature Location Using Probabilistic Ranking of Methods Based on Execution
Scenarios and Information Retrieval. IEEE Trans. Softw. Eng. (2007).

[12] Roger S Pressman. 2005. Software engineering: a practitioner’s approach. Palgrave
Macmillan.

[13] Michael Rath and Patrick Mäder. 2019. Replication Data for: Request for Com-
ments: Conversation Patterns in Issue Tracking Systems of Open-Source Projects.
https://bit.ly/38d5AYk. (2019). https://doi.org/10.7910/DVN/M8WTHU

[14] Michael Rath, Patrick Rempel, and Patrick Mäder. 2017. The IlmSeven Dataset.
In 25th IEEE International Requirements Engineering Conference, RE 2017.

[15] Patrick Rempel and Patrick Mäder. 2015. Estimating the Implementation Risk of
Requirements in Agile Software Development Projects with Traceability Metrics.
In Requirements Engineering: Foundation for Software Quality - 21st Int. Working
Conference, REFSQ, Samuel A. Fricker and Kurt Schneider (Eds.). Springer.

[16] Patrick Rempel and Patrick Mäder. 2017. Preventing Defects: The Impact of Re-
quirements Traceability Completeness on Software Quality. IEEE Trans. Software
Eng. (2017). https://doi.org/10.1109/TSE.2016.2622264

[17] Peter C. Rigby and Ahmed E. Hassan. 2007. What Can OSS Mailing Lists Tell
Us? A Preliminary Psychometric Text Analysis of the Apache Developer Mailing
List. In Fourth International Workshop on Mining Software Repositories, MSR. IEEE
Computer Society. https://doi.org/10.1109/MSR.2007.35

[18] Emad Shihab, Zhen Ming Jiang, and Ahmed E. Hassan. 2009. Studying the use
of developer IRC meetings in open source projects. In 25th IEEE International
Conference on Software Maintenance ICSM. IEEE Computer Society.

[19] Ian Skerrett and The Eclipse Foundation. 2011. The Eclipse Community Survey
2011. Technical Report.

[20] Margaret-Anne D. Storey and Alexey Zagalsky. 2016. Disrupting developer pro-
ductivity one bot at a time. In Proceedings of the 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE. ACM.

[21] Shaowei Wang and David Lo. 2014. Version history, similar report, and struc-
ture: putting them together for improved bug localization. In 22nd International
Conference on Program Comprehension, ICPC. ACM.

[22] Jian Zhou, Hongyu Zhang, and David Lo. 2012. Where should the bugs be fixed?
More accurate information retrieval-based bug localization based on bug reports.
In 34th International Conference on Software Engineering, ICSE.

https://www.atlassian.com/software/jira
https://bit.ly/2CXZRaQ
https://bit.ly/38d5AYk
https://doi.org/10.7910/DVN/M8WTHU
https://doi.org/10.1109/TSE.2016.2622264
https://doi.org/10.1109/MSR.2007.35

	Abstract
	1 Introduction
	2 Methodology
	3 Who is commenting?
	3.1 Non-Human commenters (Bots) Ibot
	3.2 Self-commented Issues (Monolog) Iself
	3.3 Discussed Issues (Collaboration) Icoll
	3.4 Responses on Issues (Feedback) Ifeed

	4 Conclusion and Future Work
	References

