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ABSTRACT
We present an approach to unsupervised audio representation learn-
ing. Based on a triplet neural network architecture, we harnesses
semantically related cross-modal information to estimate audio
track-relatedness. By applying Latent Semantic Indexing (LSI) we
embed corresponding textual information into a latent vector space
from which we derive track relatedness for online triplet selection.
This LSI topic modelling facilitates fine-grained selection of similar
and dissimilar audio-track pairs to learn the audio representation
using a Convolution Recurrent Neural Network (CRNN). By this
we directly project the semantic context of the unstructured text
modality onto the learned representation space of the audio modal-
ity without deriving structured ground-truth annotations from it.
We evaluate our approach on the Europeana Sounds collection and
show how to improve search in digital audio libraries by harnessing
the multilingual meta-data provided by numerous European digital
libraries. We show that our approach is invariant to the variety
of annotation styles as well as to the different languages of this
collection. The learned representations perform comparable to the
baseline of handcrafted features, respectively exceeding this base-
line in similarity retrieval precision at higher cut-offs with only
15% of the baseline’s feature vector length.
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1 INTRODUCTION
Audio representations aim to capture intrinsic properties and char-
acteristics of the audio content to facilitate complex tasks such as
classification (acoustic scenes [6, 16], music genres [15]), regression
(emotion recognition [31]) or similarity estimation (music,[13] gen-
eral audio [22]). In the context of this paper we focus on their appli-
cation in audio similarity estimation and retrieval. More specifically,
for heterogeneous audio collections provided by digital libraries in
the cultural heritage domain.

Digital libraries (DL) present unique challenges for informa-
tion retrieval research. The information need of DL users is highly
specific and users are often highly experienced within the search
domain. The challenging requirement for effective tools to search
and discover content in large databases faces major obstacles such
as heterogeneity, multi-modality and often multi-linguality of the
content stored in these databases. The common approach taken
to satisfy these information needs is to provide as much, rich and
accurate meta-data as possible and to apply information retrieval
and semantic computing [20] technologies to index this meta-data
to facilitate efficient search. Either of these approaches requires
considerable amounts of manual interaction to annotate or interlink
data items and does not scale well. Approaches based on meta-data
require that DL users are acquainted with the correct terminology
used to describe the item or the categories. Based on the fact that
many collections in DLs are aggregated and curated from scientists
from specific research disciplines such as history, archaeology or
musicology, this terminology can be very specific and not everyone
might be familiar with it on the same level. Further, not every type
of information can be efficiently described using textual meta-data.
Content related relations such as “sounds like” are highly com-
plex and difficult to describe by meta-data. This heterogeneity is
also a challenge for the definition and modeling of the acoustic
similarity function. The Europeana1 Sounds data-set [23] contains
besides Music also Spoken Word in form of interviews, radio news
broadcast, public speeches, field recorded Animal- and Ambient-
or Environmental-Sounds. Additionally, the recordings vary in in-
strumentation and recording quality (from digitized wax-tapes to
born-digital content). In [23] we applied a diverse set of handcrafted
audio- and music-descriptors to model an audio-content based sim-
ilarity estimation function for the Europeana data. The most critical
part of this approach was the selection of the features to adequately
describe the heterogeneous semantics of the different collections
in the data-set, as well as the balancing of the feature weights to
approximate the subjective similarity estimation. Feature weight

1https://www.europeana.eu
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optimization was approached empirically through a predefined set
of similar records. During an iterative process the weights of the
different features were adapted. This manual optimization process
is sub-optimal in terms that it only optimizes towards a small set of
manually selected items. An optimization against the entire data-
set would require that pairwise similarity estimations would be
available as ground-truth-assignments. Because creating such as-
signments is not feasible on large scales, a common approach is
to define similarity by categorical membership or identity. In [19]
the authors defined music similarity on tracks originating from the
same artists and used a triplet deep neural network architecture (see
Section 1) to learn an optimized music optimization. Using identity
or categorical data as ground-truth is sub-optimal [24] because it
usually defines acoustic similarity too coarse. In [24] we learned
a music representation from multi-label assignments using Latent
Semantic indexing (LSI) to project the discrete information into a
continuous space from which a track-similarity function based on
tag-relatedness was derived. This tag-based track-similarity was
then transferred to the audio space using a Triplet Network with a
margin maximizing loss and online triplet selection strategy. Fol-
lowing this approach a network learns to maximize the margin
between the distances of a reference track and its positive similar
example and its negative dissimilar example, in a learned semantic
embedding space, based on the constraint, that the vector distance
of the positive pair should be much smaller than the distance of
the negative pair. The challenge is the selection of positive and
negative examples to a reference track. Still, these approaches rely
on ground-truth assignments for supervised learning of audio rep-
resentations.

In this paper we build on the conclusions of [24] that by adding
more content related information to the input space of the LSI
projections, the definition of LSI topics improves, resulting in a
better track-relatedness function. We adopt this approach and ex-
tend it from a discrete categorical space with a fixed vocabulary
to an open, unstructured, multi-lingual free-text space. The meta-
data provided by professional librarians contains such item-related
descriptions including descriptions of audible content. The major
contribution of this approach is, that it uses unstructured text to
derive track-relatedness and does not require structured ground-
truth assignments. To demonstrate our approach we first discuss
and position our approach within related work in Section 2 before
we describe our method in Section 3. We extensively evaluate the
approach in Section 4 and thoughtfully discuss the results in Section
5 before we draw conclusion and discuss future work in Section 6.

2 RELATEDWORK
2.1 Content Retrieval in Music Digital Libraries
Concerning Music Digital Libraries (DL) this paper is mostly re-
lated to [23] where we presented an approach to audio-content
similarity estimation within Europeana Sounds project. Following
a late-fusion approach, the weighted combination of different audio-
content descriptors was applied to highly heterogeneous data. The
presented evaluation method is also adopted in this paper. Issues
of data aggregation in audio DLs are described in [30].
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Figure 1: Model Overview: Convolutional Recurrent Neural
Network (CRNN). a) the input Mel-Spectrogram (80x130) is
split into 12 segments (80x12, 50% overlap). b) each segment
is processed by a shared CNN stack resulting in a sequence
of 12 intermediate embedding vectors. c) the sequence is pro-
cessed by a bi-directional GRU and its output is the learned
representation (256x1).

2.2 Music Similarity Retrieval
Search-by-example, such as finding music tracks that are similar
to a query track, is an actively researched task [11, 13]. Research
on music similarity estimation currently faces two major obstacles.
First, music similarity is a highly subjective concept and is strongly
influenced by the listening habits and music taste of the listener [1].
Second, state-of-the-art approaches to music similarity estimation
are still not able to satisfactorily close the semantic gap between
the computational description of music content and the perceived
music similarity [10]. The many facets of music similarity - such
as concrete music characteristics (e.g. rhythm, tempo, key, melody,
instrumentation), perceived mood (e.g. calm, aggressive, happy),
listening situation (e.g. for dinner, to concentrate, for work out),
musicological factors (e.g. composer influenced by) - complicate
the definition of a unified music description which captures all
semantic music concepts. Traditionally this has been approached
by defining a set of features, which extract certain low level mu-
sic characteristics such as timbre [17] or rhythm [14], mid-level
properties such as chords [18], but also high-level features. This ap-
proach faces the problem that hand-crafted feature design is neither
scaleable nor sustainable [9]. Representation learning using Deep
Neural Networks (DNN) has been actively explored in recent years
[27, 28] as an alternative to feature engineering. Although some
of these approaches outperform feature-based methods, a major
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obstacle is their dependency on large amounts of training data. Al-
though it has been shown that shallow DNNs have an advantage on
small datasets [25] they struggle to describe the latent complexity
of music concepts and do not generalize on large datasets [9].

2.3 Representation Learning (RL)
RL using DNNs gained attention through the publication of FaceNet
[27] which significantly improved the state-of-the-art of face re-
identification. This approach is based on global item relatedness
where faces are similar when they belong to the same person and
otherwise are dissimilar. A similar approach using the global relat-
edness of performing artists has been applied to music data [19].
Contextualized relatedness especially in the domain of music has
been used in [21]. A similar approach to this paper of estimating
tag-relatedness from user-tags was taken in [21]. Latent Dirichlet
Analysis (LDA) was used to project the categorical data into a nu-
merical space. The approach was evaluated using a siamese neural
network on three smaller datasets including the MSD subset using
the noisy user-generated tag-sets of the Last.fm dataset. A differ-
entiated evaluation of the learned semantic context as provided in
this paper was missing. Concerning Representation Learning the
presented paper in mostly related to [24] in which we extended
the Million Song Dataset (MSD) [2] with additional ground truth
multi-label assignments for Moods, Styles and Themes. Further, we
extended the single-label Genre labels provided in [26] to multi-
label assignments. In [24] a music representation was learned from
these multi-label assignments using Latent Semantic indexing (LSI)
to project the categorical information into a continuous space from
which a track-similarity function based on tag-relatedness was de-
rived. This tag-based track-similarity was then transferred to the
audio space using a Triplet Network with a margin maximizing
loss and online triplet selection strategy.

3 METHOD
The proposed method is based on a triplet neural network archi-
tecture to learn the contextualized semantic representation using a
max-margin hinge loss with online triplet selection.

3.1 Representation Learning
To learn the acoustic representation we use a triplet network based
on a shared Convolutional Recurrent Neural Network (CRNN) archi-
tecture [3]. The base-model is described in Section 4.1 and depicted
in Figure 1. Using this triplet network, an input audio spectrogram
x is embedded f (xai ) into a d-dimensional Euclidean space Rd . The
input consists of a triplet of audio content items: a query track (an-
chor) xai , a track similar (positive) xpi and one dissimilar (negative)
xni to the query. The objective is to satisfy the following constraint:


f (xai ) − f (xpi )




2
2
+ α <



f (xai ) − f (xni )


2
2 (1)

For ∀(f (xai ), f (xpi ), f (xni )) ∈ τ , where



f (xai ) − f (xpi )




2
2
is the

squared Euclidean distance between xai and xpi , which should be
much smaller than the distance betweenxai andxni .α is the enforced
margin between positive and negative pair-distances. τ represents

the set of all possible triplets in the training-set. The objective of
Eq. 1 is reformulated as the following triplet-loss function:

N∑
i=1

max
[


f (xai ) − f (xpi )




2
2
−


f (xai ) − f (xni )



2
2 + α

]
(2)

3.1.1 Online Triplet Selection. Efficient selection of triplets is a
crucial step in training the network. Generating all possible triplet
combinations τ is inefficient due to the cubic relation and the lack-
ing contribution to the training-success of triplets not violating
Eq. 1. Thus it is required to select hard triplets violating this con-
straint. A common approach to this is online triplet selection where
triplets are combined on a mini-batch basis [27]. To select appro-
priate triplets the batch size needs to be appropriately large. We
use a batch size of 400 tracks. Their corresponding log-scaled Mel-
Spectrograms (see Sec. 4.4) are embedded into a latent space. The
selection of positive and negative examples is based on the seman-
tically embedded textual information extracted from the meta-data
(explained in more detail in Sec. 3.2). The pairwise cosine-distance
cos(LSI ts1 ,LSI

ts
2 ) matrix of the corresponding l2 normalized LSI-

embeddings is calculated for all mini-batch instances. The diagonal
elements are set to zero to avoid identical pairs. Thresholds for
pair-selection were evaluated empirically by analyzing the distribu-
tion of the cosine-distance space of the LSI-embeddings and set to
cos(LSI ts1 ,LSI

ts
2 ) ≥ 0.8 (upper) and cos(LSI ts1 ,LSI

ts
2 ) < 0.5 (lower).

For each row in the LSI-embeddings similarity matrix that con-
tains valid positive and negative instances, the squared Euclidean
distances of the corresponding audio embeddings are calculated.
arдmin is computed to identify relevant positive and negative pairs.
This deviates from the original approach [27] where arдmin is used
to select hard negatives and arдmax for hard positive pair exam-
ples. The intention of the approach presented in [27] is to be be
invariant to image background as well as to changes in pose, color
and illumination. This is supported by their hard triplet selection
method which enforces to learn highly discriminate object-related
features. The “sounds like” audio similarity of in this paper defines
a global similarity also taking “background noise” into account.
This is emphasized by using arдmin to select tracks which similar
features in the embedding space as positive pairs. Finally, instances
where no positive and negative example are found are removed.

3.2 Relatedness Measure
To train the triplet network with target values reflecting the simi-
larity of two records, we build a measure capturing the similarity
of their associated meta-data descriptions. To this end, we make
use of all the meta-data entries in all categories (see Fig. 3) and
apply text processing to their concatenation, i.e. a standard word-
level term frequency by inverse document frequency (TFIDF) scheme
emphasizing terms specific to individual record meta-data in fa-
vor of meta-data entries common to many records. This should
lower the impact of collection specific keywords on the learned
audio representation while not fully discarding this underlying
relationship. To combat the facts that meta-data entries are often
correlated and/or applied inconsistently across different collections,
i.e., effects similar to synonymy and polysemy in natural language
processing, respectively, as a next step, we perform Latent Semantic
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Figure 2: Data-set overview: left) Number of items per collection. right) number of items per data provider. Y-axis is log-scaled
for both charts due to unbalanced frequency distributions.

Indexing (LSI) [4]. LSI models latent topics as semantic associations
of terms in a corpus of documents (in our case the individual words
over all metadata of all records weighted according to the TFIDF
scheme). Technically, LSI operates on them × n weight matrixW
withwi j = t f id fi j , where each row corresponds to a term tj=1...m
and each column to a record ai=1...n . Latent topics—and with it an
implicit spectral clustering—are derived by performing truncated
singular value decomposition (SVD) for approximation ofW . As a
result, each individual record is represented in the LSI-derived con-
cept space via a cluster affinity vector (in the following referred to
as LSI vector), cf. [12]. A characteristic of SVD is that emerging top-
ics are sorted in order of decreasing importance wrt. reconstruction
of the data. Therefore, the number of considered topics l (referring
to the first l dimensions of the LSI vectors) can be used to steer the
trade-off between generalization of the model and preservation of
the original meta-data information inW .

For calculation of record relatedness using the meta-data, we cal-
culate the cosine similarity between the records’ LSI vectors. From
this, we sample positive and negative examples to be presented to
the triplet network.

4 EVALUATION
The aim of this evaluation is to asses if our method facilitates to
harness semantic information from the meta-data space to learn a
corresponding, general applicable audio representation from it. To
show this, we perform three experiments using the task of audio
similarity retrieval with the following settings:

(1) Baseline: selection of weighted handcrafted features [25]
intended to show how neural network based approaches
compare against state-of-the-art handcrafted feature-sets
reported in literature.

(2) Track-relatedness by collection: triplet-based neural net-
work using collectionmembership for online triplet selection.
Acts as a second baseline, representing audio representation
learning approaches relying on categorical data for triplet-
selection. We therefor use collection membership to select
positive and negative track-pairs.

(3) Track-relatedness by LSI similarity: our approach - triplet-
based neural network using LSI-vector similarity for online
triplet selection.

We perform controlled experiments. The same model architec-
ture as described in the following subsection is used for all exper-
iments. We further take control over all random processes such
as kernel initialization, shuffling of training instances after each
epoch to reduce random effects and variance of the experimental
results. The same training, validation and test splits are used in
all experiments. By controlling all these parameters to our best
knowledge we hypothesize that the learned representations are
only influenced by LSI representation of the semantic space of the
textual meta-data.

4.1 Model Architecture
For the evaluation we are using a Convolutional Recurrent Neural
Network (CRNN) [3, 22]. A CRNN is a combination of a Convolu-
tional Neural Network (CNN) stack and a Recurrent Neural Network
(RNN). The CNN learns to identify patterns in the local 2D space
of the input Spectrograms. The resulting feature transformation is
passed on to the RNN which identifies sequential patterns in this
intermediate embedding space. In our model the context learned
by the RNN represents the final learned audio representation.

The model concept and architecture is depicted in Figure 1. In-
stead of globally pre-normalizing the input-space, we use a Batch-
Normalization layer on top of our model.This normalized input
matrix of shape 80x130 is then split into 12 sequential segments
of shape 80x20 which overlap by 50% (see top of Fig. 1). Each seg-
ment is then processed by the CNN stack which consists of three
blocks - each one containing a convolution layer with 3x3 filter
units, BatchNormalization followed by an Exponential Linear Unit
(ELU) activation function and MaxPooling to down-sample the
feature-maps. For the specific parametrization of the layers please
refer to Fig. 1). The feature-maps of the last block are flattened to
a feature vector representing the intermediate non-linear feature
transformation. The concatenation of all 12 feature vectors serves as
input to a bi-directional Gated Recurrent Unit (GRU) which learns
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Table 1: Overview of baseline audio representation. Audio-
content descriptors with corresponding acoustic categories
and featureweights aswell as the cumulative categoryweight
optimized for Europeana Sounds evaluation data.

Category Feature Description Wf eat Wcat
MFCC Timbre [29] 23%
SSD Spectral desc. [14] 8%Timbre
SPEC CENT Pitch [29] 8%

39%

RP Rhythm [14] 18%Rhythm BPM Tempo [5] 7% 25%

CHROMA Harmonic Scale [29] 12%Harmony TONNETZ Harmonic desc. [7] 12% 24%

Loudness RMSE Loudness [29] 9% 9%
Noise ZCR Noisiness [29] 3% 3%

sequential patterns in the feature space. The resulting context of
the GRU is used as model output - which has 256 dimensions - and
represents the learned audio representation.

4.2 Baseline Architecture
The baseline approach is based on a selection of handcrafted music-
and audio features. This feature-set has been specifically designed
and optimized for the Europeana Sounds audio collection [25]. Audio
simlarity is calculated by late fusing the different features using
different similarity metrics. The final similarity is defined the the
sum of the weighted distance space. Table 1 depicts the feature-
set defined in [25]. Features are selected to describe five acoustic
and musicological concepts of the heterogeneous semantics of the
different collections in the Europeana Sounds data-set. The balancing
of the feature weights aims to approximate the subjective similarity.

For the baseline experiments we extract and aggregate the fea-
tures listed in Table 1 according the procedure described in [25].
To harmonize the evaluation of this paper we transformed the
model to an early-fusion approach. Thus, we first standardised
the value-spaces of all feature-sets separately. Then, we normalize
each feature-set according their dimensionality to equalize their
influence on the similarity estimation. Finally we apply weight the
normalized feature-spaces according the weights of Table 1.

4.3 Data
The data-set used within the experimental evaluation of this pa-
per has been developed within the scope of Europeana Sounds
project[23]. Out of the several hundreds of thousands of audio
records accessible through Europeana APIs, a subset of more than
83.000 items forms the bases of the current evaluation. The de-
scription of these audio items was collected through the Europeana
Record API2. Even if the representation of item description is avail-
able in a standardized knowledge graph format (using Europeana
Data Model3), there are still several challenges to effectively use
this metadata for information retrieval purposes.

The Europeana Records are collected from various Institutions
from all over the Europe and pre-processed by so called national or
thematic aggregators. As shown in Figure 2, the records included

2https://pro.europeana.eu/resources/apis/record
3https://pro.europeana.eu/resources/standardization-tools/edm-documentation
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Figure 3: Metadata value density / sparsity: number pro-
vided values per metadata attribute in descending order.
Top ranked attributes are densely, low ranked attributes are
sparsely provided.

within the evaluation dataset were originally provided by 30 dif-
ferent institutions (also called data providers) and included in 26
different data collections. The Europeana Sounds project, with Dis-
marc music collection and several other non music collections, is
the main thematic aggregator for sound content. It is followed
by the Jewish Heritage Network, the aggregator of Judaica collec-
tions, which include many traditional songs collected from Jewish
communities that were leaving in different European countries.
However, many records were submitted to Europeana by national
aggregators and previous research projects.

The large variety and data sparsity within this evaluation cor-
pus represent a great challenge for the efficiency of the proposed
approach. This variation is encountered with respect to the type of
content, the used categorization schemes and with respect to the
distribution of audio features. The largest part of sound content is
represented by music records, however an important part of the
data set includes radio news, public speeches or language dialects
recordings, environmental (e.g. city noise) or biodiversity sounds
(e.g. bird twittering), etc. In the case of music records, there is a high
variety of music genres, from traditional to classical music, from
love songs to rock, from instrumental to single voice singer, etc.
As consequence, the evaluation dataset builds a sparse data matrix,
except for the fields that are enforced as mandatory through the
Europeana Data Model (see Figure 3).

Another challenge of the evaluation corpus is represented by the
multilingualism of the metadata, more than 40 European languages
being now used to describe the Europeana records. Even if the sev-
eral data fields contain very precise keywords describing the audio

 https://pro.europeana.eu/resources/apis/record
 https://pro.europeana.eu/resources/standardization-tools/edm-documentation
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Figure 4: LSI Topic Examples visualizing the correlation between topics and collections. top - plots showing words ranked
by their absolute (positive/negative) influence on the topic. bottom - number of items per collection associated with this
topic. a) biological/zoological terms - mostly correlated with OpenUp! collection of animal sounds. b) terms and names of
classical music and composers - mostly correlated with collection of classical music. c) terms referring to location - in this
case Israel correlated with collection of Jewishmusic. d) terms describing ambient sounds - mostly correlated with a collection
of environmental sounds.

content, they have limited usage for similarity search due to their
language distribution. In Figure 4 we showcase the composition
of the topics and indicate the influence of individual keywords.
Through the topic composition, a human user can easily recognize
topics relating to biodiversity and animal sounds, classical music
and composers, locations, ambient sounds, etc. Europeana data col-
lections are meant to group records that share certain properties
in common, the enclosed records being similar to each other in a
broader sense. However, in many cases, data collections group items
from different institutions and cover several topics. The correlation
between topics and data collections is indicated in Figure 4.

From the full description of audio items, 22 metadata elements
were taken for computing item similarities. Some of these elements
indicate the provenance and the aggregation process of audio con-
tent. The Institution that owns the content is named within the
Data Provider element, while the Provider indicates the organi-
zation aggregating the content in the collection defined though
the Collection-Name and Collection-id. The country and the lan-
guage used by the contributing institution are also available in
the metadata (i.e. DataProvider Language, DataProvider Country.
The elements describing the audio content include the a manda-
tory Title and optional Subject categorizations, Type of content and
textual Description. Quite often, within the contributor fields the
role of the person is also indicated, or in case of orchestras, the
music instrument might be available as well. When known, the
Date and the Year are available directly in the medata elements. The
approximate date and location can be indicated either through the
Coverage or through the specialized termsTemporal and termsSpa-
tial, termsCreated elements. For some items the the storage medium
(termsMedium) and the original work from which the current object

was derived are also indicated. All these data elements contain in-
formation that has correlation with the characteristics of the audio
content.

4.4 Data Pre-processing
4.4.1 Text-data Pre-processing. This section refers to the text-input
to build the LSI models. All meta-data attributes are concatenated
to a single string per instance using white-spaces as separators.
The entire text content is converted to lower-case and HTML tags,
sequences and hyperlinks are removed. Year dates are mapped
to decades and centuries and translated to Roman numerals. Fur-
ther, numbers and punctuation’s are removed. After tokenization,
stopwords are removed for the languages English, German, Italian,
French and Romanian. Finally, words w with |w | <= 2 are also
removed.

4.4.2 Audio Data Pre-Processing. All audio-files of the collection
are re-sampled to 44.100 Hz and single-channel converted. An audio
segment s of length |s | = 6 seconds is read from an audio-file a using
an offset of o = 5 seconds to avoid silent sections at the beginning
of a recording as well as fade-in effects. If |a | <= |s | +o the offset is
reduced to o = |a | − |s |. If |a | < |s |, the audio-file is shorter than the
expected sequence length and the missing content is zero-padded.
Short-time Fourier Transform (STFT) with a Hanning-windowing
function and a 4096 samples window size with 50% overlap is ap-
plied. The resulting Spectrogram is transformed to the log-scaled
Mel-space using 80 Mel-filters and cut-off frequencies of 16Hz (min)
and 18.000Hz (max). The final shape of the DNN input matrix shape
is 80x130x1. Instead of normalizing the feature-space, we add a
batch-normalization layer on top of the network (see Figure 1).
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Figure 5: Evaluation results Similarity by collection member-
ship measured in retrieval precision at cut-off 1 and num-
ber of tracks of the corresponding collection (right Y-axis).
Global mean precision at different cut-offs presented in Ta-
ble 2.

5 RESULTS
Results are calculated identically for all experiments. First, the hand-
crafted features or trained models are applied to the audio collection
to embed it into a feature-space. On this, nearest-neighbor search
is performed using Euclidean distance as similarity function. To
compare the results and evaluate the approaches, retrieval preci-
sion at different cut-offs (1,2,3,5,10,50,100) is assessed. The model
performance is then evaluated according two criteria.

(1) Collection Similarity: collections provided by partner li-
braries to the Europeana have been carefully aggregated, are
coherent and share common attributes and characteristics.

(2) Term Similarity: content related terms such as music in-
struments, composers, music genres or animal species are
matched in the metadata. These terms span across several
collections and calculate their entropy to assess if they are
evenly distributed or skewed towards a certain collection.

Track-relatedness by Collection Membership: The first eval-
uation is based on common approaches to representation learning
which use membership to a class [8], label [24] or identity [19, 27]
to select positive and negative examples for triplet based neural
networks. As can be observed in Figure 5 this approach tends to
learn representation which focus on collection related features and
acoustic artifacts. From this perspective, this approach seems to
outperform the baseline as well as the proposed approach, but, al-
though, the collections of the dataset have been well aggregated
by professional librarians, the learned representation do not gen-
eralize towards to a global acoustic similarity, as can be observed
in Figure 6. The term-based precision values for the model trained
on track-relatedness by collection membership differ recognizably
from the LSI based approach, especially for evaluation terms with
high entropy values.

Track-relatedness by LSI-Topic Similarity: The potential of
the proposed LSI-based representation learning approach is shown
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Figure 6: Evaluation results Similarity by content related
terms measured in retrieval precision at cut-off 1. Right Y-
axis shows term entropy across the number of collections.
Global average precision at different cut-offs presented in
Table 2.

by the decrease of precision in the collection-based and the in-
crease in the term-based evaluation. This indicates that the learned
representation capture characteristics which facilitate acoustic sim-
ilarity estimations globally, across the collections of the dataset. For
some terms the representations learned from free text outperform
the baseline significantly, such as for the acoustic characteristics
of digitized shellac recordings which are difficult to model with
handcrafted audio features. It can generally be observed that the rep-
resentation learned by our approach improves over the baseline in
terms of capturing general acoustic characteristics such as ambient
sounds, sound producing objects such as instruments or machines
as well as human voice. Regarding the first baseline following the
feature-based approach presented in [25], our proposed approach
does not capturemusic related characteristics accordingly. An expla-
nation for this could be, because only 6 dimensions of the feature-set
of the baseline approach are general audio features wheres the re-
maining 1671 dimensions belong to music features. Regarding the
second baseline using collection membership as track-relatedness
measure, the LSI-based track-relatedness approach improved over
almost all term-based results.

Discussion: Audio similarity is generally difficult to evaluate.
Usually, categorical ground truth assignments are used alternatively
and precision is defined on retrieving tracks belonging to the same
category [13]. In this paper we describe an approach to learn an
audio representation for similarity estimation from multi-lingual
free-text under the absence of ground-truth data. Thus, we ap-
proach the evaluation from two perspectives: the categorical view
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Table 2: Overview of baseline audio representation.Weighted composition of state-of-the-art audio andmusic content Features.
The audio-content descriptors, their corresponding acoustic categories, their assigned feature weight as well as the cumulative
category weight.

Dim 1 2 3 5 10 50 100

baseline 1677 0.288 0.253 0.235 0.213 0.188 0.139 0.121
by Collection 256 0.232 0.216 0.208 0.196 0.182 0.156 0.143
by LSI 256 0.264 0.241 0.231 0.218 0.201 0.170 0.158

using collection memberships and terms in the metadata describing
acoustic properties. With this approach we are able to show that
the LSI based approach to audio representation learning provides
similar retrieval precision to the feature-based baseline approach
up to a cut-off of 3 (see Table 2). From a cut-off of 5 our learned
representations with 256 dimensions exceed the baseline with 1677
dimensions. Thus, the size of the feature-space is reduced by a
factor of 6.5 at consistent performance.

6 CONCLUSIONS AND FUTUREWORK
We introduced a novel approach to unsupervised audio representa-
tion learning. We showed how to estimate track-relatedness from
unstructured multilingual free-text by projecting the semantic data
into a vector space using Latent Semantic Indexing. This track-
relatedness is used for online triplet selection to train a triplet deep
neural network which cross-learns an audio representation from
the text modality. We showed that the representations learned per-
form similar to the baseline, respectively exceeding the baseline in
similarity retrieval precision at higher cut-offs at only 15% of the
baseline’s feature vector length.
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