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Large-scale software systems are currently designed as distributed entities and deployed in cloud data centers.
To overcome the limitations inherent to this type of deployments, applications are increasingly being supple-
mented with components instantiated closer to the edges of networks – a paradigm known as edge computing.
The problem of how to efficiently orchestrate combined edge-cloud applications is however incompletely
understood, and a wide range of techniques for resource and application management are currently in use.

This paper investigates the problem of reliable resource provisioning in joint edge-cloud environments
and surveys technologies, mechanisms, and methods that can be used to improve the reliability of distributed
applications in diverse and heterogeneous network environments. Due to the complexity of the problem,
special emphasis is placed on solutions to the characterization, management, and control of complex distributed
applications using machine learning approaches. The survey is structured around a decomposition of the
reliable resource provisioning problem into three categories of techniques: workload characterization and
prediction, component placement and system consolidation, and application elasticity and remediation. Survey
results are presented along with a problem-oriented discussion of the state of the art. Finally, a summary of
identified challenges and an outline of future research directions are presented to conclude the paper.
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1 INTRODUCTION
The past decades havewitnessed the trend ofmoving computation, data storage and applications into
cloud data centers (DCs), facilitating ubiquitous access to shared computing and storage resources on
demand. The cloud computing model demonstrates numerous advantages, including high utilization
of shared resources, low cost in service deployment and management, high scalability, accessibility,
and availability [129]. Today, in the era of the Internet of Things (IoT), an unprecedented volume
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of data generated by the IoT devices needs to be collected and analyzed [17]. The collection of such
volumes of data in cloud DCs incurs extremely high latency and network bandwidth usage. To
address this issue, the fog or edge computing paradigm has been proposed, which pushes the data
analysis closer to the systems or devices that data originates from [17, 75]. It is however unclear
how to orchestrate complex, large-scale software systems in heterogeneous network environments,
and the topic of such orchestration, or how to automate computing platforms that integrate both
edge and cloud computing capabilities, is the subject of significant research efforts. Fig. 1 illustrates
hierarchical tiers of an (heterogeneous) edge-cloud network.

Fig. 1. A conceptual illustration of edge computing. To improve the application performance and the network
bandwidth utilization, selected components are deployed closer to end-users in core and edge networks.

This paper targets techniques for reliable resource provisioning that can operate across different
(and often multiple) distributed computing system domains, including cloud, edge and fog com-
puting. In this respect, we do not limit our scope to a specific scenario, context or ecosystem, but
rather focus on the techniques proposed to tackle provisioning, elasticity and remediation problems,
and discuss how these techniques are shaping the next generation of edge/fog/cloud computing
architectures. Such architectures are extremely heterogeneous and complex in many respects, to the
point that a “fully engineered” approach to modeling and prediction/actuation may be exceedingly
complex, if not plainly ineffective. For this reason, we explicitly target those techniques that employ
some form of machine learning applied to modeling, prediction, classification and forecasting
related to resource provisioning, applications/components placement, migration, and remediation
in a continuum of distributed computing contexts. Accordingly, this paper first decomposes and
structures the problem of reliable resource provisioning, and then puts a special emphasis on a
survey of machine learning-based approaches to the solution of this problem or parts thereof.
Several recent surveys have addressed different aspects of cloud, edge and fog computing to

date. Among these, [85] surveys the current status of the integration of cloud computing and
edge computing for the IoT. The advantages and weaknesses of several available architectures
and solutions are discussed along with comments about the IoT applications that can benefit from
distributed cloud deployments. The work in [105] surveys 105 works about mechanisms for the
identification and optimal provision of cloud resources, chosen based on their quality and relevance.
The authors propose a collection of research questions, match the papers with these questions,
and identify covered and less investigated areas. Moreover, they propose future directions, such as
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studying the impact of Service Level Agreement (SLA) violations, dealing with different Quality
of Service (QoS) parameters, and a need for evaluations of the proposed solutions in real cloud
environments. Numerous architectures of edge-oriented computing systems are explored in [58],
which proposes to clarify the edge/fog terminology, through related concepts. The main focus of the
survey is on different architectures, management and optimization approaches tackling a number
of issues in the architectures, including resource provisioning, placement, offloading, migration. A
description of prior work based on pursued optimization objectives is also provided.
While very useful to put distributed edge/fog/cloud computing systems in perspective and to

assess the progress of the recent research and engineering of these systems, none of the above
surveys provides an analysis of the available literature from a machine learning perspective. Among
other propositions, our paper aims at filling this gap (which has been only partially addressed by such
works as [113]), and especially focuses on machine learning-based techniques, thus highlighting the
opportunities that these techniques provide for the management of complex distributed systems. In
more detail, the contributions of this paper include: (1) a problem formulation of reliable resource
provisioning for distributed applications in edge-cloud environments; (2) a decomposition of the
problem and a classification of sub-problems regarding resource provisioning and application
remediation; (3) a comprehensive review of cutting-edge classic and machine learning-based
schemes for workload modeling, load balancing, application placement and migration, computing
offloading, system autoscaling and remediation; and (4) a problem-oriented discussion of a next
generation of edge-cloud computing techniques needed for addressing the problem.
The remainder of this paper is organized as follows. Section 2 introduces terminology and

describes enabling technologies to support the survey. Section 3 defines the problem of reliable
resource provisioning in edge-cloud environments, and provides a classification of sub-problems
that form the structure of the survey. Section 4 surveys classic and machine learning-based methods
for addressing various aspects of resource provisioning and compares the schemes. Section 5
presents a problem-oriented discussion about the state of the art, gives an overview of the surveyed
solutions, identifies open issues and challenges, and discusses an optimization framework to fully
address the problem. Finally, we draw concluding remarks in Section 6.

2 BACKGROUND, TERMINOLOGY, AND ENABLING TECHNOLOGY
2.1 Cloud Computing
Cloud computing concerns the provisioning of resources, including computation, memory, storage,
network, and applications/services, over the Internet. This computing paradigm basically adopts
the client-server architecture and facilitates centralized deployment and computation offloading
for applications. In this way, cloud computing is cost-efficient in application deployment and
maintenance, and flexible in resource provisioning and in decoupling services from underlying
technologies at both the client and server side. Cloud computing and its enabling technologies
have been studied for decades, and numerous mature computing platforms have been delivered in
the market, e.g., Amazon EC2, Google Cloud Platform, Microsoft Azure and IBM SmartCloud.

The expeditious evolution of mobility-enabling technologies along with the popularity of mobile
devices nowadays has pushed the research on cloud computing to support mobile applications as
well as user/device mobility. Modern mobile devices are equipped with powerful sensing capabilities,
hence, can provide sensory data of their surrounding areas. By exploiting such data, the devices and
applications are able to bring context-aware services to users. Because of this trend, mobile cloud
computing has been introduced in [49] as an integration of mobile computing and cloud computing.
It is formally defined as a novel computing paradigm aiming at resource provisioning to the devices
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so as to boost the context awareness capability of both the devices and applications. The work also
surveys numerous platforms that have been developed for this computing paradigm.

2.2 Edge and Fog Computing
A huge volume of data needs to be aggregated and consumed in order to generate intelligence and
improve the context awareness of distributed applications. Fog and edge computing can meet this
demand by leveraging distributed resources, up to the edge of a network. In the fog computing
paradigm [78], the continuum of resources from the cloud to the edge is leveraged to provision
computing and storage capacity to services and applications. Edge computing extends the concept
further, so that potentially all computation and storage resources of edge network elements, e.g.,
access points, switches, routers, base stations and mobile devices, are utilized to provide a cloud-like
computing environment to applications [94]. Besides an extension in the utilization of network
infrastructure, this also provides optimizations in replicating information across networks to
enhance local context awareness. Considering the convergence of information technology (IT)
and telecommunications networks, mobile edge computing (MEC) is proposed as an instance of
edge computing, in which the computational capabilities of Cloud and IT are integrated in Radio
Access Networks (RANs) which are close to subscribers [44, 101]. For standardization purposes,
the European Telecommunications Standards Institute (ETSI) has established an industry standard
for MEC as depicted in [41], which targets at an incorporation of the telco and IT cloud systems to
form cloud-like environments within RANs.

Cloudlet computing is another architecture under the umbrella of edge computing [98]. A cloudlet
is known as a small-scale DC bridging mobile/IoT devices and the central cloud. It is dedicated
to quickly provision cloud services to the devices within its vicinity [99]. To support cloudlet
deployment, OpenStack++ [114] (an extension of OpenStack [82]) has been developed by Carnegie
Mellon University to provide a set of cloudlet-specific APIs. Moreover, commercial cloudlet-based
applications have recently appeared in the market, e.g. Akamai’s cloudlet applications [47].

2.3 Application Architecture
The emergence of data-intensive and highly interconnected distributed applications such as fifth-
generation (5G) mobile telecommunication systems, IoT applications, and big data frameworks
are driving the need for new paradigms for the design and deployment of large-scale software
systems. Under the cloud computing umbrella, various conceptual models have been introduced
for distributed applications [118, 121]. A distributed application in the cloud generally consists of a
set of components spread over multiple cloud resources, while in edge computing the components
of an application can be deployed on nodes both inside and outside the central cloud (edge-cloud
application) . The shift of components from the cloud towards the network’s edge makes it possible
for the application to lower its network footprint while improving its responsiveness. The aim of
edge deployments is apparently to combine the strengths of edge environments (e.g., low latency,
high localization, network offloading) and cloud DCs (e.g., scalability, energy efficiency, economy of
scale effects) to construct systems that better meet the needs of data-intensive and/or latency-critical
applications, especially when these needs are not cost-efficiently served by either approach alone.
Modern large-scale edge-cloud applications require novel architectures (beyond the notable

multi-tier and service-oriented architectures) to flexibly adapt to changes in the underlying network
infrastructures and computing techniques. One of the advanced architectures which has been intro-
duced recently is the microservice architecture, simply referred to asmicroservices. According to this
architecture, an application is implemented as a collection of loosely coupled services, each of which
has it own business goal, communicates with others through a well-defined interface, mostly using
HTTP/REST [27, 92], and can be developed, deployed and maintained independently. Microservices
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can be considered as an evolution of service-oriented architecture (SOA) to accommodate cloud and
edge computing [104]. By employing microservices, a single cloud application can be distributedly
deployed from cloud DCs down to the edges of the networks, and some components can be located
even on the user devices. This architecture apparently delivers a high horizontal scaling flexibility
in edge-cloud computing [68, 104]. As pointed out in [27, 68], Google, Netflix, Amazon, eBay,
Twitter, and many other companies have evolved their applications toward microservices due to
aforementioned benefits. Fig. 2 illustrates the architecture of a microservice-based application.

Fig. 2. An example of microservice-based application including one front-end service and five back-end
services. The application can be accessed through a web (HTTP/HTTPS) interface or an API gateway.

2.4 Application Migration
Under the context of distributed edge-cloud application, application migration is defined as a
relocation of one or multiple components within hosts or edge-/cloud-DCs. Since components
are hosted and running in virtual machines (VMs) or containers, a component migration implies
a VM/container migration. The execution of a migrated component needs to be resumed in the
new host, thus the component’s data related to the current VM/container instance’s configuration,
the component’s state and user sessions have to be transferred to the host for initializing the
environment and resuming the component. Migration aims to provide workload balancing, fault
tolerance, system stability, and energy efficiency. Based on relocation strategies, it can be categorized
as either live migration with almost zero service downtime or non-live migration with some service
suspension [66, 81]. Non-live migration is the simplest and most naive technique [8], which first
shuts down the source instance, transfers data of the instance image to the new host, and then
reboot the instance. In contrast, live migration is more advanced and constitutes an attractive topic
in both academia and industry. Numerous live migration schemes have been proposed [20, 108, 128],
and various products currently support live migration [18], e.g. VMware ESX [116], Microsoft
Hyper-V [71], Oracle VM Server [83], KVM [55], Google Cloud Platform.

2.5 Machine Learning
Machine learning is the discipline of teaching computers to predict outcomes or classify objects
without being explicitly programmed for such tasks. One of its basic assumptions is that it is possible
to build algorithms that are able to predict future, previously unseen values using training data and
the application of statistical techniques. Machine learning has been highly successful in areas like
self-driving cars, speech recognition, effective web search, and purchase recommendations [38], to
name only a few examples. This success is mostly due to the availability of large datasets and the
continuous improvements in the computational power of servers and GPUs [31].
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Machine learning algorithms can be classified into two main groups: supervised and non-
supervised algorithms. Supervised learning refers to building models given a collection of training
predictors X1,X2, . . . ,Xp and the corresponding response variable Y , whereas in unsupervised
learning there exist only predictors, hence the algorithms have to learn the structure of the train-
ing data (clustering). When the goal is to predict a continuous or quantitative output value, the
corresponding problem to be solved is called regression, whereas the prediction of a categorical or
qualitative output is known as a classification problem. In Fig. 3 we provide a taxonomy of some of
the most popular machine learning algorithms used in practice.

Fig. 3. Classification of the most common machine learning algorithms.

Machine learning methods can be parametric where certain assumptions are made about the
functional form of the model and training data is then used to fit its parameters, e.g., as in polynomial
regression, or non-parametric, e.g., neural networks. Machine learning can be used also for inference
tasks, i.e., in order to understand how the response variable is affected when the predictors change.

3 RELIABLE RESOURCE PROVISIONING IN EDGE-CLOUD ENVIRONMENTS
As outlined in [84], reliable resource provisioning for edge-cloud applications is a complex problem,
especially when it is examined in a multi-tenant edge-cloud environment where the infrastructure
is utilized to host numerous applications/services owned by different service providers. Each ap-
plication typically has its own set of requirements, and there is a high possibility that controlling
operations or tuning the performance of one application will have some impact on the others.
When dealing with user workloads, data analysis must be performed from two different angles, at
both the application- and the infrastructure-level. Additionally, the problem also defines that the
applications are deployed and operating in heterogeneous and geographically dispersed resource
environments. In short, solving the problem completely and optimally is a challenging task which
entails a mixture of multiple techniques to attain the predictability and controllability of the appli-
cations’ performance in edge-cloud environments. This leads to the necessity of a comprehensive
investigation of different aspects of the problem, so as to produce a holistic view on the challenges
and issues when deriving a solution. For this purpose, in this section we outline and discuss aspects
of resource management at the workload, application, and infrastructure levels.

3.1 Workload Analysis and Modeling
Workload is commonly interpreted, within the context of distributed application, as the total
number of requests issued by clients to an application or a single application component. According
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to distinct characteristics and based on different perspectives, it can be categorized into different
types, including sequential or non-sequential/random workload, transactional or non-transactional
workload, and computation-intensive, data-intensive, or memory-sensitive workload [12, 33]. The
demand of resources is different for each type of workload, in terms of both resource type and
volume. The components of an edge-cloud application are designated to perform different tasks
which highly likely deal with different kinds of workload. Moreover, because of the wide dispersion
of the components over networks, workloads are distributed differently across locations from the
cloud- to edge-DCs. These characteristics lead to a high complexity and challenges in workload
analysis and modeling. Nevertheless, understanding the workload behavior is apparently beneficial
for the performance and reliability improvement of an application, in the way that resources are
sufficiently allocated for the application to serve any coming workloads. As a result, significant
effort has been made to accomplish workload modeling recently, especially the work aiming at real
workloads of Google [60, 61], Facebook [122], Netflix [107], and Wikimedia [9].

Furthermore, most recently comes a demand of workload behavior prediction [54, 61]. In the age
of IoT, there emerges an increase of the number of mobile users/devices accessing cloud applications.
This introduces sudden changes of workloads at certain locations within some periods of time. In
other words, edge-cloud applications may experience variations of workloads in an unpredictable
manner. Knowing about the spatio-temporal distribution of future workloads in advance brings
benefits for application scaling, i.e., the system becomes capable of proactively scaling for an
early resolution to meet the real-time resource needs of applications and services. In this way,
resource utilization can be optimized while guaranteeing the SLA as well as the QoS, which in
turn leverages the business of cloud service providers. For research and development, workload
modeling and prediction enables the generation of proper models for constructing autonomous
systems which are able to perform optimization in autoscaling and remediation (being discussed in
the next sub-section) under diverse circumstances.

3.2 Application Optimization
Due to the nature of the computing platforms, the applications deployed in edge-cloud computing
environments have to face numerous issues caused by the limited of bandwidth, the unreliability
and heterogeneity of wireless communications, computation offloading, and security [24, 49]. The
performance of such edge-cloud applications is also affected by the fluctuation of the workload
of different components at different locations in the network. In order to maintain QoS, elasticity
and remediation should be taken into account as two key requirements of an application [77].
In fact, elasticity enables computational resources to be flexibly scaled to meet the demand of
applications or the users, while remediation allows applications to be recovered in case of any
failures. To equip an application with elasticity and remediation capabilities, multiple techniques
have been introduced. Out of those, three techniques are widely applied in practice: load balancing,
application scaling, and migration.
Load balancing addresses the effective dissemination of workload coming to a system or an

application throughout the available system resources, so as to achieve better efficiency and improve
the application throughput. It is a multi-stage process including the identification and allocation of
proper resources, and the actual dispatching of the incoming workload. Resources to be allocated
could be an instance of an application or a component, a container, a VM, or even a physical
machine. As overloading leads to a degradation of the application’s performance, load balancing is
required for distributed applications to maintain its efficiency and QoS requirements [73]. Load
balancing schemes are typically implemented using either static or dynamic balancing method.
While the workload placement rules are predetermined in a static scheme, in a dynamic one the
workloads are dynamically processed and assigned at runtime. Although static schemes are simple
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and typically more stable, they do not perform optimally in heterogeneous distributed applications
subject to unpredictable workload fluctuations as well as to the variation of workload distribution
over time [21, 28, 46].
Scaling (or autoscaling) is an essential technique for cloud computing because it advocates the

key principle of pay-as-you-go in resource usage on the computing platform. Scaling empowers
resources to be allocated or released dynamically according to the demand of the applications,
thereby reducing the resources cost due to over-provisioning while maintaining a given QoS.
Scaling is now widely employed in the products of major cloud service providers such as Google
Cloud Platform, Rackspace, Amazon Web Services and Microsoft Azure. Depending on the resource
provisioning methods, scaling can be horizontal (scale out/in) or vertical (scale up/down). To
horizontally scale an application means to add/remove a number of instances of a component,
i.e., adding/removing VM/component instances on which components are hosted and running
to/from the application. Typically, load balancing accompanies this type of scaling in order to
fairly distribute the workload among different instances. Vertical scaling works by adjusting the
amount of resources, such as computation and/or memory resources, allocated to a running instance.
According to the characteristics and requirements of applications, scaling tasks can be performed
in either a reactive or a predictive manner. Reactive scaling is triggered to react to the changes
under current conditions of the application, whereas predictive scaling first analyzes historical
workload data, creates a workload model, uses the model for future workload prediction, and finally
generates early resolutions to proactively allocate resources needed by the application in the future.
Although predictive scaling methods are more advanced, the reactive ones are widely adopted in
commercial products due to the simplicity, accuracy, and high performance [7, 76, 79, 96].

3.3 Infrastructure Optimization
As discussed above, a distributed application consists of multiple components which may come with
different sets of requirements. Specifically, components designed to perform CPU-intensive tasks
definitely demand a large amount of computational resources. Those dealing with large amounts
of data require a high data throughput and a large storage capacity. Other components interacting
with the end users are expected to be responsive in communication-intensive tasks. The problem
of deploying such different types of component in edge-cloud environments becomes crucial and
more challenging due to the diversity in capacities and locations of resources in the cloud, fog,
and edge networks. Tackling this problem is apparently coupled with edge-cloud infrastructure
optimization. A key technique often used in this context is to leverage the level of indirection
offered by virtualization technologies to construct software-defined infrastructures (SDIs) based on
VMs and lightweight containers, where components can be dynamically assigned to and migrated
between physical resources.
Being built on top of virtualization technologies, SDI provides a full abstraction to cloud DC

infrastructure. This implies that cloud resources are softwarized and dynamically programmable,
configurable and controllable without any intervention by human operators [95]. In this way, SDI is
capable of providing resources flexibly for various service providers’ demands in the deployment of
their applications/services. Such resource provisioning on demand helps exploit resources effectively
and reduce energy consumption. In other words, SDI allows infrastructure providers to optimize
the utilization of infrastructural resources and communication networks. Another observable
advantage of SDI is to improve the applications’ elasticity. In fact, the abstraction of infrastructural
resources enables applications to be quickly autoscaled by the initiation of new VMs/containers or
via the reconfiguration of existing ones hosting instances of applications/components. Moreover, it
permits workload migration, which is impossible or requires too much effort to be automated with
physical resources in legacy infrastructures.
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Virtualization also facilitates and eases the placement of multiple VMs/containers in a single
physical server, which is known as server consolidation. Its primary target is to obtain an optimal
placement where the optimality criterion depends on the service provider’s requirements (e.g.,
low power consumption) or on the application requirements (e.g., fast response time, redundancy,
etc.). Server consolidation relies on application migration techniques which actually migrate
VMs/container between physical servers in order to implement the optimal placement solutions. It
is especially necessary in the cases that workloads arriving at components are unpredictable [26].
In fact, to maintain the QoS whenever workload variations are experienced, VMs/containers
hosting the corresponding components need to be resized/reconfigured and migrated to proper
physical servers. This causes workload redirections, which in turn result in consolidations of the
workloads of co-hosted application components on specific physical servers. In this way, server
consolidation can minimize the total number of physical servers required to host VMs/containers,
thereby optimizing the utilization and efficiency of individual resources and clusters. Specifically,
hardware costs, operation and administration costs are all minimized thanks to the use of a small
number of physical servers.

Fig. 4. An example of an optimization engine for VM/container placement. The optimizer is designated to
produce the application and/or infrastructure optimization plans of VM/container placement.

3.4 Summary
Fig. 4 demonstrates a general architecture of an optimization engine which is employed to solve
problems related to reliable resource provisioning for large-scale distributed applications operating
in edge-cloud environments. The problems can be regarding application optimization or infrastruc-
ture optimization, and tackling each of themmay requires some understanding or models of both the
workload and the architecture/structure of the applications. Therefore, the engine is often designed
with two modelers for workload and application modeling, a predictor for producing predictions of
workload and application behaviors, and an optimizer for solving optimization problems. The work-
load modeler can take two different types of input: the models generated by third-party modeling
tools or the raw data, and then produces workload models to feed the predictor. To support different
types of applications and input data, multiple modeling techniques/methods can be used by the
two modelers. In addition to the workload models, the predictor also utilizes application models to
facilitate its predictions with the workload propagation or the workload distribution throughout
the components of the applications. In the same manner, multiple optimization methods/schemes
are installed in the optimizer to enable the engine to deal with various problems in different cases
and/or with different input data which are provided by the modelers and predictor. The outputs of
the optimizer (also the optimization engine) are the optimization plans of VM/container placement.
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This survey is motivated by the complexity of the problem of reliable resource provisioning for
edge-cloud applications. To the best of our knowledge, there have been numerous studies surveying
separately related sub-problems raised in each of the aforementioned topics, but none of them has
investigated the problem as a whole to provide a complete technical reference to both academic
and industrial research. By way of contrast, our survey sketches a full set of such sub-problems,
and then carries out an exploration of the state of the art of machine learning-based techniques to
solve them, before discussing how to address the problem as a whole.

4 LITERATURE REVIEW
Fig. 5 depicts a taxonomic classification of the literature surveyed by our paper. The studies have
been classified in four main groups. Workload Analysis and Prediction deals with the task to
mathematically model workloads and forecast future values given past behavior. Placement and
Consolidation is about finding the optimal location of services and applications in large DCs.
Elasticity and Remediation cover load balancing and how to properly scale applications. Finally,
Network Function Placement studies similar issues in a network function virtualization context. We
emphasize that, unless otherwise stated, the works surveyed in the following often cover techniques
that can be applied to different virtualization technologies (e.g., VMs and containers) alike. For each
paper, we still describe the context chosen in that specific work, and for techniques that can be
applied only in a specific context (e.g., live VM migration) this is stressed upon the first occurrence.

Fig. 5. Taxonomic classification of the studies reviewed in the survey.

4.1 Workload Analysis and Prediction
Workload analysis and prediction has recently become an important research topic, as testified by
the significant body of literature and by the presence of a few surveys covering aspects of this field.
The recent work in [10] classifies workload traces collected from various types of applications (web,
mobile, video streaming, etc.) as well as from the utilization of the underlying network infrastructure.
The work discusses distinct workload features, characteristics, models and techniques to derive
them. The models are applied in diverse contexts, in order to facilitate diverse resource planning
and provisioning tasks, video content delivery, and system performance evaluation. Given a broad
concept of workload and goals, the insufficiency of workload datasets for public use, and the fast
evolution of cloud technology, the papers covered in [10] are shown to have different degrees of
maturity (the highest being found in web applications and social networks).
Another recent survey [39] explores statistical and machine learning-based methods used to

forecast the future workload of online systems given past values and additional features. The
survey covers time series analysis methods including autoregressive integrated moving average
(ARIMA), generalized autoregressive conditional heterokedasticity (GARCH), and self exciting
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threshold autoregressive moving average (SETARMA) models, as well as modern machine learning
methods including advanced neural networks, support vector machines (SVM), decision trees,
Bayesian networks, splines, and exponential smoothing. The selected studies in the survey cover
data preparation, workload modeling and prediction methods. Notwithstanding this, most of them
exclude up-to-date examples on how to use the methods to forecast future workload.

As the above surveys suggest, workload modeling and prediction in general was born mainly in
the context of classical cloud computing scenarios. However, its great potential for the optimization
and self-management of complex cloud/fog/edge scenarios makes it important to picture the most
employed characterization techniques. This will be the focus of the next paragraphs and will be
summarized in Section 4.1.3.

4.1.1 Workload Analysis and Modeling. Jia et al. propose to use principal component analysis to
find a set of crucial metrics out of a set of 45 metrics to characterize an array of 32 big data workload
traces retrieved from BigDataBench [45]. The authors apply k-means clustering and a Bayesian
information criterion both to study the affinity of the workloads, and to select a subset of represen-
tative ones. The work considers two different software stacks: Hadoop and Spark. These stacks are
shown to have a greater impact on the behavior of applications, from a microarchitecture point of
view, than the employed algorithms. An alternative approach to characterize application workload
is introduced in [50], which proposes to collect hardware performance data for modern processors,
as this method is potentially less invasive than traditional monitoring tools. The methodology has
been evaluated using two different ARM-based mobile phones, with three applications running in
each device.
The authors of [4] develop a tool for low-level workload characterization using data collected

from a hypervisor located in the virtualization tier and management operations of VMs. This
makes it possible to characterize applications based on a set of typical CPU, memory, storage, and
network utilization metrics. To do so, the authors apply a linear combination of various “canonical
workloads”, which correspond to the set of above metrics, coupled with the least absolute shrinkage
and selection operator (LASSO) method. The methodology is evaluated through a set of standard
benchmarks such as MySQL and Apache web in a lab environment using synthetic datasets. The
advantage of monitoring the hypervisor for workload data collection instead of each VM yields a
lower footprint on machine performance.
The study presented in [107] has the advantage of using real workload data from a Netflix

production server for workload analysis and modeling. The authors illustrate the spatio-temporal
characteristics of the user behavior in the workload, through the concepts of chain and phase. A
chain denotes a series of requests issued by a particular user to the same Netflix resource, whereas
a phase represents a short transient, stable, or inactive period in a session. By subdividing data
into chunks according to the above concepts and by analyzing each chunk, the authors obtain
fine-grained workload information. To prove the efficiency of their method, the authors develop
workload-specific prefetching algorithms that reduce the utilization of storage and system memory.
The work in [122] utilizes basic distribution analysis and data decomposition techniques to analyze
the memcached workload in a Facebook production system, so as to obtain insight into the role and
efficiency of the caching system and the patterns of user behaviors. The results serve to construct
realistic key-value cache models and synthetic workloads, and provides directions to structure
and design key-value cache systems. The authors of [56] perform an analysis on workload data
collected from a virtual Content Delivery Network (vCDN) of an European telecommunication
company. Different frequencies are used to decompose the workload data so as to identify workload
characteristics and behavior. Next, the authors adopt seasonal ARIMA model combined with Box-
Jenkins method to construct the workload models, which in turn are used for workload predictions.
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The models provide predictions with root mean squared error (RMSE) at about 0.015. Aiming at
container workload characterization, in [16] descriptive analytics is employed to analyze workload
traces of Alibaba’s DCs so as to highlight the main issues faced by a data center hosting both
production-scale long-running jobs as well as more dynamic non-containerized batch jobs. The
study highlights typical resource overbooking patterns, and confirms a reliable prediction of
resource usage over time is needed to avoid, e.g., straggling issues and co-location interference.

The authors of [119] carry out a comprehensive workload analysis and modeling for the workload
data collected from three different private cloud production deployments: a large-scale software
development system, a generic cloud, and a business process integration framework. They compare
the capability of the hyperexponential, lognormal, and Pareto parametric models to answer “what-if”
questions for load variation prediction, infrastructure capacity planning, and cost estimation. The
workload of the VMs is characterized in terms of the interarrival time of the requests, VM lifetime,
number of VMs requested, and the size of each VM. However, it remains unclear if physical system
parameters (CPU, disk, and network usage) can be predicted from the features used for workload
characterization, and if the considered three-phase hyperexponential distribution generalizes to all
kinds of environments or remains specific to the studied dataset.
The use of system log analysis to automate workload characterization is proposed in [3]. With

the results of the analysis, the authors derive sequences of interactions with the system (termed
sessions) and propose a customer behavior graph model to reverse-engineer high-level application
scenarios at the user interface level, typically in terms of usage patterns. The validity of the model is
tested with artificially generated workload for a web server in a testbed. The proposed method is apt
for e-commerce systems, which naturally employ a concept of user sessions. In [19], Cuzzocrea et
al. propose to collect time series of references mapping a program to virtual memory at run time,
and to apply spectral analysis to the collected data. The authors then model the time series using
an ergodic continuous hidden Markov model in order to characterize application workload, classify
applications (e.g., for benchmark construction), and generate synthetic workloads. Experimental
validation is carried out using a collection of typical applications.

With the objective of extending CloudSim, [65] presents a workload modeling approach encom-
passing data analysis, model parameter estimation, simulation and validation. Synthetic workload
data used in the study is generated via RUBiS [13]. The collected workload metrics include the
CPU, memory, and storage utilization, the system response time, and the total number of executed
instructions. Once validated, the models are implemented in CloudSim for public use. The authors
of [102] propose three different methods (linear, weighed, and exponential) to model the CPU
workload of the control plane of a Software-Defined Network (SDN) hypervisor. The models are
tested using an emulated data plane with the FlowVisor and OpenVirteX hypervisors. The study
in [103] extends [102] by considering the fluctuation of resource availability, by including a better
workload model based on SVM, and by testing the proposed method in a simulation environment.

4.1.2 Workload Prediction. A Bayesian approach is discussed in [22] to predict the future CPU
and memory workload of a given application. The authors propose a set of metrics that can be used
as predictors (e.g., mean load, fairness index) and their combinations, and evaluate their results
against other moving average and autoregressive models via the Google dataset [90]. Similarly [48]
proposes to predict the CPUworkload on VMs, by joining time series autocorrelation measurements
and similarity clustering. The results are validated using a data captured from a real private cloud.
A significant improvement in prediction accuracy is observed.

Liu et al. present a workload analysis and prediction using trace data of a cluster in the container-
based Google cloud [60]. Starting from the duration and waiting time of computing jobs, the study
addresses the impact of the correlation between the job state (submission/finish/failure) and the
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number of machines on the overall cloud performance. After observing that none of the considered
prediction methods performs efficiently, the authors propose a weighed ensemble method, where
weights are adjusted based on the error time series of the methods.

Hu et al. propose a distributed system to monitor and predict the grid resource utilization [40],
where prediction is delegated to neural networks and SVM, whose hyper-parameters are optimized
through genetic and particle swarm algorithms. The models are tested using historical CPU and
network bandwidth datasets, whose relatively small size constrains neural networks to small
structures, and may not translate to big data learning on complex cloud architectures.

In [123], autocorrelation is used to identify relevant workload features to train neural networks
and forecast future CPU, memory, storage, and network workload. The methodology is evaluated
using a real dataset from an IBM production cloud. The work in [126] proposes to train multilayer
perceptrons using application workload data clusterized by CPU usage. New tasks are classified
based on proximity to one of the available clusters. The methodology is evaluated using the Google
dataset. A method to predict power consumption in DCs over different time scales is proposed
in [59]. First, the time series are de-noised using a de-trended fluctuation analysis, then power
consumption is analyzed at the desired granularity using autoencoder neural networks. The model
is validated by integrating real web server workload datasets in a simulated DC.
A combination of theoretical models, neural networks, SVM, and random forests is proposed

in [23] to predict future workloads, with the goal of reducing the machine learning training time and
increase the accuracy of theoretical models. The authors combine the models through kNN, hybrid
boosting, and probing, and evaluate the results in a testbed with two open source applications.
Given the small datasets, it remains unclear if the training would be an issue in modern machines.
A joint feature selection, clustering, labeling and machine learning approach to resource scheduling
is proposed in [124]. The main focus of the work is a set of algorithms leveraging multiple machine
learning models to improve the classification and prediction of network nodes’ performance. The
algorithms are evaluated in terms of performance classification and straggler mitigation using
the OpenCloud dataset. The authors report an achievement of up to a 92.86% node performance
prediction accuracy using the appropriate algorithm and hyperparameter choice.
In [130], the authors employ a Deep Belief Network (DBN) to make long-term (day scale) and

short-term (hour scale) predictions of future CPU andmemory requirements in a cloud environment.
The results are validated using the Google dataset, and compared to an ARIMA model. The authors
discard recurrent neural networks (RNNs) due to the long training time. The error achieved by
the DBN seems to indicate a risk of overfitting. A 3-layer neural network is trained using genetic
algorithms and applied to workload predictions in cloud DCs in [54]. The proposed training method
produces a model that predicts the NASA and Saskatchewan servers’ HTTP trace data with a higher
accuracy then achieved with the backpropagation algorithm.
Workload management is addressed in [67] via decision trees re-trained using reinforcement

learning, and applied to the best placement of new database queries. The authors implement and
test a proof-of-concept implementation. In the context of automatically scaling computing resources
in container-based cloud platforms, neural networks, Q-learning and a custom heuristic algorithm
are compared in [97] using synthetic workloads. The authors conclude that Q-learning shows the
fastest adaptation rate, and provides up to 22% resource saving.

4.1.3 Summary. Workload analysis presents different levels of maturity, mostly due to the lack
of publicly available datasets and to fast pace of cloud technology evolution [10]. Moreover, the
software used during the evaluation could have a heavier impact on workload characterization
than the selected machine learning algorithm [45]. Further analysis involved the hardware [50],
hypervisor [4], operating system [3], middleware [119], application [56, 107], network [102], and a
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combination of the above [65]. For workload prediction, most of the machine learning alternatives
have been evaluated, including Bayesian approaches [22], clustering [48], moving averages [60],
SVM [40], decision trees [67], neural networks [54, 123, 126], and combinations thereof [23], without
a clear winner [39]. However, neural networks seem to provide significantly good accuracy in
several cases, provided that sufficient data is available for training.

4.2 Placement and Consolidation Optimization
4.2.1 Application placement. Application placement deals with the deployment of application

components in physical servers, VMs and/or containers, and encompasses different problems such
as replica or content placement in CDNs, and placement of components in intra- or inter-DCs
scenarios. Each problem is formulated with its own set of constraints on different Key Performance
Indicators (KPIs), including resource utilization and the quality/availability of services. Due to
the diversity and complexity of the application architecture, deploying applications on different
computing platforms requires various placement schemes. In [106], the optimal placement if VM
is achieved by solving a linear program, along with simpler heuristic algorithms from the bin-
packaging domain. Additional requirements from a managerial point of view are also included.
The approach is validated using datasets from an industrial environment and experimental results
indicate an order-of 30% cost savings.

Wang et al. employ graph-to-graph mapping to solve the component placement problem in order
to balance the workload of different components [117]. The authors model both the application and
the physical computing infrastructure as graphs and find the optimal mapping between the two
graphs. They then propose two different heuristic algorithms to solve the problem under different
constraints, and theoretically prove them to achieve a polynomial-logarithmic approximation ratio.
In [5], graph-to-graph mapping is used for multi-component application placement in order to
minimize both the total mapping cost and the rate of mapping failure, constrained by the network
capacity and service delay requirements. After solving the mapping through an integer linear
programming, the authors deploy two heuristic algorithms. Through comprehensive simulations,
the centralized algorithm is shown to yield a near-optimal result, although its extremely high
complexity makes infeasible in large-scale cloud networks compared to the distributed one.

The placement of applications in mobile cloud networks is addressed in [111] via a multi-objective
optimization accounting for resource utilization, service latency, and provisioning costs. Besides
a globally optimum solution obtained via exhaustive search, the authors devise a local search
algorithm based on depth-first search over a local subgraph. A method to optimally allocate of
physical machines in cloud DCs is proposed in [6]. Jobs to be scheduled are characterized by
required CPU and memory, and an optimal allocation is obtained via linear programming. An
approximate solution is computed via a decision tree and linear regression. The proposal is validated
experimentally in a testbed with web server jobs. k-means and density-based clustering are used
in [125] to aggregate applications with complementary requirements on the same physical machines.
The applications are classified as CPU-intensive or non-CPU intensive based on the CPU rate and
utilization, and on the cycles per instruction, where non-CPU intensive application show higher
disk I/O time and disk usage. The methods are applied to the open Google workload traces dataset.

4.2.2 Computation Offloading. A deeper investigation on component placement shows that
the migration of computation-intensive tasks across edge-cloud DCs and mobile devices may lead
to significant application performance improvements. Seeking such an improvement leads to the
formulation of a computation offloading problem, whose objective is to improve the placement
of computation-intensive components typically by moving them out of resource-constrained de-
vices [24, 49]. In edge-cloud computing, these components can be deployed either on amobile device,
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in a cloudlet, or in an edge- or cloud-DC. Because mobile devices are resource-constrained, placing
the components on an edge-cloud server will release the devices from intensive computations,
thereby improving the performance of applications and also the user experience [62]. However,
offloading incurs communication costs and delays, and different locations may be more or less
suitable for a certain target. Therefore, offloading may achieve different benefits due to different
levels of server performance or reliability of servers and the communication medium.

Computation offloading is used for better energy efficiency in edge-cloud computing in [120]. The
work considers both two-level offloading (where parts of a mobile device’s workload is shifted to
the cloud) and three-level offloading (where the workload is initially shifted to a cloudlet, and only
after that to the cloud). The authors solve the problem with a dynamic control algorithm employing
Lyapunov optimization so as to optimally reduce the energy consumption while maintaining the
responsiveness of applications. The authors of [34] consider hybrid fiber-wireless networks as a
computing infrastructure where the cloud and MEC coexist, and provide offloading opportunities.
Offloading is optimized to maximize the energy savings of mobile devices in this context, while
satisfying communications and latency constraints. Different approaches include: an exhaustive
search; a centralized greedy heuristic scheme; and a game-theoretic scheme that operates in a
distributed manner. The work in [112] aims at optimizing computation offloading and resource
allocation in MEC to minimize the energy consumption under bandwidth, compute resources, and
latency constraints. The study covers offloading both to the cloud (assumed to have unlimited
resources), and to resource-constrained mobile peers. The authors show that such problem is non-
convex and NP-hard, and solve it iteratively using a successive convex approximation approach.

4.2.3 Server Consolidation. Both the optimization of application placement and the offloading
of computationally-intensive tasks bring benefits by reducing the ineffective allocation of resources
and by improving the service performance. Still, effective optimization solutions need to also
take into account the conditions of the underlying infrastructure, besides pure application-level
requirements. Server consolidation with the help of VM migration techniques is a prerequisite to
make truly optimal decisions. A survey of VM-specific migration schemes in cloud DCs is introduced
in [1]. The work first identifies challenges entailed by the migration of VMs across Wide Area
Network (WAN) links. Then, the surveyed schemes are characterized based on several qualitative
variables. Next, the authors propose a novel taxonomy to categorize the analyzed schemes and
frameworks, and finally list challenges and research trends.

A migration framework is presented in [25], which employs two levels of software agents to find
the optimal VM migration time and placement. On each physical machine resides a first-level agent
that is trained through Q-learning to detect overloading. A second-level agent decides where to
migrate VMs. The framework is simulated using CloudSim and compared with classical migration
algorithms. By observing that VMs share base images of common operating systems or software
stacks that remain unchanged over time, the CBase migration framework is implemented in [128]
using a central repository of common base images.With CBase, a VMmigration job consists of a base
image, user data and memory migration, where the former two take place concurrently, followed
by the latter. The authors enhance the scheme with a multilayered VM structure [127] leveraging
the reuse of base images. The consistency of user data migration is ensured via snapshotting.

The authors of [20] observe the bandwidth contention between the execution of migration tasks
and VM applications, and propose a traffic-sensitive live migration scheme for co-located VMs that
exploits both pre-copy and post-copy. The degree of contention is estimated through a network
traffic monitor that collects traffic data from each VM, and the migration sequence that causes
the least contention is adopted. The proposed scheme is implemented on KVM/QEMU. Another
live migration scheme is presented in [108], which proposes to migrate VM serially with multiple
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consecutive migration tasks: the first one using the pre-copy procedure and the remaining ones
using post-copy. Anm-mixed strategy is also proposed to pre-copym VMs in parallel before serially
migrating the remaining VMs using post-copy. A theoretical analysis based on multi-server queues
enables the evaluation of different metrics for each migration. The authors conclude that it is
feasible to implement the proposed strategies using Xen or the KVM hypervisor. Considering the
VM migration over WANs, the approach proposed in [2] employs predictive analytics to reduce
the downtime of live migrations. A regression tree is trained to decide the resource utilization
thresholds after which a migration should occur. A set of heuristics based on the cost of migration
(in terms of the number of CPUs or network usage) combined with the prediction of the VM’s
future behavior is used to finally decide whether to migrate. The system improves itself as new
data becomes available, and is evaluated via a simulated testing environment.
In [110], the authors propose an architecture and algorithm for container migration focused

on mobile services and fog computing in large-scale environments. Migration costs are measured
via communication delay and power consumption. The algorithm is based on a Markov decision
process enhanced with a four-layer neural network and trained with a reinforcement learning
strategy. Experimental validation in a testbed shows a 48.5% save in power consumption, and 59.5%
reduction in total migration cost with respect to Q-learning.
The survey in [115] introduces a hierarchical classification of server consolidation techniques

in cloud DCs, and then discusses their problems and challenges. The surveyed work is organized
according to the operational objectives and costs of DCs, and cover different types of optimization
methods aimed at addressing server consolidation and energy efficiency. Furthermore, another
survey presented in [43] covers resource reconfiguration, primarily focusing on the adaptation
of resource assignment in cloud computing, and includes references to fuzzy logic methods. A
novel definition of cloud adaptation is proposed, which separates the decision making process from
the enacting of the reconfiguration. A set of key features used to classify research directions are
derived, identifying open challenges.
PRESS is presented in [30] as an approach to predict the CPU usage workload of VMs and to

decide the optimal resource-saving VM reconfiguration that still maintains service-level objectives.
The approach seeks repetitive patterns through Fourier analysis, and resorts to a discrete-time
Markov chain model if no pattern is found. The results are obtained in a virtual lab using synthetic
data from RUBiS and real traces from Google, and compared against simpler approaches. The
scheme in [70] predicts the future CPU usage of VMs through Brown’s quadratic exponential
smoothing, complemented with a genetic algorithm to find a VM configuration that can optimally
manage the predicted workload. The performance of the proposed scheme is finally evaluated in a
sizeable environment with more than 300 servers using artificially generated loads.
The authors of [57] propose to apply a binning algorithm in order to consolidate VMs hosting

players of a popular massive multiuser online game. The authors collect time series of the in-game
user count data for 270 days, and employ correlation arguments to predict the number of users
across subsequent time intervals. The algorithm is evaluated using a simple simulation based on
Gaussian user arrivals. Workload variability can be a crucial variable to decide whether to migrate
a VM. Based on the rationale that machines facing a steady workload should not be migrated,
in [26] the authors propose linear programming-based and heuristic algorithms to optimize VM
migrations. The algorithms are validated in a simulated environment based on data traces from
TU Berlin and Google DCs, and shown to reduce migrations with minimal impact on SLA. In [42]
the authors employ an ARIMA model to predict future CPU and memory workload from past
observations taken over predefined time intervals. The predictions are based on the worst-case
forecasted workload in any interval. The migration overhead is also taken into account when
moving a VM. The proposed methodology is evaluated in a small testbed using synthetic data.
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Recently, advanced machine learning techniques have been widely employed to tackle optimal
VM migration. A two-level approach to manage the resource allocation of resources in a cloud
environment is detailed in [63], with reinforcement learning by means of an autoencoder neural
network at the global scale, along with a Long Short Term Memory (LSTM) neural network at the
local level. The models are trained using Google data, and their validity is tested in simulations.
In [74], SVM and Q-learning are used to automatically and dynamically select which resources
of non-urgent virtual networks should be migrated, and where, with the objective to migrate
VMs while satisfying QoS requirements. The method is evaluated through simulations showing
improvements over a static resource migration approach and a dynamic one with random selections.

4.2.4 Summary. Optimal application placement is mostly modeled as a graph problem [5, 111,
117] and solved using classical linear programming techniques [6, 26, 106]. It can also be combined
with computation offloading in order to increase the application performance and the quality of the
user’s experience [120] but at the expense of higher communication costs and delays. The problem
has been extensively studied in case of mobile services [34] and mostly from the point of view of
energy saving [112]. The models are typically based on queuing theory [108] and Q-learning [25, 74],
although alternative approaches have been investigated, including decision trees [2], time series
analysis [42], genetic algorithms [70] and neural networks [63].

4.3 Elasticity and Remediation
4.3.1 Load Balancing. Load balancing in combination with migration techniques can be consid-

ered as one of the key methods to realize system/application elasticity and remediation. In fact,
redirecting and redistributing workload can improve the application throughput, thereby reducing
the service latency and maintaining the robustness of the application. Moreover, in case recovery
and remediation are needed to solve problems with the infrastructure and/or the application, the
workload directed to migrated applications or components should be redistributed and balanced.

The study presented in [64] formulates a geographical load balancing problem with a cost
function that factors in energy consumption and service delay. The main goal is to identify routing
paths conveying workloads to DCs and a number of active servers at each DC, so as to minimize
the cost function. Three distributed algorithms are proposed to generate provable optimal solutions.
The first algorithm is implemented using the Gauss-Seidel method, while the last two are gradient-
based and shown to converge to an optimal solution faster. The performance of three algorithms is
evaluated and compared to that of existing ones, showing that the proposed solutions outperform
solutions considering only the energy consumption or the service delay. Targeting geographical
balancing, the authors of [15] propose a two-timescale resource allocation scheme to minimize
the overall network cost, defined to reflect energy consumption. The scheme is implemented as a
distributed algorithm dealing with long-term and short-term time scales separately, and considering
multiple constraints including the computation capacity of DCs, operational costs, power supply,
consumption and storage. The performance of the scheme is compared to that of local load balancing
and other geographical balancing schemes. Results show that the proposed scheme can decrease
the average network cost up to about 46% using data from production systems.
The work in [93] proposes a hybrid approach to minimize the service delay in edge-cloud

computing, using VM migration and transmission power control, to balance the workload of
cloudlet servers. First, an optimization problem is formulated based on a mathematical model of
the service delay, defined as the task processing time plus the network transmission delay. The
authors solve the problem using the partial derivative method and then use the solution to make
VM migration decisions between cloudlets.
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Recently, many studies have targeted at load balancing on microservices deployed on container-
based cloud platforms. The one in [35] proposes a container scheduling technique to address the
problem. The technique takes into account the attributes of every single container (e.g., size and
resource demand) and the interaction between containerized services when carrying out placement
and migration. A particle swarm optimization algorithm is adopted to realize the scheduling
technique. The performance of the proposed technique is verified and compared to MOPSO [109]
and the spread scheduling strategy widely adopted in microservices, showing that the proposed
technique outperforms both, improving the system performance by 20% and 25%, respectively. The
work introduced in [80] revisits the problem towards the minimization of the system response
time. The authors propose an algorithm named COLBA, which is based on game theory and convex
optimization, to solve the problem. The performance of the algorithm is evaluated via simulations
and the results show that the system response time improves by up to 41% and 13% against the
existing instance-oriented and microservice-oriented balancing techniques, respectively.

4.3.2 Application Scaling. Besides load balancing, application autoscaling plays a crucial role
to completely achieve application elasticity and remediation. By flexibly adjusting the amount of
resources allocated for applications and/or the number of application instances or components, it
is possible to adapt to workload fluctuations, which helps prevent the application from becoming
unresponsive or terminating. It is worth noting that after performing the application scaling, the
load balancing task should balance the workload at every instance of each application.
Aiming at a proactive dynamic resource provisioning for cloud applications, the study in [9]

proposes a system consisting of an application provisioner, a load predictor and performance
modeler, and a workload analyzer. A workload model is constructed using historical workload data
and is updated continuously at runtime by the workload analyzer using ARIMA model. It is used
for future workload predictions, which are then exploited by the provisioner to proactively allocate
resources and satisfy QoS requirements. The prediction accuracy is evaluated through real data
from Wikimedia’s web servers. Liu et al. address the problem by an adaptive workload prediction
scheme and an autoscaling framework presented in [61]. To deal with workload prediction, the
authors first formulate the workload classification as an integer programming problem, and then
optimally solve the problem through branch and bound. The obtained solution is used to select an
appropriate prediction model which is based on either linear regression or SVM. The performance
and accuracy of the scheme are evaluated using real trace data obtained from Google cloud.
The authors of [14] find that the allocation of soft resources (e.g., numbers of connections

and threads) has a significant impact on the overall performance when autoscaling n-tier cloud
applications. They construct a model to generate estimations of the maximum throughput of an
application, and then use this model to formulate an optimization problem whose solution is
derived from an analysis of both the resource utilization and application-related metrics (latency,
throughput and number of threads). The solution is then adopted in a framework to derive an
appropriate configuration for every tier in scaling tasks. The framework is finally used to realize
an autoscaling system with a resource monitor (for input data), an optimization controller (for
solution generation and decision making), and actuators (for VM-scaling and resource allocation).
A study on a joint of load balancing and application scaling problem in cloud environments is

carried out by the authors of [86]. The cloud infrastructure is assumed to be clustered, and for each
cluster a leader is selected to control application admission, autoscaling and load balancing, and also
to collaborate with other leaders to perform global resource management. A model is proposed with
multiple operating regimes, among which the optimal one indicates an energy-efficient status of a
server without any demand of VM migrations in the upcoming scheduling cycles. It also facilitates
evaluations of the efficiency of actions required to bring a server to the optimal regime. Based on

ACM Computing Surveys, Vol. 00, No. 0, Article 1. Publication date: June 2019.



Reliable Resource Provisioning in Edge-Cloud Computing 1:19

the model, a set of algorithms are proposed, which are deployed and operated on both the leader
and the member servers, to maintain the largest number of servers operating in their respective
optimal regime, so as to achieve overall energy efficiency.
In [88], Persico et al. propose an horizontal scaling control system for cloud applications en-

compassing a monitor, a fitness component, a controller, and an actuator. The system employs a
proportional-integral-derivative (PID) feedback control mechanism. The PID controller is enhanced
by fuzzy logic to be more adaptive in the presence of the unpredictable and time-varying workloads
and resources’ demands of cloud applications. In addition, the fitness function can deal with multiple
metrics (computational and network capacities) so as to meet the applications’ demands for different
types of resources. The robustness and the remediation capability of the system are demonstrated
through experiments with multiple realistic workloads in an Amazon EC2 environment.

With different focus, the authors of [79] study the impact of database tier on horizontal autoscal-
ing in 3-tier web applications in the cloud environment, and implement an autoscaling simulator
using the Queuing Network Model (QNM) and Layered QNM. First, they model the cloud ap-
plication as a network of queues and analyze the response time, throughput, and the maximum
amount of workload which can be handled by the application. Analytical results are then used for
autoscaling. Finally, a simulation system is constructed with cloud applications deployed on an
IaaS infrastructure and an autoscaler deployed to react to workload variations. The system is used
for experiments to prove how such a scaling task affects the scaling decisions of the business tier
ad how often SLA violations occur.
Elasticity for containerized edge-cloud applications has recently drawn attention from the

research community. One exemplary work is presented in [87] tackling the problem of dynamic
resource allocation for deep learning jobs, aiming at minimizing their total execution time. The
authors propose a job scheduler, called Optimus, based on an online learning technique to construct
performance models for the predictions of the jobs’ execution time. The scheduler is implemented
and integrated with Kubernetes so as to schedule containerized ‘workers’ serving the jobs. The
results show that Optimus outperforms the fairness-based scheduler [29] and Tetris [32] by up to
63% and 139% in terms of makespan and job completion time, respectively.
The authors of [51] propose a heuristic approach to control the elasticity of containerized mi-

croservices. The proposed approach is realized by a Custom AUtoScaler (CAUS) mainly performing
two complementary tasks: reactive container instance autoscaling in accordance to the changes
of workload, and proactive container instances provisioning based on workload predictions. The
approach is validated using synthetic workload under two test scenarios (with increase-decrease
and spike workload patterns). Results show that CAUS reduces the duration of resource overprovi-
sioning (in terms of the number of containers) up to approximately 30% when comparing to the
strategy of overprovisioning with a fix amount of extra containers.

4.3.3 Summary. Load balancing is formulated as optimization problems in most of the cases,
which aim at a minimization of different factors such as energy consumption [15, 64], service or
system delay [35, 64, 80, 93], and some other combinations [15]. The recently proposed solutions
to these problems, which are surveyed in the present paper, are derived using diverse optimization
techniques, including derivative-based [93], gradient-based [15, 64], convex [80], and heuristic
optimization [35]. Application autoscaling has been widely investigated with different problems
tackled through diverse solutions. Most of the studies propose autoscaling systems that proactively
and dynamically allocate resources primarily based on the workload predictions generated by
predictivemodels [9, 51, 61, 87], while the others adopt diverse approaches to address the autoscaling
tasks such as queuing theory [79], control theory combined with either queuing theory [14] or
fuzzy logic [88], and other heuristics [86].
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4.4 Network Function Placement
Network Function Virtualization (NFV) is known as a modern network architecture model based
on the technology of server virtualization, that splits network functions into basic building blocks
implemented as software components. The blocks are chained to create communication services.
NFV differs from traditional architectures in that it runs on top of standard servers or cloud
computing infrastructure, thus eliminating the demand for customnetworking appliances. Thanks to
virtualization technologies, NFV-based services, known as service function chains (SFCs), are easily
entitled to scalability, elasticity, multi-tenancy support, fast deployment and configuration. The fast
scalability and elasticity in turn enable service providers to efficiently maintain a certain degree of
redundancy so as to support remediation for their services. Fig. 6 shows a simple architecture of an
SFC with multiple virtualized network functions (VNFs) which can be deployed distributedly in
edge-cloud environments.

Fig. 6. The architecture of an SFC implemented with three VNFs (VNF 1, 2, and 3), database service and load
balancers. The VNF Manager manages and monitors the operations of all the VNFs. VNF1 and VNF3 are
scaled with multiple instances independent of other VNFs.

An approach for VNF characterization based on CPU, memory, storage and network resources to
be allotted for VNFs is proposed in [91]. The authors model the relationship between the amount of
each resource and the achieved performance through a regression tree. The approach is validated
through experiments using synthetic data in the context of a traffic classifier VNF which is deployed
on top of OpenStack. Its performance is shown to highly depend on the specific characteristics of
each network function.
Considering the problem of resource allocating for VNFs in a cloud computing environment,

a Markov decision process is applied in [100] to minimize costs while fulfilling predefined QoS
constraints. Themethod is combinedwith Bayesian learning applied to historical resource utilization
data, so as to dynamically predict the reliability of resource provisioning in the future. A performance
evaluation is carried out on the proposedmethod using simulated data. The results are compared to a
resource allocation method based on genetic algorithms. The authors of [72] solve the VNF resource
allocation problem with an algorithm that employs machine learning to predict future resource
requirements for VNF components. Such predictions are obtained through Graph Neural Network
model trained with historical and topology information (i.e., behavior of neighboring components).
The algorithm is validated under the context of an IP multimedia system optimization. The testbed
used for the validation is based on the OpenStack and Clearwaters middleware. Synthetic calls
are generated according to a Poisson distribution, and combined with real VoIP data collected
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from a university. The experimental results are compared to other policies (static and manual)
and other machine learning techniques. A machine learning-based autoscaling engine which aims
at scaling detection and decision-making tasks in NFV-based systems is proposed in [11]. For
scaling detection, several machine learning techniques are applied to realize multiple classification
models. The model training process relies on diverse historical data at both the (VNF) application-
and infrastructure-level to achieve insight into the systems’ behaviors, thereby improving the
detection accuracy. The relationship among VNF instances of SFCs is also exploited to compute a
plan for flexible resource assignment based on outcomes of the scaling detection. The proposed
methodology is evaluated using synthetic workloads for two VNFs: a Squid-based proxy and a
Suricata-based intrusion detection. In both cases, the neural network model yields the best results.

The work in [89] proposes a service chaining algorithm for VNFs. The applied method addresses
main limitations of competing algorithms including the large convergence time and the constraint
that the network configuration should remain static. The proposed algorithm employs genetic
programming to generate a near-optimal solution two-order of magnitude faster than other linear
programming algorithms. Additionally, the algorithm takes into account the changes in both
computing resources and networking resources (given the latest advances in SDN). To show the
effectiveness of the proposed algorithm, the obtained solution is evaluated using a custom testbed.
The authors of [37] focus on simultaneously optimizing the cost and the latency of the placement of
VNFs in SFCs. To this end, they propose an optimization framework employing a random selection
of clouds and cloud resources combined with a predictive model based on support vector regression.
The framework is evaluated using a combination of synthetic data generated using a queue-theoretic
model and data gathered from a cloud testbed. The study in [52] proposes a reinforcement-learning
based dynamic flow routing algorithm, which selects a path from a set of multiple paths for one
SFC in an SDN/NFV environment. This is achieved by considering both the CPU usage of each
node and the network bandwidth of the links between the nodes. The performance of the algorithm
is evaluated in an artificial environment and compared with a classic greedy algorithm.
To cope with remediation, the problem of detecting and localizing network-related issues is

investigated in [36]. The authors propose a predictive classification model to deal with the problem
of NFV deployments within a multi-cloud environment. The model is developed based on a neural
network model which adopts multiple machine learning techniques including typical “shallow”
techniques (SVM, alternating decision tree, and random forest) and deep ones (the stacked autoen-
coders). In this model, the detection checks if any issue occurs, and then determines the issue type
using a shallow learning. Next, with deep learning, the localization locates the issue within the
NFV-based system and estimates its impact on the system performance. The proposed model is
validated using two different datasets: a real dataset of network faults from the Telstra network, and
a synthetic dataset obtained by using a multivariate kernel density estimation technique enhanced
with real live network issues.

The concept of Knowledge-DefinedNetwork has been introduced recently in [69], which proposes
to add a knowledge plane to the planes defined by a traditional SDN architecture. The knowledge
plane is designated to exploit advantages of machine learning to address the most challenging
problems of complex networks. The authors show four use cases illustrating the application of
their proposal and provide solutions for two of them. The first one relates to routing on an overlay
network, whereas the other revolves around NFV using real data from a university campus.

4.4.1 Summary. A wide range of problems regarding NFV is investigated, including VNF char-
acterization [91], resource allocation and autoscaling [11, 72, 100], service chaining [37, 52, 89],
service remediation [36], and NFV-based knowledge plane addition in SDN [69]. In most of the
cases, machine learning techniques are adopted and showcase remarkable outcomes.
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5 DISCUSSION
5.1 Analysis and Categorization
Tackling the problem of reliable resource provisioning for edge-cloud applications requires address-
ing an array of sub-problems including workload analysis and prediction, optimization in resource
utilization at both the application and infrastructure levels. Numerous methods and schemes pro-
posed for such purposes have been reviewed in the previous section. Most of them adopt one
machine learning technique in their operational flow. Table 1 summarizes the techniques utilized in
these methods and schemes. We remark that our paper has adopted a broad meaning for machine
learning, which embraces both recent approaches using, e.g., deep neural networks (DNN) or
complex graph analysis, as well as more classical approaches including Q-learning, reinforcement
learning, Bayesian methods, and Markov models. In accordance with the definition provided in
Section 2.5, machine learning methods include all the models that can be trained using data in
order to carry out supervised or unsupervised classification and regression tasks.

Table 1. Summary of techniques employed by the studies in the survey.

Applied Technique References

Regression (Logistic, LASSO, etc.) [4], [11], [50], [60], [61]
Analytical models (Autocorrelation function (ACF), ARIMA, etc.) [9], [42], [56], [57], [123], [130]
Bayesian methods [22], [45], [100], [124]
Markov models [15], [19], [30], [48], [100], [110]
Queuing theory-based models [14], [64], [79], [108], [120]
Clustering (K-means, K-nearest neighbors, ...) [23], [45], [125]
Exponential ensembles [70], [102], [117], [119]
Artificial neural networks [11], [23], [36], [40], [53], [54], [59], [60], [63],

[69], [72], [87], [97], [110], [123], [126], [130]
Support vector machines [40], [23], [74], [102], [36], [37], [61], [124]
Decision trees, Random forests [2], [6], [11], [23], [36], [67], [91], [124]
Reinforcement Learning [25], [52], [63], [67], [74], [97], [110]
Control theory, Game theory-based techniques [14], [34], [80], [88], [120]
Linear programming, Geometric programming [5], [6], [26], [61], [106], [112]
Genetic algorithms, Genetic programming [40], [54], [70], [88], [89]
Graph analysis [3], [5], [111], [117]
Distribution analysis [65], [107], [122]
Derivative-based and Gradient-based optimization [15], [64], [93]
Agent-based and Heuristic-based methods [20], [25], [35], [51], [86], [97], [128]

From the present survey, it can be concluded that workload analysis and prediction is a critical
task in large-scale cloud- and edge-based computing infrastructures, since high accurate predictions
facilitate the dynamic reallocation of available resources to guarantee SLAs meanwhile saving
energy and costs. However, workload prediction is in general a difficult endeavor, even more if the
workload depends on unpredictable human activities (e.g. on web servers, CDNs, transportation
system in smart cities). Classical approaches to workload prediction are based on autoregressive
models, like ARIMA or GARCH. Recently, a new generation of data analysis models based on RNNs
have been adopted, and extensive evaluations on them show promising results. Neural network
models, e.g., LSTM, provide more accurate predictions on average than classical regressive models.
Nevertheless, neural networks require an extremely large amount of training data and extensive
computing time, and even the use of highly specialized hardware, like servers with GPUs.
The optimal placement of services in cloud environments is a highly relevant issue that has

been extensively studied. The problem has reached an unprecedented scale with the recent advent
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of the fog and edge computing paradigms, where it is often critical to locate services near the
user, so as to move computation capabilities instead of moving the data. Finding an optimal
solution to the placement of VMs/containers on physical servers is a difficult problem that could
become computationally intractable in case of large clusters, edge networks, or networks of IoT
devices. Numerous algorithms have been evaluated to find approximate solutions, from the classical
linear programming, to more advanced machine learning-based algorithms (decision trees, neural
networks, and others). Multiple, and sometimes contradictory requirements can be used as part
of the utility functions, and as input attributes to those functions. Making decisions on which
parameters to use is a complex research problem by itself that can be addressed by means of
applying machine learning techniques like principal component analysis.

Elasticity and remediation are two key functions to fully address the problem of reliable resource
provisioning for edge-cloud applications, as they ensure the reliability and robustness of the ap-
plications regardless the non-linear fluctuation of the workload over time. However, an optimal
implementation of elasticity and remediation in heterogeneous distributed environments with
resource virtualization using classic mathematical optimization techniques is computationally chal-
lenging. This is because applications running in such an environment are dynamically distributed
and highly unpredictable; and each application component may be subject to different workload.
According to the reviews in Section 4.3, all the proposed schemes require an understanding of
workload characteristics in order to efficiently perform the autoscaling and remediation. Therefore,
workload analysis and prediction based on time series analysis becomes the vital factor for the effi-
ciency of the schemes, and especially so for the proactive schemes, as they require future workload
forecasting to adjust the amount of resources allocated for applications beforehand. Our reviews
also shows that many of studies apply queuing theory and graph theory to model the service
latency, which is one of the KPIs that needs to be improved through autoscaling and remediation.
Moreover, control theory combined with advanced machine learning optimization techniques has
been used for constructing the autoscaling system or framework. As a result, it is worth considering
an adoption of the machine learning techniques when deriving holistic solutions to the problem.
Table 2 provides a summary of problems studied by each of the reviewed papers, the tools and

methods adopted, and a short quantitative summary of the achieved results. The works have been
organized according to the subsections of Section 4, and chronologically within each category. This
clearly highlights that the use of complex machine learning and optimization techniques (e.g., deep
learning, complex graph theory, and genetic algorithms) relates mainly to the most recent papers.

Table 2. Summary of the proposals, tools/methods, and main results of the studies in the survey.

Ref. Proposition Tools / Methods Main results

Workload Analysis

[4]
Using hypervisor performance
information to derive application
behavior

LASSO regression applied
over canonical workloads

A proof that information provided by
hypervisors is sufficient to
characterize application workload

[122] Characterization of Facebook’s
memcached system

Distribution analysis, data
decomposition

Insight into Facebook’s cache:
performance, cache efficiency, cache’s
key popularity, structure of requests

[50]
Characterization of hardware
performance counters of
processors

Characterization matrices,
Pearson correlation

Derived synthetic workloads
reproduce real performance with an
average error of 2.8%

[45] Identifying relevant metrics and
select representative workloads

Principal component analysis,
K-means, Bayesian
information criterion

Software stacks can have more impact
on workloads than applications in 80%
of the cases
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[119] Investigating the development of
parametric statistical models

Exponential ensembles,
lognormal, Pareto

3-phase hyperexponential models are
more appropriate than lognormal and
Pareto: RMSE down to [0.00 – 0.02]

[65] Web application modeling
Distribution analysis:
Generalized lambda, extreme
value, Weibull distributions

The proposed model provides high
accuracy in data generation: error rate
is less than 10%

[3] Analyzing log-files collected from
OS and middleware

Customer Behavior Model
Graph analysis

Inferred user behavior model is well
matched with the actual workflow of
Apache OFBiz

[102] Estimation of SDN hypervisor
resources

Linear, weighted and
exponential models

Fast convergence of exponential model
(100s) compared to linear models (300s)

[107] Devising tools for Netflix workload
characterization Distribution analysis Data prefetching improves hard drive

and memory utilization at 13% and 30%

[103] Estimation of SDN hypervisor
resources SVM Estimation error is 5.8 % with a

standard deviation of 2.5 %

[19] Analyzing virtual memory
references

Spectral analysis, hidden
Markov model

Ergodic continuous models gain
higher accuracy (76%) in workload
classification than discrete ones (65%)

[56] Analyzing traffic data of a vCDN Seasonal ARIMA Achieve low data fitting and prediction
RMSE (at about 0.015)

[16] Characterization of Alibaba’s DC
workloads Distribution Analysis

Highlight issues of DCs related to
overprovisioning, overbooking,
overcommitment, and workload
co-location for various workload types

Workload Prediction

[40] Modeling and optimization of
resource prediction models

Neural network, SVM, genetic
algorithm, particle swarm

SVM provides the best results in terms
of accuracy and efficiency

[48] Prediction based on cross-VM
workload correlation

Clustering, hidden Markov
models

Prediction accuracy is improved from
55% to 76% over methods based on
single time series prediction

[22] Workload prediction for cloud
systems using Bayes model Bayes classifier

Bayes method improves 5.6-50%
accuracy over moving-average- and
autoregression-based models

[23] Combination of machine learning
algorithms and theoretical models

Neural network, SVM,
decision tree

The proposed combination achieves
higher prediction accuracy (40% RMSE
reduction) than any other ensemble
technique

[123] Using autocorrelation to identify
relevant features and forecasting

Neural network,
Autoregressive model

Neural networks provide up to 3 times
better accuracy than autoregressive
models

[60] An ensemble workload prediction
method

Moving average, weighted
average, linear regression,
neural network

The ensemble of the four listed
methods provides higher prediction
accuracy than any single method

[67] Placement of database queries
based on machine learning

Decision tree, reinforcement
learning

The proposed solution is within 8% of
the optimal scheduling cost

[59] Prediction of power consumption
of DCs based on machine learning

Autoencoder neural network,
recursive autoencoder

Outperform canonical prediction
methods up to 79% error reduction

[126] Using clusterized data to train a
neural network Clustering, neural network

Up to 50% improvement over existing
non-clustered neural networks for
small learning rates

[61] An architecture of adaptive
workload prediction system Linear regression, SVM Achieve 8% and 29% error reduction

compared to SVM and ARIMA

[130] Automatically learning
hyperparameters

Deep belief network,
autoregressive model

Achieve 72% error reduction compared
with autoregressive models
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[97] Resource prediction for
container-based cloud platforms

Q-learning, neural networks,
heuristic

Achieve 22% resource saving using
Q-learning under a synthetic workload

[124]
Using machine learning models in
nodes’ performance prediction to
improve resource scheduling

SVM, Boosting, Decision Tree,
Random Forest, Naive Bayes

Attain a prediction accuracy up to
about 93%

[54] Training a neural network using a
genetic algorithm

Neural network, genetic
algorithm

Outperform the backpropagation
network approach; prediction error
(RMSE) reduction down to 0.001

Application Placement

[106] Placement of virtual machines in
DCs Linear programming Achieve 31% fewer servers with

respect to static allocation

[6] A combination of machine learning
algorithms and theoretical models

Decision tree, linear
regression Achieve less than 1% estimation error

[117] Applying graph-to-graph mapping
modeling technique

Graph theory, graph-to-graph
mapping, dynamic
programming, online
approximation algorithms

The proposed solution outperforms
typical ones in reducing resource
utilization, and its core algorithm
achieves an approximation ratio of 2

[111] Applying searching methods on
graph Graph theory Up to 25% reduction in cost to run DCs

compared to naïve methods

[112]
Offloading computation-intensive
tasks from user/mobile devices to
both the cloud and other peers

Successive convex
approximation, geometric
programming

Around 60% and 10% reduction in
energy consumption against two
models of local computation and cloud
offloading, respectively

[125]
Optimal VM placement based on
clustering tasks according to
resource usage

K-means, density clustering Density based clustering is faster than
k-means (with the rate of 0.17/0.21)

[5] Applying graph-to-graph mapping
modeling technique

Graph theory, graph-to-graph
mapping, integer linear
programming, heuristics

The obtained result is close to the
optimal solution (within 10.7%)

[120]
A mobile cloud offloading system
with multiple level of computation
offloading

Lyapunov optimization,
queuing theory

Around 50% reduction in energy
consumption against the local
deployment on mobile devices

[34]
An architecture and algorithms for
computation offloading in
edge-cloud environments

Game theory, greedy
heuristics

Obtain near-optimal solutions and 20%
improvement (in average) over an
existing distributed algorithm

Server Consolidation

[57] Studying server consolidation in
domain of massive online games Autocorrelation functions Achieve up to 62% energy reduction

when applying the proposed technique

[70]
Applying Brown’s quadratic
exponential smoothing to forecast
CPU usage

Exponential smoothing,
genetic algorithm

A proof that unnecessarily running
machines can be switched off without
any system performance degradation

[30] Optimal reconfiguration of virtual
machines

Fast Fourier transform,
Markov chain

Prediction accuracy at less than 5%
over-estimation error and near zero
under-estimation error

[26] Using variability of workload as a
criteria for migration

Linear programming,
heuristics

Achieve a significant reduction in the
total number of migrations

[42] Dynamic consolidation of
workloads Elastic ARIMA Attain 82% values correctly predicted

against 52% of classic ARIMA

[25] Applying multi-agent model in VM
consolidation Agents, Q-learning

Reduce energy costs (6.6% – 36.6%) and
SLA violations (10% - 50%) against
typical methods

[108]
Adopting multiple techniques to
deal with the live migration of
multiple VMs

Queuing theory
Lower the downtime extremely in all
tests, especially when the number of
parallel VM-migrations increases
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[2] Applying predictive analytics to
reduce downtime migration Decision tree, heuristics Achieve 15% improvement in total

migration time over existing schemes

[128] Live VM migration over WAN with
a central base image repository Heuristics Improve the migration time up to 19%

over traditional and simple techniques

[74]
Resource migration between
virtual networks using machine
learning technique

SVM, reinforcement learning
The number of time slots with QoS
satisfaction is doubled when compared
to a static resource allocation method

[63] Adopting two levels of resource
allocation for VMs

Reinforcement learning,
autoencoders, recurrent
neural network

Greater than 16% improvement in
energy saving against a deep
reinforcement learning based scheme

[20] A traffic-sensitive live VM
migration scheme

Network traffic profile based
heuristics

Lower the migration time up to 49%
against typical migration techniques

[110]
Employing machine learning
techniques for container migration
in fog computing environments

Markov decision process,
neural networks,
reinforcement learning

Achieve 48.5% power saving and 59.5%
migration cost reduction when
applying the proposed method

Load Balancing

[64]
Load balancing scheme facilitating
request routing to DCs and
resource allocation in each DC

Queuing theory, Gauss-Seidel
method, gradient-based
algorithms

The proposed method achieves over
40% reduction in DC operating cost

[93] Load balancing between cloudlets
based on VM migrations

Queuing theory, Shannon-
Hartley theorem, partial
derivatives

Improve service latency up to 300 ms
over conventional approaches, based
on analysis and various simulations

[15]
Applying the gradient method and
Markov chain to optimize load
balancing in cloud DC networks

Markov chain, stochastic dual
gradient method

Lower the average network cost up to
about 17% or 46% against different
existing algorithms

[35] Microservices load balancing using
metaheuristics Particle swarm optimization Improve the system performance

against existing schemes (20%–25%)

[80] Microservices load balancing using
convex optimization

Game theory, convex
optimization

Response time is improved up to 41%
and 13% against the existing instance-
and microservice-oriented techniques

Application Scaling

[9] A proactive autoscaling approach
based on workload prediction ARIMA

A high prediction accuracy (91%)
benefits the resource utilization and
reduces QoS violations

[86]
A load balancing and autoscaling
model/scheme with
energy-efficient awareness

Heuristics
Obtain a near-optimal computational
efficiency, up to 3.6 – 3.8 out of 4.46
(transactions/Watt)

[14]
Considering soft resource
allocation when autoscaling n-tier
cloud applications

Control theory, queuing
theory, least-square fitting
method

The proposed model improves system
throughput up to 30% over the default
configurations for the testing system.

[79]

An autoscaling simulation package
to verify the impact of database
layer on 3-tier web service system
scaling decisions

Queuing theory

Two hypotheses of how a scaling of
database tier impacts the scaling
decisions of the business tier and the
degree of SLA violations are validated

[88]
A control architecture for
horizontally scaling cloud
resources

Genetic algorithm, control
theory, fuzzy logic

Autoscaling error rate is lower than
30%; the improvement on integral of
squared errors over other typical and
simple schemes is up to a rate of 7/12

[51] An approach to control elasticity of
microservices Heuristic

Reduce the duration of resource
overprovisioning up to 30% compared
to simple elasticity strategies

[87] Dynamic resource allocation for
deep learning jobs Online learning

Outperform typical cluster schedulers
up to 63% and 139% in terms of
makespan and job completion time
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Network Function Placement

[100] Applying Markov decision process
to allocate NFV components

Markov chain, Bayesian
learning

The proposed algorithm can obtain
global optimal solution

[89] A fast chaining algorithm for both
computing and network resources Genetic programming Attain up to three orders of magnitude

faster than traditional solutions

[91]
Characterizing and modeling
relationship between resources
allocated for VNF deployment

Decision tree
A deployment using Single Route I/O
Virtualization brings a 10-fold
improvement against Open vSwitch

[37] Using random search algorithms
for fast VNF placement Random search, SVM Acceptance rate above 90% in the

tested configuration

[72]
Predicting future resource
requirements using past historical
information and topology

Graph neural network Enhance processing delay 29% and
reduce call drop rate by 27%

[11]
Detecting resource flexing events
based on features of VNFs and the
NFV infrastructure

Neural network, decision tree,
random forest, logistic
regression

The neural network provides a gain
between 5% and 19% in accuracy with
respect to other models.

[69] Introduction of the Knowledge-
Defined Network paradigm Neural network Experimental validation with a less

than 1% of relative error

[52] Applying machine learning to
routing path selection for SFCs Reinforcement learning Obtain a service path closest (with a

ratio of 0.8) to the optimal solution

[36] A multilayer fault detection and
localization model based on DNN

Autoencoders, SVM, decision
tree, random forest

Achieve 100% accuracy in test datasets
with deep learning models

A common recurring pattern that appears in most of the reviewed papers is that the machine
learning models proposed have not been trained and tested using large, high-quality datasets
gathered from a strong industrial players in production environments. Most of the works are based
on synthetic datasets, small datasets, or datasets that are not representative of real scenarios. Only
a few publicly available datasets could be considered as good representatives of real production
environments. These are the ones published by Google, Facebook, Netflix, and Wikimedia, although
the datasets are still comparatively small and old (see Table 3). This lack of relevant and fresh data
makes it difficult to correctly assess the quality of the published results, and even more important,
to compare the results among competing works. A large, realistic, publicly available dataset from a
powerful industrial partner would work as a benchmark, and would allow the scientific community
to evaluate and compare different ideas and approaches to a much broader extent.

Table 3. Summary of performance evaluation methods and techniques employed by the studies in the survey.

Evaluation Approach References

Synthetic Dataset [2], [3], [4], [11], [14], [15], [19], [20], [30], [35], [36], [37], [42], [51], [54], [65], [72],
[86], [88], [91], [97], [110], [111], [119], [128]

Historical Dataset [6], [9], [15], [16], [22], [23], [26], [30], [36], [45], [48], [56], [57], [59], [60], [61], [63],
[64], [69], [70], [72], [80], [106], [107], [110], [119], [122], [123], [125], [126], [130], [124]

Simulation [2], [3], [5], [6], [9], [15], [25], [26], [30], [34], [35], [37], [45], [52], [54], [57], [59], [60],
[61], [63], [64], [65], [69], [72], [74], [79], [80], [86], [89], [100], [102], [103], [107],
[111], [112], [117], [119], [120]

Testbed [4], [14], [20], [23], [40], [42], [45], [50], [51], [67], [70], [87], [88], [91], [97], [110], [128]
Production Deployment [106]

Moreover, it would be highly desirable to achieve a deeper involvement of the industrial players in
the studies, not only by providing relevant requirements, but also by contributing to the evaluation
of the results, and in particular to the deployment of small-scale pilots in production environments.
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Although testbeds make it possible to test different ideas and configurations, without an evaluation
on a production environment is difficult to draw final or complete conclusions.

5.2 Recommendation of an Optimization Framework
The survey together with the discussion above motivates us to come up with a framework, based
on which solutions to the problem of reliable resource provisioning for edge-cloud applications
can be designed, developed, and executed. As illustrated in Fig. 7, the recommended framework
entails three different optimization levels for the deployment and management of applications in
heterogeneous edge-cloud environments. Each level requires a certain degree of understanding
about the applications as well as optimization schemes in resource provisioning. The solutions
achieved at each level aim to fulfill different degrees of requirements of various use cases in reality.
The core of the framework is an optimization engine which consists of multiple modelers and
optimizers used for different purposes. More specifically, the modelers aim to produce different
models for each application, including network models, workload models, user mobility models,
and application models, among others. All models are used to provide a complete view of the
application and as an input for optimizers to deal with a wide range of optimization problems
related to the placement, deployment, autoscaling, and remediation of the application.

Fig. 7. A stratified approach to constructing an edge computing optimization framework iteratively building
on optimization three building blocks: 1: classic optimization on static data, 2: application adaptation variations
in workloads and resource availability, 3: joint autoscaling and optimization in multi-tenancy scenarios using
machine learning.

As observed in the figure, the first level of optimization is the simplest one which aims at
the placement of applications throughout the edge-cloud environments under fixed network,
application, and QoS requirements constraints. This has been widely investigated in general, but
still needs to be revisited so as to derive specific solutions for every particular use case. Solutions can
be used for long-term resource planning or as the initializations for further optimization levels. In
the next level of optimization, the variations of workload and user behaviors are taken into account
for dynamic application placement and autoscaling. The workload model and user mobility model
are used to estimate the demand of resources of every single component for each application. With
the estimation results, resources are then allocated properly for each application component or the
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workload can be redirected or migrated so as to maintain the load balance within an application
or among applications. The highest level of optimization aims at proactive resource provisioning
for applications. Machine learning is adopted to improve the understanding of both workload
and application behaviors, which means more fine-grained models are derived and models can be
refined and improved over time. Using these models, predictions can be performed more accurately
to support load balancing, autoscaling, and remediation in a proactive manner in real-time.

5.3 Research Trends and Opportunities
In this section we present a number of research trends and opportunities that correspond to open or
partially addressed issues in the current literature, and thus constitute promising research directions.
We subdivide such directions into five categories: workload distribution and propagation; data
generation and data privacy; abnormal workload prediction; server consolidation optimization;
and application remediation and reliable service provisioning.

1. Workload Distribution and Propagation
For a distributed edge-cloud application, besides understanding workload behavior at every single
component, a so-called workload propagation model is needed. Such a model represents the knowl-
edge of workload distribution/propagation through or between components. In fact, understanding
how a workload variation at a certain component affects that of the other ones is useful for a
proactive resource allocation for the entire application. For this reason, studies on standardization
of workload propagation models as well as construction of base models at least for some typical
systems/applications are crucial.

2. Data Generation and Data Privacy
In order to acquire a workload propagation model for a distributed edge-cloud application, work-
load measurements for every application component are required. Unfortunately, in reality it
is impossible and infeasible to collect workload data at every network location in edge-cloud
environments where applications are deployed and operating. Hence, there is a need for schemes to
derive workload at every application component (using interpolation, extrapolation or generation
techniques) from given workload datasets collected at a limited number of locations. A related
problem is how to disseminate the collected/generated workload data to the research community
in a secure manner so as to protect confidential information. Recently, much attention has been
devoted to data privacy. However, an establishment of data privacy for all datasets of large-scale
production applications is costly (in terms of both processing time and computational resources)
most of the time. One promising approach is to apply data privacy to, and then publicly open only
a subset of data together with workload generation models for such dataset. This actually forms a
challenging problem for workload data dissemination.

3. Abnormal Workload Prediction
It is observable that there typically exist peaks (outliers) in workload data collected from real pro-
duction systems. An outlier represents a rare event at which an abnormal amount of computational
resources is required. Therefore, a failure in addressing outliers likely leads to SLA violations.
Although anomaly detection has been widely investigated recently, a prediction of outliers in
workload data still lacks systematic approaches in the edge-fog-cloud computing literature. For
reliable resource provisioning, such abnormal workload prediction needs to be addressed.

4. Server Consolidation Optimization
The recent trends in consolidation optimization research bend towards the combination of workload
prediction models and consolidation algorithms; by this combination, it is possible to dynamically
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adapt the required number of physical machines in advance to satisfy future needs. However, the
new combined problem entails further investigation, not only about how to properly combine the
independent results of two unrelated families of algorithms, but also by developing mathematical
models that could take into consideration all the relevant parameters at the same time. Advanced
optimization techniques based on genetic algorithms, genetic programming and other natural
solvers have been evaluated in the literature. The development of new flexible software and
hardware architectures that can timely deploy the proposed changes is also required.

5. Application Remediation and Reliable Service Provisioning
It is challenging to remediate distributed edge-cloud applications because application remediation
may require remediations at multiple components. To accomplish application remediation and
ensure reliable service provisioning, platforms and/or protocols for components’ status exchange
and collection are needed. Due to the highly distributed of application components from the
central cloud down to the edges of networks, traditional remediation means and approaches
applied to monolithic applications or even SOA-based applications running in central cloud DCs
are not applicable because of the high communication and/or synchronization costs. Accordingly,
remediation for edge-cloud applications is a vital open research topic.

6 CONCLUSIONS
In this survey, we have reviewed how the problem of reliable resource provisioning in joint edge-
cloud environments has been addressed in the scientific literature, and in particular what kind
of methods have been used to improve the reliability of distributed applications in diverse and
heterogeneous network environments. There has been observed, in recent years, a substantial rise
in the number of studies that investigate how to apply machine learning techniques to perform
characterization and prediction of workload and application behaviors, and also to control complex
distributed applications. It is also observable, on average, machine learning techniques provide better
results than traditional methods, especially when dealing with sizeable and complex environments.

As witnessed, authors have applied a large number of different mathematical techniques, ranging
from classical statistics and modeling to more advanced machine learning algorithms. Future
research should be focused not on using yet another mathematical method, but on how to improve
over already tested architectures, based on a small subset of the most promising machine learning
techniques (e.g. boosted trees or deep neural networks). Moreover, it is required to produce repro-
ducible results, facilitating the comparison of different proposals. In this sense, it would be greatly
helpful to have a collection of large and high quality datasets provided by relevant industry players
that could be used as benchmarks.
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