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ABSTRACT
Discovering communities in complex networks means grouping
nodes similar to each other, to uncover latent information about
them. There are hundreds of different algorithms to solve the com-
munity detection task, each with its own understanding and defini-
tion of what a “community” is. Dozens of review works attempt to
order such a diverse landscape – classifying community discovery
algorithms by the process they employ to detect communities, by
their explicitly stated definition of community, or by their perfor-
mance on a standardized task. In this paper, we classify community
discovery algorithms according to a fourth criterion: the similarity
of their results. We create an Algorithm Similarity Network (ASN),
whose nodes are the community detection approaches, connected if
they return similar groupings. We then perform community detec-
tion on this network, grouping algorithms that consistently return
the same partitions or overlapping coverage over a span of more
than one thousand synthetic and real world networks. This paper
is an attempt to create a similarity-based classification of commu-
nity detection algorithms based on empirical data. It improves over
the state of the art by comparing more than seventy approaches,
discovering that the ASN contains well-separated groups, making
it a sensible tool for practitioners, aiding their choice of algorithms
fitting their analytic needs.
ACM Reference Format:
Michele Coscia. 2019. Discovering Communities of Community Discovery.
In International Conference on Advances in Social Networks Analysis and
Mining (ASONAM ’19), August 27–30, 2019, Vancouver, BC, Canada. ACM,
New York, NY, USA, 8 pages. https://doi.org/10.1145/3341161.3342860

1 INTRODUCTION
In this paper, we provide a bottom-up data-driven categorization of
community detection algorithms. Community detection in complex
networks is the task of finding groups of nodes that are closely
related to each other. Doing so usually unveils new knowledge
about how nodes connect, helping us predicting new links or some
latent node characteristic.

Community discovery is probably the most prominent and stud-
ied problem in network science. This popularity implies that the
number of different networks to which community discovery can
be applied is vast and so is the number of its potential analytic
objectives. As a result, what a community is in a complex network
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can take as many different interpretations as the number of people
working in the field.

Review works on the topic abound and often their reference lists
contain hundreds of citations [14]. They usually attempt a classifica-
tion, grouping community detection algorithms into a manageable
set of macro categories. Most of them work towards one of three
objectives. They classify community detection algorithms: by pro-
cess, meaning they explain the inner workings of an algorithm and
let the reader decide which method corresponds to their own defini-
tion of community – e.g. [14]; by definition, meaning they collect
all community discovery definitions ever proposed and create an
ontology of them – e.g. [6]; by performance, meaning that they
put the algorithms to a standardized task and rank them according
to how well they perform on that task – e.g. [18].

This paper also attempts to classify community discovery algo-
rithms, but uses none of these approaches. Instead, we perform a
categorization by similarity, e.g. which algorithms, at a practical
level, return almost the same communities. As in the process case,
we expect the inner workings of an algorithm to make most of the
difference, but we do not focus on them. As in the definition case,
we aim to build an ontology, but ours is bottom-up data-driven
rather than being imposed top-down. As in the performance case,
we define a set of standardized tasks, but we are not interested in
which method maximizes a quality function.

Here, we are not interested in what works best but what works
similarly. This is useful for practitioners because they might have
identified an algorithm that finds the communities they are inter-
ested in, with some downsides that make its application impossible
(e.g. long running times). With the map provided in this paper,
a researcher can identify the set of algorithms outputting almost
identical results to their favorite one, but not affected by its specific
issues. Maybe they perform slightly worse, but do so at a higher
time efficiency.

We do so by collecting implementations of community detection
algorithms and extract communities on synthetic benchmarks and
real world networks. We then calculate the pairwise similarity of
the output groupings, using overlapping mutual information [21],
[26] – we need the overlapping variant, because it allows us to
compare algorithms which allow communities to share nodes. For
each network in which algorithms a1 and a2 ranked in the top five
among the most similar outputs we increase their similarity count
by one.

Once we have an overall measure of how many times two algo-
rithms provided similar communities, we can reconstruct an affinity
graph, which we call the Algorithm Similarity Network (ASN ). In
ASN , each node is a community discovery method. We weigh each
link according to the similarity count, as explained above. We only
keep links if this count is significantly different from null expecta-
tion. Once we establish that our reconstruction ofASN is resilient to
noise and to our choices, we analyze it. Specifically, we want to find
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groups of algorithms that work similarly: we discover communities
of community discovery algorithms.

There are other approaches proposing a data-driven classifica-
tion of community discovery algorithms [10, 11, 16]. This paper
improves over the state of the art by: exploring more algorithms
(73) over more benchmarks (960 synthetic and 819 real-world net-
works) than other empirical tests; exploring more algorithm types
– including overlapping and hierarchical solutions –; looking at the
actual similarity of the partitions rather than the distribution of
community sizes.

Note that we were only able to collect 73 out of the hundreds
community discovery algorithms, because we focused on the papers
which provided an easy way to recover their implementation. This
paper should not be considered finished as is, but rather as a work
in progress. Many prominent algorithms were excluded as it was
not possible to find a working implementation – sometimes because
they are simply too old. Authors of excluded methods should be
assured that we will include their algorithm in ASN if they can
contact us at mcos@itu.dk. The most updated version of ASN will
then be not in this paper, but available at http://www.michelecoscia.
com/?page_id=1640.

2 RELATEDWORK
This paper fits into the vast literature of community discovery,
specifically among those papers that try to organize it into a re-
duced set of categories that can be understood and used by prac-
titioners. Community detection in complex networks is a prolific
field with hundreds of different approaches and dozens of different
community definitions. Such review works are a necessary element
to make the field manageable. We can classify reviews into four cat-
egories, each of which focusing on a different aspect of community
discovery.

The first – most popular – category includes works classifying
algorithms by the techniques they employ to divide the graph into
groups of nodes, i.e. by their process. Examples in this category
are [28], [35], [14], [32], [15], [13]; [19] – focusing on multilayer
networks; and [4] – whose attention narrows down to genetic algo-
rithms. Here, we are agnostic about how an algorithm works, as we
are focused on figuring out which algorithm returns similar parti-
tions to which other. This is influenced by how they work, but even
algorithms based on the philosophy of modularity maximization
might end up in different categories.

The second category includes works classifying community dis-
covery algorithms by the definition of community they are search-
ing for in the network. Notable definition-based review works are
[39], [6], [25], [2], and [37], the latter three focusing on directed,
overlapping, and evolving networks. This is the closest category
to ours, as we are also interested in building an ontology of com-
munity discovery algorithms. However, the works in this category
employ a top-down approach. They take the stated – theoretical –
definition of community of a paper and use it to classify it. Here,
we have a data-driven approach: we classify algorithms not by their
stated definition, but by their practical results.

The third category – gaining popularity recently – includes
works classifying community discovery algorithms by giving them
a specific task and ranking them in how well they perform in that

task. Such tasks can be maximizing modularity or the normalized
mutual information of the communities they recover versus some
other metadata we have about the nodes. In this category, we can
find papers such as [9], [20], [30], [24], [18], [17], [44]; and, specifi-
cally for overlapping community discovery, [41]. In line with this
approach, we also use standardized tests and benchmarks. However,
we have no interest in which algorithm performs “best” – whatever
the definition of “best” is – rather in what works similarly. We have
a small ranking discussion, but we use it to criticize the notion of
a “best” community discovery algorithm rather than taking the
results at face value.

The final, and least explored, category is interested in classifying
the community discovery algorithms by the similarity of their
outputs [10, 11, 16]. This is where our paper belongs. The typical
paper in this category tests a handful of algorithms on a limited
number of synthetic or real world networks. Here we include 73
algorithms1 – which is the highest number of methods considered
empirically – over more than a thousand benchmark networks. This
is not just a quantitative improvement: by having more algorithms
we are also able to include a more diverse set of algorithms, with
different features. This makes our results a better picture of the
landscape of community detection in complex networks.

3 METHOD
The aim of this paper is to build an Algorithm Similarity Network
(ASN ), whose elements are the similarities between the outputs of
community discovery algorithms. To evaluate result similarity is
far from trivial, as we need to: (i) test enough scenarios to get a
robust similarity measure, and (ii) being able to compare disjoint
partitions to overlapping coverages – where nodes can be part of
multiple communities.

In this section we outline our methodology to build ASN , in
three phases: (i) creating benchmark networks; (ii) evaluating the
pairwise similarity of results on the benchmark networks; and (iii)
extracting ASN ’s backbone.

A note about generating the results for each algorithm. Many
algorithms require parameters and do not have an explicit test for
choosing the optimal ones. In those cases, we operate a grid search,
selecting the combination yielding the maximum modularity. This
is simpler in the case of algorithms returning disjoint partitions. For
algorithms providing an overlapping coverage, there are multiple
conflicting definitions of overlapping modularity. For this paper,
we choose the one presented in [23].

3.1 Benchmarks
We have two distinct sets of benchmarks on which to test our com-
munity discovery algorithms: synthetic networks and real world
networks.

3.1.1 Synthetic Networks. In evaluating community discovery al-
gorithms, most researchers agree on using the LFR benchmark
generator [22] for synthetic testing. The LFR benchmark creates
networks respecting most of the properties of interest of many real

1Links and references: http://www.michelecoscia.com/?page_id=1640.
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world networks. We follow the literature and use the LFR bench-
mark. We make this choice not without criticism, which we spell
out in Section 4.2.

To generate an LFR benchmark we need to specify several param-
eters. Here we focus on two in particular: number of nodes n and
mixing parameter µ – which is the fraction of edges that span across
communities, making the task of finding communities harder. We
create a grid, generating networks with n = {50, 60, 70, 80, 90, 100}
and µ = {.07, .09, .11, .13, .15, .17, .19, .21}. The average degree (k̄)
is set to 6 for all networks, while the maximum degree (K) is a
function of n. For each combination of parameters we generate ten
independent benchmarks with disjoint communities and ten bench-
marks with overlapping communities. In the overlapping case, the
number of nodes overlapping between communities (on ), as well
as the number of communities to which they belong (om ), are also
a function of n.

We generate 2 (overlapping, disjoint) × 10 (independent bench-
marks) × 6 (possible number of nodes) × 8 (distinct µ values) =
960 benchmarks. Due to the high number of networks and to the
high time complexity of some of the methods, we are unable to
have larger benchmarks. The number of benchmarks is necessary
to guarantee statistical power to our similarity measure.

3.1.2 Real World Networks. The LFR benchmarks have a single
definition of community in mind. Therefore the tests are not inde-
pendent, and if an algorithm follows a different community defi-
nition, it might fail in unpredictable ways, which makes our edge
creating process prone to noise.

To reduce this issue, we collect a number of different real world
networks. Communities in real world networks might originate
from a vast and variegated set of possible processes. We assembled
819 real world networks, which were found in the Colorado Index of
Complex networks2. We selected a high number of small networks
to conform to our needs of statistical significance as described in
the previous subsection.

3.2 Evaluating Similarity
Once we run two community discovery algorithms on a network,
we obtain two divisions of nodes into communities. A standard
way to estimate how similar these two groupings are is to use
normalized mutual information [40] (NMI). Mutual information
quantifies the information obtained about one random variable
through observing the other. The normalized variant, rather than
returning the number of bits, is adjusted to take values between 0
(no mutual information) and 1 (perfect correlation).

The standard version of NMI is defined only for disjoint parti-
tions, where nodes can belong to only one community. However,
many of the algorithms we test are overlapping, placing nodes in
multiple communities. There are several ways to extend NMI to the
overlapping case (oNMI), as described in [21] and [26]. We use the
three definitions considered in these two papers as our alternative
similarity measures. These versions reduce to NMI when their input
is two disjoint partitions. This allows us to compare disjoint and
overlapping partitions to each other.

2https://icon.colorado.edu/. Complete reference list: http://www.michelecoscia.com/
?page_id=1640.

We label the three variants as MAX, LFK, and SUM, following
the original papers. Our default choice is MAX, which normalizes
the mutual information between the overlapping results a1 and a2
with the maximum of the entropy of a1 and a2. Differently from
LFK, MAX is corrected by chance: unrelated vectors will have zero
oNMI MAX.

How do we aggregate the similarity results across our 1,779
benchmarks? We have three options: (i) averaging them, (ii) count-
ing the number of times two algorithms had an oNMI higher than
a given threshold, and (iii) counting the number of times two algo-
rithms were each other in the most similar algorithms in a given
benchmark. We choose option (iii).

Option (i) has both theoretical and practical issues. It is not
immediately clear what is the semantic of an average normalized
mutual information. Moreover, we want to empathize the scenarios
in which two algorithms are similar more than when they are
dissimilar. There is only one way in which two results can be similar,
while there are (almost) infinite ways for two results to be dissimilar.
Thus similarity contains more information than dissimilarity. If we
take the simple average, dissimilarity is going to drive the results.

In option (ii), NMIs will have different expected values for differ-
ent networks. If we choose a threshold for all benchmarks, we will
overweight some benchmarks over others. This is fixed by option
(iii), which counts the cases in which both algorithms agree on the
community structure in the network.

Note that both algorithms have to agree, thus this method still
allows algorithms to be isolated if they are dissimilar to everything
else. Suppose a1 is a very peculiar algorithm. Regardless of its
results, it will find a2 as its most similar companion, even if the
results are different. Since the results are different, a2 will not have
a1 as one of its most similar companions. Thus there will be no
edge between a1 and a2.

Wewill see in our robustness checks that the three options return
comparable results, with option (iii) having the fewest theoretical
and practical concerns.

3.3 Building the Network
The result from the previous section is a weighted network, where
each edge weight is the number of benchmarks in which two algo-
rithms were in each other most similar results. Any edge generation
choice will generate a certain amount of noise. Algorithms with
average results might end up as most similar to other algorithms
in a benchmark just by pure chance. This means that there is un-
certainity in our estimation of the edge weights – or whether some
edges should be present at all.

To alleviate the problem, we use the noise corrected (NC) back-
bone approach [7]. The reason to pick this approach over the alter-
natives lies in its design. The NC backboning procedure removes
noise from edge weight estimates, under specific assumptions about
the edge generation process, which fit the way we build our net-
work. ASN is a network where edge weights are counts, broadly
distributed – as we show in the Analysis section –, and are gen-
erated with an hypergeometric “extraction without replacement”
approach, which are all assumptions of the NC backboning ap-
proach. For this reason, we apply the NC backbone to our ASN .

https://icon.colorado.edu/
http://www.michelecoscia.com/?page_id=1640
http://www.michelecoscia.com/?page_id=1640
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Figure 1: ASN . Nodes are community detection algorithms.
Node size: sum of total edge weights. Node color: commu-
nity affiliation –multicolored nodes belong tomultiple com-
munities. Edge width: number of times the two algorithms
returned similar partitions. Only including links exceeding
null expectation. Link color: significance, from dark (high)
to light (low, but still significant with p < .00001).

The NC backbone requires a parameter δ , which controls for
the statistical significance of the edges we include in the resulting
network. We set the parameter to the value required to have the
minimumpossible number of edges, while at the same time ensuring
that each node has at least one connection. In our case, we set
δ = 19.5, meaning that we only include edges with that particular t-
score (or higher), which is roughly equivalent to say thatp < .00001.

Again, note that we are not imposing the ASN to be connected
in a single component. Under these constraints, ASN could be just
a set of small components, each composed by a pair of connected
algorithms.

4 ANALYSIS
4.1 The Algorithm Similarity Network
We start by taking a look at the resulting ASN network. We show
a depiction of the network in Figure 1 – calculated using the oNMI
MAX similarity function and setting δ = 19.5 for the noise cor-
rected backboning. The network contains all the results, both from
synthetic and from real-world networks.

The first remarkable thing about ASN is that it does have a
community structure. The network is sparse – by construction,
this is not a result –: only 9% of possible edges are in the network.
However, and this is surprising, clustering is high – transitivity is
0.47, or 47% of connected node triads have all three edges necessary
to close the triangle.

For these reasons, we can run a community discovery algorithm
on ASN . We choose to run the overlapping Infomap algorithm
[38]. The algorithm attempts to compress the information about
random walks on the network using community prefix codes: good
communities compress the walks better because the random walker
is “trapped” inside them.

The quality measure is the codelength necessary to encode ran-
domwalks. The codelength gives us a corroboration of the presence
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Figure 3: The correlation between theASN weights using dif-
ferent oNMI variants: (left) MAX vs LFK; (middle) MAX vs
SUM; (right) LFK vs SUM. Each dot is an algorithm pair and
the color represent how many pairs shared a given oNMI
score combination.

of communities. Without communities, we need ∼ 8.52 bits to en-
code the random walks. With communities, the codelength reduces
to ∼ 4.48.

Figure 2 shows the complement of the cumulative distribution
(CCDF) of the edge weights of ASN before operating the backbon-
ing. We can see that, while the distribution is not a power-law –
note the log-log scale –, it nevertheless spans multiple orders of
magnitude, with a clear skewed distribution. In fact, 50% of the
edges have a weight lower than 10 – only in 10 cases out of the pos-
sible 960 + 819 the two algorithms were in the top five most similar
results –, while the three strongest edges (.1% of the network) have
weights of 1,453, 1,519, and 1,540, respectively.

This means that the distribution could have been a power-law,
had we performed enough tests. In any case, such broad distribution
justifies our choice of backboning method, which is specifically de-
signed to handle cases with large variance and lack of well-defined
averages.

4.2 Robustness
In developing our framework, we made choices that have repercus-
sions ASN ’s shape. How much do these choices impact the final
result? We are interested in estimating the amount of change in
ASN ’s topology, specifically whether it is stable: different ASN s
calculated with different procedures and parameters are similar.

The first test aims at quantifying the amount of change intro-
duced by using a different oNMI measure. Recall that our official
ASN uses the MAX variant. There are two alternatives: LFK and
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Figure 4: Correlation between the ASN weights using the
LFR benchmarks (x-axis) and the real world networks (y-
axis). Same legend as Figure 3, for different oNMI variants:
(left) MAX, (middle) LFK, (right) SUM.

SUM. Figure 3 shows how ASN s calculated using them correlated
with the MAX standard version.

It is immediately obvious from the plots that the choice of the
specific measure of oNMI has no effect on the shape of ASN . We
could have picked any variant and we would have likely observed
similar results. In fact, the correlations between the methods are as
follows: MAX vs LFK = 0.94; MAX vs SUM = 0.99; LFK vs SUM =
0.97.

The second test focuses on the synthetic LFR benchmarks versus
the 819 real world networks. Real world networks do not necessarily
look like LFR benchmarks – or each other. On the other hand, all
LFR benchmarks are similar to each other. Does that create different
ASN s? We repeat our correlation test (Figure 4). As in the previous
cases, we observe a significant positive correlation for all tests –
albeit lower than before: LFR vs Real (MAX) = 0.55; LFR vs Real
(LFK) = 0.51; LFR vs Real (SUM) = 0.51.

All these correlations are still statistically significant (p ∼ 0).
However, we concede that there is a difference between real world
networks and LFR benchmarks. It is worthwhile investigating this
difference in future works, as a possible argument against the blind
acceptance of LFR as the sole benchmark for testing community
discovery algorithms.

Third, our edge weights are a count of benchmarks in which two
algorithms were in each other most similar lists. Alternative edge
creation procedures might be to take the average oNMI, or to count
the similarity between two algorithms only if they exceed a fixed
oNMI threshold.

Section 3.2 provides our theoretical reasons. Here we show that,
at a practical level, our results are not gravely affected by such
choice. We do so by calculating the NMI between ASN ’s communi-
ties obtained with all three techniques. TheASN built by averaging
the similarity scores has a 0.63 NMI with our option, while the one
obtained by a fixed threshold has a 0.46 NMI. On the basis of these
similarities, we conclude that there is an underlying ASN structure,
and we think our choices allow us to capture it best.

4.3 Communities
In Figure 1, we show a partition of ASN into communities. A sea-
soned researcher in the community discovery field would be able to
give meaningful labels to those communities. Here, we objectively
quantify this meaningfulness along a few dimensions of the many
possible.

We start by considering a few attributes of community detection
algorithms, whether they: return overlapping partitions (in which

ID Col n Over Spr Q NSim
1 Red 21 0.9048 0.1429 0.0952 0.0952
2 Blue 28 0.3214 0.5357 0.1429 0.0357
3 Green 10 0.1000 0.0000 1.0000 0.0000
4 Purple 11 0.0909 0.0000 0.0000 0.7273
5 Orange 8 0.3750 0.2500 0.3750 0.0000

Table 1: Features of the communities of ASN . n: # of nodes.
Over: % overlapping algorithms. Spr: % algorithms based ei-
ther on centrality measures (including edge betweenness
and randomwalks) or some sort of spreading process (e.g. la-
bel percolation). Q: % algorithms based on modularity max-
imization. NSim: % algorithms based on neighborhood simi-
larity. Algorithms can be part of multiple/no classes, so the
rows do not sum to one.

communities can share nodes), are based on some centrality mea-
sure (be it random walks or shortest paths) or spreading process (it
will become apparent why we lump these two categories), are based
on modularity maximization [29], or are based on a neighborhood
similarity approach (e.g. they cluster the adjacency matrix).

In Table 1 we calculate the fraction of nodes in a community
in each of those categories. Note that we count overlap nodes in
all of their communities, so some nodes contribute to up to three
communities. As we expect, some communities have a stronger
presence of a single category.

The largest community (in blue) groups centrality-based algo-
rithms (Infomap [38], Edge betweenness [27], Walktrap [34], etc)
with the ones based on spreading processes (label percolation [36],
SLPA [5], Ganxis [42], etc). Some of these can be overlapping, but
the majority of nodes in the community is part of this “spreading”
category. This community shows a strong relationship between ran-
dom walks, centrality-based approaches, and approaches founded
on spreading processes.

The second largest community (in red) is mostly populated by
overlapping approaches (more than 90% of its nodes are overlap-
ping) – BigClam [43], k-Clique [31], and DEMON [8] are some
examples. The third largest community (in purple) is mostly com-
posed by algorithms driven by neighbor similarity (more than 70%
of them) rather than the classical “internal density” definition (the
two are not necessarily the same). The fourth largest community
(in green) exclusively groups modularity maximization algorithms.

We now calculate descriptive statistics of the groupings each
method returns and then we calculate its average across all the test
networks. To facilitate interpretation, we also aggregate at the level
of the ASN community, as we show in Figure 1. Table 2 reports
those statistics. We also calculate the standard errors, which prove
that these differences are significant, but we omit them to reduce
clutter.

The results from Table 2 can be combined from the knowledge
we gathered from Table 1. For instance, consider community 4. We
know from Table 1 that this hosts peculiar algorithms working
on “neighbor similarity” rather than internal density. This might
seem like a small difference, but Table 2 shows its significant reper-
cussions: the average modularity we get from these algorithms is
practically zero. Moreover, the algorithms tend to return more –
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ID Col ¯|C | Avg Size d̄ Q̄ c̄ Avg Ncut
1 Red 19.7979 9.0942 0.3220 0.2200 0.7423 0.7674
2 Blue 5.6520 16.4769 0.2627 0.1102 0.5542 0.7100
3 Green 4.8948 11.9844 0.2580 0.1118 0.6288 0.7407
4 Purple 10.3702 11.0140 0.2917 0.0333 0.7555 0.8033
5 Orange 4.2852 17.0505 0.2329 0.0863 0.5963 0.7483

Table 2: The averages of various community descriptive statistics per algorithm group. ¯|C |: Average number of communities.
Avg Size: Average number of nodes in the communities. d̄: Average community density. Q̄ : Average modularity – when the
algorithm is overlapping we use the overlapping modularity instead of the regular definition. c̄: Average conductance – from
[24]. Avg Ncut: Average normalized cut – from [24].

Figure 5: TheASN focusing exclusively on overlapping com-
munity discovery algorithms. The legend of the figure is the
same as the one for Figure 1.

and therefore smaller – communities, which tend to be denser but
also to have higher conductance.3 This is another warning sign for
uncritically accepting modularity as the de facto quality measure to
look at when evaluating the performance of a community discovery
algorithm. It works perfectly for the methods based on the same
community definition, but there are other – different and valid –
community definitions.

Other interesting facts include the almost identical average mod-
ularity between community 2 – whose algorithms are explicitly
maximizing modularity – and community 3 – which is based on
spreading processes. Community 1 has higher internal density, but
also higher conductance and normalized cut than average, showing
how overlapping approaches can find unusually dense communities,
sacrificing the requirement of having few outgoing connections.

The categories we discussed are necessarily broad and might
group algorithms that have significant differences in other aspects.
For instance, there are hundreds of different ways to make your
algorithm return overlapping communities – communities shar-
ing nodes. Our approach allows us to focus on such methods to
find differences inside the algorithm communities. In practice, we
can generate different versions of ASN , by only considering the
similarities between the algorithms in the “overlapping” category.

3Community 1 returns more communities, but it is composed by overlapping algo-
rithms, which can return more communities without necessarily make them small, as
they can share nodes. Thus its communities are larger than one would expect given
their number.

Note that this is different than simply inducing the graph from
the original ASN , selecting only the overlapping algorithms and
all the edges between them. Here we select the nodes and all their
similarities and then we apply the backboning, with a different –
higher – δ threshold. In this way, we can deploy a more stringent
similarity test, that is able to distinguish between subcategories of
the main category.

Figure 5 depicts the result. Infomap divides the overlappingASN
in three communities, proving the point that there are substantial
sub-classes in the overlapping coverage category. There are strong
arguments in favor of these classes being meaningful, although a
full discussion requires more space and data. For instance, consider
the bottom-right community of the network (in blue). It contains
all the methods which apply the same strategy to find overlapping
communities: rather than clustering nodes, they cluster edges. This
is true for Linecomms [12], HLC [1], Ganet+ [33], and OLC [3]. The
remaining methods do not cluster link directly, but ASN suggests
that their strategies might be comparable.

We can conclude that ASN provides a way to narrow down to
subcategories of community discovery and find relevant informa-
tion to motivate one’s choice of an algorithm.

4.4 Ground Truth in Synthetic Networks
The version of ASN based on synthetic LFR benchmarks allows an
additional analysis. The LFR benchmark generates a network with
a known ground truth: it establishes edges according to a planted
partition, which it also provides as an output. Thus, we can add a
node to the network: the ground truth. We calculate the similarity
of the ground truth division in communities with the one provided
by each algorithm. We now can evaluate how the algorithms per-
formed, by looking at the edge weights between the ground truth
node and the algorithm itself. In the MAX measure, this means the
number of times the algorithm was in the top similarity with the
ground truth and vice versa.

Table 3 shows the ten best algorithms in our sample. We do not
show the worst algorithms, because MAX is a strict test, and thus
there is a long list of (21) algorithms with weight equal to zero,
which is not informative. The table shows that the best performing
algorithm are Linecomms, OSLOM, and the overlap version of
Infomap.

Should we conclude that these are the best community discovery
algorithms in the literature? The answer is yes only if we limit
ourselves to the task of finding the same type of communities
that the LFR benchmark plants in its output network. Crucially,
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Rank Algorithm oNMI MAX
1 linecomms 165
2 oslom 73
3 infomap-overlap 64
4 savi 62
5 labelperc 57
6 rmcl 54
7 edgebetween 41
7 leadeig 41
7 vbmod 41
10 gce 32

Table 3: The ten nodes with the highest MAX edge weight
with the ground truth node in ASN – using exclusively data
from the LFR synthetic networks.
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Figure 6: The number of sets of 10 random nodes (y-axis)
with a given avg path length between them. The black line
shows the observation. The blue line shows the average path
length of ASN .

this does not include all possible types of communities you can
find in complex networks. To see why this is the case, consider
again ASN from Figure 1. The ten nodes listed in Table 3 are not
scattered randomly in the network: they tend to be in the same
area. Specifically we know that the ground truth node is located
deep inside the blue community, as most of the top ten algorithms
from Table 3 are classified in that group.

We can quantify this objectively by calculating the average path
length between the ten nodes, which is equal to 2.51 – on average
you need to cross two and a half edges to go from any of these ten
nodes to any other of the ten. This is shorter than the overall average
path length in ASN , which is 3.25. We test statistical significance
by calculating the expected average path length when selecting ten
random nodes in the network. Figure 6 shows the distribution of
their distances. Only seven out of a thousand attempts generated a
smaller or equal average path length.

We conclude this section with a word of caution when using
benchmarks to establish the quality of a community discovery
algorithm, which is routinely done in review works and when
proposing a new approach. If the benchmark does not fit the desired
definition of community, it might not return a fair evaluation. If
one is interested in communities based on neighborhood similarity
– the green community in Figure 1 – the LFR benchmark is not the
correct one to use. Moreover, when deciding to test a new method

against the state of the art, one must choose the algorithms in the
literature fitting the same community definition, or the benchmark
test would be pointless. This warning goes the other way: assuming
that all valid communities look like the ones generated by the LFR
benchmark would impoverish a field that – as the strong clusters in
ASN show – does indeed have significantly different perspectives
of what a community is.

5 CONCLUSION
In this paper we contributed to the literature on reviewing com-
munity discovery algorithms. Rather than classify them by their
process, community definition, or performance, here we classify
them by their similarity. How similar are the groupings they return?
We performed the most comprehensive analysis of community dis-
covery algorithms to date, including 73 algorithms tested over more
than a thousand synthetic and real world networks. We were able to
reconstruct an Algorithm Similarity Network – ASN – connecting
algorithms to each other based on their output similarity. ASN con-
firms the intuition about the community discovery literature: there
are indeed different valid definitions of community, as the strong
clustering in the network shows. The clusters are meaningful as
they reflect real differences among the algorithms’ features. ASN
allows us to perform multi-level analysis: by focusing on a spe-
cific category, we can apply our framework to discover meaningful
sub-categories. Finally, ASN ’s topology highlights how projecting
the community detection problem on a single definition of commu-
nity – e.g. “a group of nodes densely connected to each other and
sparsely connected with the rest of the network” – does the entire
sub-field a disservice, by trivializing a much more diverse set of
valid community definitions.

By its very nature, this paper will always be a work in progress.
We do not claim that there are only 73 algorithms in the community
discovery literature that are worth investigating. We only gathered
what we could. Future work based on this paper can andwill include
whatever additions authors in the field feel should be considered –
and they are encouraged to help us by sending suggestions and/or
working implementations to mcos@itu.dk. The most up to date
version of ASN will be available at http://www.michelecoscia.com/
?page_id=1640. Moreover, for simplicity, here we focused only on
algorithms that work on the simplest graph representations. Sev-
eral algorithms specialize in directed, multilayer, bipartite, and/or
metadata-rich graphs. These will be included as we refine the ASN
building procedure in the future.
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