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Abstract—It is widely believed that the adoption behavior of
a decision-maker in a social network is related to the number
of signals it receives from its peers in the social network. It
is unclear if these same principles hold when the “pattern” by
which they receive these signals vary and when potential decisions
have different utilities. To investigate that, we manipulate social
signal exposure in an online controlled experiment with human
participants. Specifically, we change the number of signals and
the pattern through which participants receive them over time.
We analyze its effect through a controlled game where each
participant makes a decision to select one option when presented
with six choices with differing utilities, with one choice having
the most utility. We avoided network effects by holding the
neighborhood network of the users constant. Over multiple
rounds of the game, we observe the following: (1) even in the
presence of monetary risks and previously acquired knowledge of
the six choices, decision-makers tend to deviate from the obvious
optimal decision when their peers make similar choices, (2) when
the quantity of social signals vary over time, the probability that
a participant selects the decision similar to the one reflected
by the social signals and therefore being responsive to social
influence does not necessarily correlate proportionally to the
absolute quantity of signals and (3) an early subjugation to higher
quantity of peer social signals turned out to be a more effective
strategy of social influence when aggregated over the rounds.

I. INTRODUCTION

The connections and interactions of individuals that com-
prise social networks are generally believed to impact
decision-making in many domains including product selection
[1], [4]. While there is general theoretical consensus that
social influence, the phenomenon by which an individual’s
opinions, behaviors, and decisions are influenced by other
people [2], facilitates product selection, the empirical literature
is actually quite torn. According to individual utility models,
people adopt technologies when its benefits exceed its costs
[3]. Because comparing every option can be cognitively costly
and time consuming, individuals employ cognitive strategies
and shortcuts that reduce the number of alternatives until
one superior option is left [5]. Social signals factor into

Fig. 1: This illustration demonstrates a pattern of influence.
At the first timestep, one among 6 neighbors (followees) of a
user shares a message, in the following timestep, another user
shares the same message and in the final step, an 2 additional
users. The user is thus exposed to a “pattern” of social signals
we represent as V = {1, 2, 4} for that message.

the strategies because they provide a cost-efficient means of
acquiring information [6]. Although social information is an
additional layer that individuals must parse and weigh when
making a decision, it is also a useful indicator of a product’s
utility.

The literature documents several experimental results on the
adoption of behaviors including network structure – such as
the study conducted in [8]. Under this study, it was observed
that individual adoption is much more likely when participants
received social reinforcement from multiple neighbors in the
social network as opposed to a single exposure. However as
a major contribution, the research tests the effect of network
structure on the dynamics of behavioral diffusion. Contrary to
this, we quantify influence using only the number of signals
temporally sent to a user irrespective of how the signals
diffused to its neighbors prior to its own adoption. One of the
main results from [8] show that the influence monotonically
increases, although the increased likelihood of influence from
k signals compared to k − 1 signals peaks when k=2. Our
results do not replicate this finding, as we did not consider
network effects and the number of signals are time dependent
and additionally, when each decision is supplemented by a
reward.

In an observational study on the impact of repeated expo-
sures on information spreading [9], the authors show that an
overwhelming majority of message samples are more probable
to be forwarded under repeated exposures, compared to those
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under only a single exposure. Keeping these studies in mind,
we develop an experimental framework to characterize the
exposure effect under multiple signals but when the pattern of
exposure could be controlled (we show an example of what a
“pattern” is in Figure 1) - the experimental framework allows
us to measure social influence through controlled exposures
to neighborhood signals while avoiding confounding effects.
It allows us to analyze how the signal versus timestep con-
straint impacts the selection choices of users. We use Amazon
Mechanical Turk (AMT) to run an online, controlled decision-
making game in which participants took on the role of a
security officer at a bank. The subjects participated in several
rounds of the game, where at each round, they selected one
technology among 6 choices with differing utilities (only one
among them was the optimal technology) - the subjects were
able to view the choices made by their neighbors, with this
modulation being part of the controlled setup that induces
the exposure effect. Our main focus was to understand the
effects of influence patterns on the choices made by individuals
(whether individuals can be influenced to make a selection
which inherently is not the best for them) and not much on
the utility of the technologies as such. To this end, we make
the following contributions:

• We conduct an empirical study on understanding patterns
of influence on decision making when users are presented
with different choices. The users observe this influence
through a controlled information cascade in their social
circle, i.e., their immediate neighbors in a social network.

• We find that compared to the control group where
users were held to a single peer signal (reflecting one
suboptimal technology) over all timesteps, users in a
group who were treated early to large quantity of peer
signals successfully opted for the suboptimal choice that
their peers selected despite having their own knowledge
about the utilities and the optimal choice. In fact when
aggregated over the lifecycle of the game, we find this
strategy of early substantial exposures to be far more
effective than strategies which rely on delayed exposures
to signals or situations where users observe uniformly
increasing signals.

• Through multiple analyses on the effect of quantity
of signals on user decisions, we conclude that unlike
traditional studies which explain behavior diffusion as a
factor of exposures ignoring the temporal patterns, the
number of exposures alone does not explain successful
social influence. Surprisingly, a sudden intervention in
the form of stimulus through rise in quantity of signals
momentarily succeeds in influencing more users to switch
to the peer decision in subsequent rounds than strategies
that uniformly increase signals over time.

The rest of the paper is organized as follows: we first discuss
the related literature underpinning this study and the hypothe-
ses that we will investigate in Section III. We present the
experimental setup and methods designed for measuring social
influence in Section IV.

II. RELATED WORK

We are more often swayed by others’ decisions and behavior
when we lack knowledge about the object of our decision,
such as when we must choose a product that we do not
know much about, is not well-described, or that we have little
experience with. This is because the information we seek can
be more cheaply acquired by observing others than by seeking
it ourselves. Conventional studies suggest that as the consensus
of entities in a social network increases – more signalers make
the same signal – we assume that the information peers are
conveying is valid and we are more likely to adopt the signaled
behavior or decision [7].
Number of signals: The relationship between the number of
signals an individual receives in its network, social influence,
and the likelihood that said individual will adopt the behavior
indicated by the signals is closely related to the linear threshold
model in which an actor adopts a behavior after the signal
count reaches an optimal threshold [11]. What, though, is the
impact of repeated signals on the decision-making process, and
more specifically how many signals are required to reliably
influence an individual’s decision-making? There are mixed
findings regarding the benefit of multiple exposures on the
diffusion of information necessary to reach this threshold.
People may prefer multiple confirmations from their peers
to reassure themselves before making a decision [8], [9].
Experimental human studies using games from behavioral
economics like the Prisoner’s Dilemma tend to find that the
impact of zero to three signalers increases behavioral and
decision-adoption in a linear fashion. However, debate still
exists – some have found that repeated exposure to online
signals in a social networking site slowed the subsequent
spread of information [12].
Information Parsing: The manner in which an individual
searches for information affects their decision-making. Indi-
viduals employ search strategies to reduce the number of
choices [5]. This includes revising their initial opinions by
processing and averaging the different influences acting on
them [14] and social information provides one mechanism
through which this is achieved. When social signals point
towards a specific outcome or opinion, individuals will often
adopt the opinions and behaviors of signalers, however while
adopting behaviors based off social influence can be cost
effective, it does not always lead to the most effective or
efficient decision. Individuals must trade-off between trusting
their own knowledge and trusting other’s opinions [15].
Product Utility: When making product decisions, outcomes
related to the quality and need for a product change its utility
or perceived value and therefore the risk of the selection. The
need for a quality product also influences selection decisions.
The perceived value of a product predicts how much an
individual will search for information to inform their selection.

III. THE PRESENT RESEARCH

We perform an online controlled experiment that manip-
ulates the number of social signals and the signal pattern
over time. We hypothesize that successful social influence
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requires more than just receiving signals or exposures to
information from peers, as both the utility of the technology
and informational influences are at play. In our experiment,
any decision made produces varying degrees of monetary
gain based on utility. So, we speculate that successful social
influence should be reflective of the mechanism through which
information diffuses that ultimately instigates individuals to
change their beliefs and therefore their adoption behavior. We
present the following two hypotheses that we test in this paper
with regards to the objective mentioned.
HYPOTHESIS H1. Decision-makers will be more likely to
choose cyber-defense providers without the optimal utility
when they observe peers deviating from the optimal choice.

This attempts to test the hypotheses studied before in [8]
which show that behaviors spread to a larger portion of the
population in a clustered network, indicating that additional
social signals have significant effect on influence. However,
the results on behavior diffusion reported by this paper are
heavily associated with the clustered network organization
more than the choice of the health behavior. Following this,
in another study [18], authors show that the number of active
neighbors is a positive indicator of influence, which is a similar
finding reported by [8]. We test a richer version of these
experiments by including the utility of the technologies and
the monetary gains from different technologies as additional
variables of interest to the decision making process conducted
by individuals.
HYPOTHESIS H2. The manner in which a decision-maker
receives social signals or the pattern of influence will impact
its decision when selecting the peer choice.

Again, we note that the authors in [8] measure the effect of
network structure in spread of influence, which differs from
H2 we are investigating in this work, since we do not consider
the position of the individual in the network. We consider that
all peers of an individual are homogeneous with respect to the
influence they can exert on it. The advantage of removing the
network effects is that now we can control the diffusion of
signals from the peers to an individual by administering them
manually. This allows us to control the pattern of influence i.e.
the number of signals sent over each time step to an individual.

We note that the basic component that distinguishes the
two hypotheses is the focus on the selection of the optimal
decision in H1 and the focus on the peer choice which we
call the influence decision as would be described in details,
in H2. As we point out later, a successful social influence
constitutes situations where individuals not only deviate from
the optimal decision but they also select the option that
majority of their peers choose. We test H2 as a stronger version
of H1 primarily to cater to this case.

IV. METHODS

To test our hypotheses, we ran an online, controlled
decision-making game in which participants took on the role of
a security officer at a bank. Participants were told that they and
several of their peers at different banks were being asked to
invest in a cyber-defense provider once a month for 18 months

Fig. 2: Example screen in the cyber-defense provider selection
task. Participants in the Uniform Messages (UM) condition
of the study have access to a screen that looked like this.
The Feedback section displays the number of attacks the
participant prevented after each round. The Decisions sec-
tion displays the 6 provider choices that it has. Finally, the
Messages section is displayed after Round 12, from where
on the participants can view what their peers selected in the
previous round.

or rounds1. We separated participants into 5 groups based
on pattern of social signal exposure which will be described
in details in the Design subsection following this. For each
group, we controlled the number of signals (corresponding to
a suboptimal technology) that were sent to an individual from
their peers over each time step. All participants could view
brief descriptions of provider capabilities – e.g. one of them
being “Secure.com utilizes algorithmic computer threat detec-
tion to keep systems safe. It prides itself on its efficiency and
success rate in warding against attacks.” Participants were able
to choose from 6 different providers - among which only one
was optimal, preventing 7 attacks. The remaining 5 providers
prevented 6 attacks each (from that perspective, all suboptimal
technologies had the same utility). This information about
the optimal and suboptimal providers is not available to the
participants in any group. Furthermore, in all experimental
conditions, they were able to see their peers’ decisions after 12
months or after Round 12. Figure 1 depicts the environment of
the game, which was hosted by the Controlled Large Online
Social Experimentation (CLOSE) platform and developed at
Sandia National Laboratories [19].

The entire game was partitioned into two phases. For the
first 12 rounds, no other information but a short excerpt
about six potential providers was given. After the participants
made their selection for a given month, they saw the number
of attacks their provider had prevented in the corresponding
period. For every attack they prevented, participants received
$0.02. Thus, they were incentivized to avoid more attacks
and earn more money. However, since the participants have
to explore the technologies to first acquire the knowledge of
the technology utilities, the first 12 rounds allow for individual

1We use Rounds/Months/Timesteps interchangeably but which refer to one
discrete unit of time in our study
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Fig. 3: Illustration of the linear cascade diffusion. The tech-
nology C chosen by us as the suboptimal technology for
influencing the user (in dots) cascades through the peers of the
user over the 6 time steps. Colored nodes denote the activated
peers w.r.t. C (manually preprogrammed by us) at each time
step. Note that although at Rounds starting at 13 and ending
at 18, there are subjects (uncolored) among peers who have
not adopted C, their decisions (technologies adopted which
may not be C) at those time steps are visible to the subject in
consideration (in dots). However, which users among the peers
have been preprogrammed manually is by default unknown to
the target subject.

decision making and exploration in the absence of any external
knowledge about the technologies or peers.

In the second phase of the experiment which started at
Round 13, we introduced social influence by allowing par-
ticipants to see their peers’ decisions after every round (see
Figure 2), and by varying the pattern by which concentric
decisions among the peers were made over time. We attempt
to avoid network effects by using pre-programmed bots (these
are the peers that the users see in their screen) and holding the
network structure constant. All individuals in all groups have 6
neighbors whose choices could be viewed by the correspond-
ing individuals. An example of the network structure is shown
in Figure 3, where a participant receives social signals from
its six neighbors about a random technology C among the 5
providers (barring the provider with the optimal technology).
For each subject, this suboptimal technology C was selected
as the peer choice that would be disproportionately signaled by
peers over time (this pattern of influence would be manipulated
by us). The motivation behind this deliberate selection of
suboptimal C as the peer choice (controlled by us) is to
investigate whether participants would be tempted to select
the suboptimal choice.The knowledge of the peers’ decisions
allows a participant to rethink its own choices made in the
presence of utilities and we use this to quantitatively measure
the extent to which social influence is at play. We describe
the signal patterns and conditions unique to each study in the
following Design section.

For both the hypotheses H1 and H2, the outcomes of
interest are the decisions made by participants in the last
six rounds, in the presence of social signals from peers. We
explore whether decision-makers will be more likely to choose
cyber-defense providers which are not the optimal choice when
they have knowledge about the utilities and when they observe
peers opting for choices which are not optimal. We note
that people get feedback about their choice on the very next
screen—and so choosing a technology during an intermediate
timestep is more of a data-gathering exploration rather than

Fig. 4: The signal vs time step plots for the 4 patterns - note
that for the NM group (not shown here), no peer signal in the
form of pre-selected suboptimal technologies were sent to the
participants at any time step.

their final choice. In order to allow for this initial bandwidth
for exploration, we keep the first 12 timesteps (rounds) same
for all subjects devoid of any interference This helps in
overcoming bias related to an individual’s own knowledge
about the utilities in the second phase of the experiment when
they are treated to social signals.

A. Participants

We recruited a total of 357 participants for this study to play
the same cyber-defense provider game. Participants were paid
$2 with the opportunity to earn up to $4.52 since as mentioned
before, they received a bonus of $0.02 for every attack they
prevented. Thus, the participants have a motivation to prevent
more attacks in order to earn more money.

B. Design

Participants were randomly assigned to five groups with
each group having unique members not involved in decision
making as part of other groups. Decisions in the first 12
rounds (first phase) are made without social influence and
are equal between groups. Let V (t) (t denotes a time step
or round among the last 6 rounds) denote the number of
peers of a user who at time t were programmed to select a
chosen suboptimal technology by us. For the last six rounds
participants in each group, except one group, receive signals in
the following mechanism which we denote as the patterns of
influence (Figure 4 shows the signal patterns for the groups):

1) No Message (NM): Participants receive no message from
the peers, so the last six round are exactly same for the
participants as the first 12.

2) Uniform Message (UM): Here we send only one signal
using one peer (bot) of a participant at each round. So
V = {1, 1, 1, 1, 1, 1} denotes uniform influence.

3) Linear Cascade (LC): Here we incrementally activate
one peer with the suboptimal technology at each step
in round 2. So V = {1, 2, 3, 4, 5, 6} denotes uniformly
increasingly influence as shown in Figure 3.

4) Delayed Cascade (DC): Here we send only one signal
for the first 3 timesteps and send 4, 5 and 6 signals at
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the last 3 timesteps respectively. So V = {1, 1, 1, 4, 5, 6}.
The objective is to see whether the sudden change in
the number of signals acts as a catalyst for increasing
successful influence at the later stages of the experiment.

5) Early Cascade (EC):In this setup, we send more signals
in the beginning. So V = {4, 5, 6, 6, 6, 6}. This pattern
allows us to ask if an early trigger is able to sustain the
levels of influence, or whether participants will return to
the optimal choice at the later stages.

Note that in all conditions, users can switch back to any
choice in the next round after having selected an option in
the current round. We consider the NM and UM groups as
our baseline groups and LC, EC, DC groups as our treatments
groups of interest. Note that while the pattern remains the
same, the suboptimal technology chosen by us for each subject
and that cascades through its peers is random. An example
of the Linear Cascade (LC) pattern is shown in Figure 3,
where the subject (marked in dots) is able to receive social
signals from its 6 neighbors. At Round 13 (start of the second
phase), a signaler (node v1) selects a suboptimal provider C,
and over the next five rounds, the remaining peers adopt the
same behavior one after another.(we will refer to this as the
influence decision). Note that although we program only a few
of the peers (bots) to adopt C over time, the subjects are able
to view all the bots and their decisions in their dashboard for
all the last 6 timesteps. We emphasize that all the peers of
the subjects are bots and do not share any topology between
themselves, thereby we sideline the effects of network on the
individual behavior changes.

V. ANALYSIS

Group # participants
Average number of attacks
prevented

NM 55 105.2
UM 71 106.28
LC 79 103.81
DC 81 104.8
EC 71 103.83

TABLE I: Average number of attacks prevented by subjects
in each group. The lower attacks suggest participants deviated
more from the optimal decision responding to social infleunce.

A. Distribution of attacks prevented

Table I shows the distribution of attacks prevented by
subjects in each group. We observe that, on average subjects
in the EC and LC groups prevent more attacks compared to
others. Based on a survey analysis, we found that none of the
traits like computer anxiety, computer confidence, computer
liking, intuition or neuroticism were correlated to the number
of attacks prevented in all groups.

B. Distributions of decisions by individuals

As a first step towards investigating hypothesis H1, we
analyze the kinds of social signals or the cyber security

Fig. 5: Decisions chosen by the bots for participants in each
group (here groups are considered separately). Note that only
the decisions that are not optimal are sent as social signals in
the second phase of the experiment.

technologies (which were not the optimal technology) chosen
by the bots of each participant and whether they are uniform
across all the groups. In our experimental setup throughout,
technology provider 1 or decision 1 constituted the optimal
choice preventing 7 attacks, while the rest of the technologies
prevented 5 attacks and are being termed as suboptimal
choices. From Figure 5, we observe that the random selection
of a suboptimal technology C for a participant (and which
differs for each participant) introduces some disproportionate
selection of the 5 possible suboptimal technologies, when
considering individual groups. For UM group, around 25%
of users received decision 4 (maximum among all suboptimal
technologies) while 29% of users in the early cascade group
were sent decision 5 (maximum) as their peer choices and
28% of users in the delayed group cascade were sent decision
6 (maximum). However, we see that users in the linear cascade
group had signals sent that are uniformly distributed among
the population.

Having observed that there was not one pre-programmed
peer choice as the strategical obvious suboptimal choice across
all groups, we proceed with investigating H1. In order to
detect any implicit occurrence of a selection bias over the
participants, we analyze whether there is any significant dif-
ference in the groups with respect to choices made in the first
12 rounds. To accomplish that, we plot the probability that an
individual makes each decision when aggregated over the first
12 rounds. We find that there is clearly no evidence of dif-
ferences in the mean statistics of the probability distributions
between the treatments groups(LC, DC, EC) and the control
groups (UM, NM) (Refer to Figure 1 in the Appendix2).
The results (p-values for each group) in Tables 1, 2 and
3 in the Appendix suggest no significant difference in the
distributions among the groups. This rules out any bias among
the participants themselves in the absence of externalities.
However, in the second phase of the experiment (Rounds 13
to 18 aggregated), we find differences in the selection patterns
among the decision-makers in their respective groups. We find
the following observations from Figures 6(a) and (b) for our
treatment groups (see Tables in the Appendix):

1) LC: With respect to the NM group, there are no sta-

2Online Appendix can be accessed here: Link
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(a)

(b)

Fig. 6: Probability of decisions made in Rounds 13 to 18.
(a) Probability of making the optimal decision. (b) Probability
of making the suboptimal (other 5) decision. The error bars
denote standard error over the distributions.

tistically significant differences in the decisions taken
by the participants in LC - we carried out a similar
statistical test comparing the group pairwise means as
done for the first 12 steps. On the other hand, we find
that there is a statistically significant difference in the
means of the probabilities compared to the UM group
participants for the optimal decision (p=0.04, df=149)
at α = 0.1. The difference shows that a significantly less
number of participants are tempted to choose the optimal
technology provider in the presence of linear cascading
signal pattern than when a single signal is sent across
all timesteps.

2) DC: For participants in the DC group we find that w.r.t.
the NM group , there is a statistically significant differ-
ence for the participants who chose decision 5 (p=0.09,
df=140) and with respect to UM group, the participants
opting for decision 2 and 4 differed significantly from
those in DC. However, w.r.t NM group or UM group
participants, we observe that the users do not differ in
their selections when it comes to choosing the optimal
provider. Also it does not differ with respect to the most
common choice among the bots for DC group - the
decision 6 shown in Figure 5.

3) EC: With respect to the UM group users, the users in
this group differ in the choice most selected by bots -
decision 5 (p=0.07, df=128 ). This is a successful case
of social influence when considering the macro-adoption
process for the group as the users not only steered away
from the optimal choice, but they also steered towards
the decision of their peers.

This suggests that while the social signal to some extent

Fig. 7: Fraction of users in each group adopting the influence
decision chosen by their peers.

influences an individual in the LC group to deviate from
the optimal choice, it does not always translate to the peer
decision that was chosen for the corresponding individual. It
rather gears the user towards more exploration. However, an
early burst of signals in the EC successfully translates towards
social influence wherein the users sway towards the influence
decision more.

C. Degree of Influence

This first analysis of H1 does not shed any light on the
temporal variations in the decision making process exhibited
by users in different groups - it shows some statistically signif-
icant differences in the choices made for specific decisions (or
technology providers) over the entire second phase. While it
did show that not all cascade patterns successfully influenced
users towards not choosing the optimal provider, leading them
to the more popular bot choices, it brings up the question
that is posed for hypothesis H2: what constitutes successful
influence and if so, does the manner in which the signals are
sent determine successful influence?

To this end, we analyze how the proportion of users who
switch to the influence decision, ignoring the optimal choice
changes, throughout the rounds for each group. We note that
the for each user the influence decision is randomly selected
before the second phase starts. Figure 7 shows the fraction
of users in each group adopting the influence decision from
rounds 13 to 18, when the experimental participants observe
their peers’ decisions. Following from the observations regard-
ing H1, we find that the probability of successful influence
for participants in EC has the strongest effects on decision-
making. Participants in EC are most likely to deviate from
selecting the optimal provider as shown in Figure 6. We also
find that, while for the first 3 timesteps in the second phase,
participants in EC group exhibit the maximum adoption com-
pared to other groups, Round 15 had the maximum retention,
where participants were exposed to all their peers selecting
the same technology. - this may be due to new users adopting
the influence decision or due to the same users from previous
rounds who do not switch back. We will explore this in the
following sections.

The participants in the DC group exhibit successful re-
sponse towards the sudden increase in signals at Round 16
whic is shown by a 65% increase in user adoption of the
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influencedecision compared to the previous step. These
results become close to the 25% of users making peer decision
selection at Round 16 and which is also the maximum among
all groups surpassing the early cascade adoption ratio. How-
ever, there is no substantial increase in the adoption fraction
for the users in the linear cascade group - we do note that the
adoption peaks at Round 15 for the linear cascade users before
it drops again. These observations from Figure 6 and Figure 7
suggest that while an early burst of social signals successfully
persuades users in EC to adopt the influence decision, causing
an aggregated overall maximum selection of the peer decision,
a sudden impulse in the quantity of social influence also
successfully steers users towards the influence decision in the
later stages. As a side experiment to measure the degree of
drift away from optimal decision, we also analyze the fraction
of users who shift away from decision 1 (the optimal) at each
timestep similar to what has been shown in Figure 7. However,
we do not find any clear distinctions among the groups in
terms of the fraction of subjects who move away from optimal
decision. This leads us to conclude that our experimental setup
had a more pronounced effect when influencing users towards
their peer social signal or one particular suboptimal choice
than just influencing them away from the optimal decision
- the fact that the users eventually move away from the
optimal decision does not contribute much in distinguishing
the patterns of influence.

D. Measuring the effect of quantity of signals

In this section, we investigate whether the quantity of
signals alone stand out as the sole factor of influence or does
the manner in which the signals are sent, contribute more
to the social influence. Before going into the analysis, we
define a few notations: we denote a subject in this study as
u where u can belong to any group. We denote the decision
taken by a subject u at time t, t ∈ [1, 18] by du(t). Let the
influence decision (the suboptimal technology C) selected by
the peers of u be denoted by Cu (note again Cu would be
different for each participant u). We define the number of
peers of u who reflect the influence decision Cu at round t
as Vu(t) (Vu(t) would be different for users in each group,
for e.g. for a u in LC group, Vu(t = 1) = 1, Vu(t = 2)
= 2 and so on). We define Ttreat as the sequence of time
points during which the subjects receive signals from their
peers i.e. Ttreat = [13, 18]. Following this, we denote the
timestep t, t ∈ Ttreat when an individual u first switches
to Cu as tfu (by definition, tfu ∈ Ttreat). For each signal
quantity s, we measure the proportion of individuals (in each
group) who made their first switch to their peer decision
only after they were exposed to s signals. Formally, for any
t ∈ Ttreat, R(s) = |{u | du(t)=Cu

∧
Vu(t)=s

∧
t=tfu}|

|{u}| (R(1)
in LC group denotes the number of individuals in LC group
who made their first switch to their peer influence decision
after being exposed to just 1 signal. Similarly, R(6) in EC
group denotes the number of individuals in EC group who
made their first switch to their peer influence decision only
after being exposed to 6 signals, so this can happen in any

(a) (b)

Fig. 8: Plots of adoption under the influence of s exposures. (a)
For each signal quantity s, proportion of individuals who made
their first switch to their peer decision after being exposed to
s signals, (b) Proportion of individuals who adopt their peer
decision after being exposed to signals from s influencers.

of the last 4 rounds in EC). The denominator in the formula
here denotes the number of individuals in the group. We bin
the values from R(s) based on s and take the mean for
each group, since for some groups, there can be multiple
rounds with the same number of exposures or signals. From
Figure 8(a), we observe that for EC group, ∼30% of users
under the influence of 4 signalers, for DC, ∼18% of users at
4 signalers and for LC, ∼15% of users at 3 signalers (all these
being the maximum ratio) made their first switch to the peer
decisions in the second phase of the experiment. However, on
close observation, we find that the number of exposures alone
does not explain the adoption behavior. When we compare
the EC participants with those in DC group, we find that
with 4 exposures in Ttreat (at round 13 for EC and at round
16 for DC), the proportion of adopters in EC making their
first peer decision switch (30% of users) is higher than the
proportion in DC (18% of users), although the same 4 quantity
of signals are delivered at different timesteps for the 2 groups.
However, while there is a constant decrease in the number of
adopters making first switches in the EC group going from
4 to 6 exposures, we see that the DC influence pattern does
not decrease the same way for 4 to 5 to 6 exposures. This
suggests that the sudden stimulus from the delayed exposure
somehow succeeds in influencing more users to make their first
switch to the peer decision compared to the EC group (note
that all the users under these different quantities are unique
since we measure their first switch). On the other hand, for
the linear cascade group we do not find one quantity that is
most effective in the influence - in the LC setup, there is no
one exposure that impacts the adoption behavior the most in
terms of successful influence.

In addition, we measure the cumulative adoption ratio
for each group defined as: for any t ∈ Ttreat, Z(s) =
|{u | du(t)=Cu

∧
Vu(t)=s}|

|{u}| . In simple terms, it measures the
number of individuals in a group who adopt the influence
decision under s exposures irrespective of whether it is the
first switch. This is demonstrated in Figure 8(b). When we
combine the results obtained in Figure 8(a) with Figure 8(b),
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Fig. 9: Success Ratio.

we find an interesting observation for the LC group. The linear
cascade pattern is able to retain most of the users even after
first switch at timestep 13 as the cumulative ratio increases up
to 3 exposures (which occurs at timestep 15). This suggests
that the LC pattern is effective in terms of retention in the
early stages of the cascade.

E. Dynamics of adoption

We end this study with a retrospective analysis to understand
the dynamics of influence. In an attempt to quantify the effect
of the influence on subjects in a more constrained setting,
we measure at every timestep, the ratio of individuals who
adopted the peer decision at the respective timestep to the
number of individuals (in their respective group to which it
belongs) who switched to their influence decision at least
once within their lifecycle (Ttreat). Note that this is different
from previous measures in 2 ways: first we retrospectively
filter out users who never adopted their peer decision (in the
real world these are users who would not be susceptible to
influence or are immune as such). Second, we analyze this
ratio at the end of their exploration phase, in Round 18, when
everybody have supposedly settled down. We define a symbol
N(u) as the number of time steps for which a user u adopts
Cu in Ttreat (this is measured retrospectively aggregating all
timesteps beforehand). Formally it is defined as: Success ra-
tio(t) = |{u | du(t)=Cu}|

|{u | N(u)≥1}| . The denominator denotes the number
of individuals who have adopted the peer decision at least once
from Rounds 13 to 18. The comparison shown in Figure 9
among the four groups (the No message group does not have
any influence decision) demonstrates that while the EC group
adopts the influence decision more quickly than other groups,
the stimulus in signals quantity at Round 16 in DC group
affected the participants. This is confirmed when the effects
of DC strongly outstrip those observed from EC in the last
round where both groups receive 6 signals.

VI. CONCLUSION

We present a controlled experiment that demonstrates how
individuals can deviate from the optimal choices as a result of
social influence. While an early cascade influences decision-
makers to deviate most from their choice when aggregated
over the game, the speed with which individuals switch to their
peers’ decision further increases when an impulsive stimuli is
present. Such conclusions can have diverse impacts on real
world use-cases where we can devise strategies to influence

people towards making a better choice even when there is little
motivation.
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