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Abstract—SimRank is a widely studied link-based similarity
measure that is known for its simple, yet powerful philosophy
that two nodes are similar if they are referenced by similar
nodes. While this philosophy has been the basis of several
improvements, there is another useful, albeit less frequently
discussed interpretation for SimRank known as the Random
Surfer-Pair Model. In this work, we show that other well known
measures related to SimRank can also be reinterpreted using
Random Surfer-Pair Models, and establish a mathematically
sound, general and unifying framework for several link-based
similarity measures. This also serves to provide new insights
into their functioning and allows for using these measures in a
Monte Carlo framework, which provides several computational
benefits. Next, we describe how the framework can be used as a
versatile tool for developing measures according to given design
requirements. As an illustration of this utility, we develop a
new measure by combining the benefits of two existing measures
under this framework, and empirically demonstrate that it results
in a better performing measure.

I. INTRODUCTION

Advances in computing and information systems have en-
abled the collection of data on a large scale. A sizable portion
is available in network form, with some well known examples
being social networks and the World Wide Web. Naturally,
the need arises to effectively utilize this data in the relevant
domains. One area where network data has enormous potential
is in recommender systems.

With the advent of electronic commerce, data is often
available for products that customers have purchased, which
can be used for collaborative filtering to provide recommen-
dations for further purchases. As human knowledge grows,
leading to rapidly expanding bodies of literature, there is an
increasing requirement for effective recommender systems to
aid researchers. Thus, utilizing bibliographic network data
such as citation and co-authorship networks to provide rec-
ommendations is of rising importance.

In general, some form of similarity assessment would be
a key component of recommender systems. We consider one
class of similarity measures that work with only the link struc-
ture of the network known as structural (or link-based) sim-
ilarity measures. Among the first such well known measures
are Co-Citation [14] and its counterpart Bibliographic coupling
[8] that measure respectively the frequency with which nodes
refer to two given nodes , and the frequency with which nodes

are referenced together by two given nodes. Amsler [1] is a
combination of the former two measures. SimRank [7] with
its intuitive graph-theoretic model was a breakthrough which
formed the basis of several subsequent measures. Among the
notable ones are P-Rank [17], PSimRank [3] and SimRank*
[16].

At the focus of this work is the probabilistic interpretation
of SimRank known as the Random Surfer-Pair (RSP) Model
[7]. We develop a generalization of this interpretation that
applies to several measures and present a unified view of
these measures. Casting them under the Generalized Random
Surfer-Pair (GRSP) model also provides new insights into
their functioning: with P-Rank, the GRSP model brings to
light an otherwise indiscernible peculiarity, and for SimRank*
provides an elegant and intuitive justification. We show how
the framework also provides the tools necessary for performing
Monte Carlo computation of these measures and discuss the
computational benefits that result. Next, we outline the ways
in which the GRSP model can be used to design measures,
and the considerations involved in its usage for developing
new measures. We then apply the framework to develop a
hybrid measure, PSimRank* to combine the benefits of two
existing measures, PSimRank and SimRank*. Experiments are
performed to demonstrate empirically how this combination
improves upon both of the measures on which it is based in
terms of retrieval efficiency on a large (more than 2 million
nodes) citation network from the Arnetminer dataset.

II. BACKGROUND

In this section, we present SimRank and other relevant link-
based similarity measures, and then the RSP interpretation for
SimRank. Throughout, we consider networks with directed,
simple graphs. We denote the graph by G, its vertex set by
V , and its edge set by E. For any vertex a, I (a) denotes its
in-neighbors and O (a) its out-neighbors. We index into these
sets as Ii (a) and Oi (a).

A. SimRank and related measures

The famous SimRank philosophy that two nodes are similar
if they are referenced by similar nodes is formalized recur-
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sively as:

s (a, b) =
C

|I(a)||I(b)|

|I(a)|∑
i=1

|I(b)|∑
j=1

s (Ii(a), Ij(b)) (1)

where a 6= b and C < 1 is a fixed, positive parameter. In
the rare cases where either of the nodes a and b have no in-
neighbors, the similarity is considered to be zero. Maximal self
similarity applies, with s (x, x) = 1 ∀x ∈ V . These two base
cases also apply for other measures discussed subsequently
and nodes a and b on the left hand side are assumed to be
distinct except as specified otherwise.

An out-link variant of SimRank, rvs-SimRank is also de-
scribed in [5], which has the following form:

s (a, b) =
C

|O(a)||O(b)|

|O(a)|∑
i=1

|O(b)|∑
j=1

s (Oi(a), Oj(b)) (2)

Some deficiencies that have been identified in SimRank are
as follows [5] :
• The In Links Consideration Problem : SimRank is un-

available (i.e set to zero) when either node has no in-
neighbors, even though there may be evidence of simi-
larity in the out-neighbors.

• The Pairwise Normalization Problem : This is the
counter-intuitive effect that the SimRank score of a pair
of nodes can decrease as there are more and more nodes
referring to both of them. Consider two nodes u and v
having several (say k) nodes that refer to both of them.
Now, if these nodes are unrelated to each other (i.e they
have zero similarity), the SimRank score between u and
v is found to be C

k , which decreases with k. Thus, even
though there are more witnesses to the similarity of u
and v, their SimRank score decreases.

• The Level-wise computation problem : It can be shown
that SimRank is unavailable for node pairs that don’t have
any paths of equal length to a common node. That is, it
discards any evidence of similarity provided by path pairs
of unequal length to a common node.

We now present some measures that were developed to address
these issues.

1) P-Rank: P-Rank ( [17]) was proposed to take into
account out-links as well in computing similarity. It has the
following recursive form :

s (a, b) = λ× C

|I(a)||I(b)|

|I(a)|∑
i=1

|I(b)|∑
j=1

s (Ii(a), Ij(b))

+ (1− λ)× C

|O(a)||O(b)|

|O(a)|∑
i=1

|O(b)|∑
j=1

s (Oi(a), Oj(b)) (3)

It essentially adds an additional clause to the SimRank
philosophy: two entities are also similar if they reference
similar entities.

The base cases are similar to those of SimRank, except that
only the term that corresponds to in (out) neighbors gets zeroed

out if one or both of (a, b) doesn’t have in (out) neighbors.
This ensures that P-Rank is not unavailable for node pairs
without in-links as is the case with SimRank, as long as they
have out links.

2) PSimRank: The recursive form of PSimRank ( [3]) is as
follows :

s (a, b) =
C|I (a) ∩ I (b) |
|I (a) ∪ I (b) |

· 1

+
C

|I (a) ∪ I (b) ||I (b) |
∑

a
′
∈I(a)\I(b)
b
′
∈I(b)

s
(
a

′
, b

′
)

(4)

+
C

|I (a) ∪ I (b) ||I (a) |
∑

b
′
∈I(b)\I(a)
a
′
∈I(a)

s
(
a

′
, b

′
)

PSimRank solves the pairwise normalization problem by
assigning greater importance to common in-neighbors. It is
evident that unlike SimRank where each term s (a, b) has the
same weight, the weights have been redistributed so that terms
of the form s (x, x) (which are always 1, and make up the
constant term) are given more weight than all other terms.

3) SimRank*: SimRank* ( [16]) was proposed to solve
the level-wise computation problem of SimRank and has the
following recursive form:

s (a, b) =
C

2|I(a)|

|I(a)|∑
i=1

s (Ii(a), b) +
C

2|I(b)|

|I(b)|∑
i=1

s (a, Ii (b))

(5)
The measure is derived in [16] by actually enumerating

all pairs of paths of (possibly) unequal length from a and
b to a common node and computing the weighted sum of an
exponentially decayed score associated with each path. Later
on, we present a much simpler explanation as to how it works
under the GRSP interpretation.

B. The RSP Model for SimRank

The Random Surfer-Pair interpretation for Simrank is based
on a random experiment involving two random walks (or
surfers) starting at the given nodes a and b, and traversing
the graph backwards until they meet. That is, at the end of
each step, each walk transitions to a randomly chosen in-
neighbor. If either of the current nodes have no in-neighbors,
the experiment is stopped.

Definition. Let L(a, b) be the random variable that gives the
number of steps taken until the surfers meet starting from a
and b respectively. The expected f -meeting distance between
a and b is defined for a given function f as E [f (L (a, b))].

The f -meeting distance can be viewed as a score resulting
from each instance of the experiment, and is itself a random
variable. It turns out that for a specific choice of f , the
expected score is nothing but the SimRank of (a, b). This
equivalence of the Random Surfer-Pair formulation and the
recursive form in equation 1 are proved in [7] :



Theorem. SimRank as defined by Equation (1) is the same as
the expected f -meeting distance between a and b for f(t) =
Ct, where 0 < C < 1.

If the experiment is stopped because of unavailability of
neighbors, L (a, b) is considered to be infinite, thus making
the f -meeting distance zero for that run of the experiment.
Also, the base case of maximal self-similarity follows naturally
because if a = b, the surfers deterministically meet at time
t = 0, giving a score of 1 always.

In this interpretation, two nodes are similar if they are
close to some source(s) of similarity. As we will discuss,
various measures differ in what they consider to be sources of
similarity and how much weight is assigned to them.

III. RELATED WORK

An RSP interpretation has already been made for PSim-
Rank, and it was in fact the way in which the measure was
developed [3]. PSimRank is defined the same way as the RSP
model for SimRank, except that the transition probabilities for
the surfers are modified so that they are more likely to meet at
a common in-neighbor in the next step based on the number
of such common in-neighbors at their current positions.

The improvements to Simrank are justified using this RSP
model, and the recursive form in Eqn. 4 is also derived from
it. However, unlike this work, the RSP model is not discussed
as a general framework, and no general connections between
the recursive forms and the RSP model are established.

We will arrive at the same RSP model later when we apply
the GRSP model to PSimRank in Section VI-A.

IV. GENERALIZING THE RSP MODEL

For defining the GRSP model, we treat the Random Surfer-
Pair experiment as a single random walk, but on a compound
state space that consists of vertex pairs from V × V [7] to
indicate the positions of both surfers, and also a “stopped”
state, which represents unavailability. We use the letter h to
denote a typical state from this space, which we denote by S.

The transition probabilities for this random walk are denoted
as p(h

′ |h), the probability of transitioning to h
′

from h.
The stopped state is an absorbing state, that is once the state
is reached, it is impossible to leave. We can collect these
probabilities into a matrix P.

The idea is that different measures can be realized for
different choices of transition probabilities, formalized by the
following definition of the GRSP model :

Definition 1. For a particular matrix of transition probabilities
P, consider the following combined random walk experiment
over the compound state space S starting from (a, b) at time
t = 0:
• If the current state of the walk is h, the walk moves to the

next state with probability p(h
′ |h)∀h′ ∈ S as specified

by P.
• The walk ends when a state of the form (x, x) is reached,

for some x ∈ V .

Let L(a, b) be the random variable that gives the number
of steps taken until the walk ends. The expected f -meeting
distance between a and b is defined for this combined walk
for the function f(t) = Ct as E [f (L (a, b))] with 0 < C < 1.
This is a function of (a, b) which we call the similarity
measure induced by P under the Generalized Random Surfer-
Pair model.

One can think of other choices for f to encode different
extents of decay of similarity, such as f(t) = C

t2 . However,
the specific choice of f(t) = Ct is what leads to the useful
properties we discuss below.

The termination condition is equivalent to the random
surfers meeting at some node for the first time. If the walk
goes into the stopped state, it stays there forever, and does not
reach a state of the form (x, x). This gives an infinite number
of steps, thus leading to a score of zero. Again, the base case
of maximal self-similarity applies here as well.

V. EQUIVALENCE TO RECURSIVE FORM

An interesting observation to be made is that the coefficients
of any s(a

′
, b

′
) in the recursive formulation of SimRank

(Equation 1) are the same as the transition probabilities for
the surfers in the Random Surfer-Pair Model going from (a, b)
to (a

′
, b

′
). This leads one to believe there could be a similar

relationship for any transition probabilities P. Indeed, this is
true and the results are formally presented in the remainder of
this section.

For a given transition probability matrix P, consider the
following set of recursive equations defined for all node pairs
(a, b) :

s (a, b) = C
∑

(a′ ,b′ )∈R((a,b))

p
(
(a

′
, b

′
)
∣∣∣ (a, b)) s(a′

, b
′
) (6)

Here, R ((a, b)) ⊆ V × V is a region of support (which
we will also refer to as support set) for (a, b) under P, that
is where the transition probability p

(
(a

′
, b

′
)
∣∣∣ (a, b)) is non-

zero. Note that this does not include the stopped state, which
means the sum of the coefficients appearing in the above
equation need not be 1 (of course, they have to be less than
1).

The same base case of s (a, a) = 1 ∀ a ∈ V is used. If
R ((a, b)) = {φ}, s (a, b) is taken to be zero unless a = b.
These equations define what is called the recursive similarity
measure induced by P.

An iterative form is also defined:

sk+1 (a, b) = C
∑

(a′ ,b′ )∈R((a,b))

p
(
(a

′
, b

′
)
∣∣∣ (a, b)) sk(a′

, b
′
)

(7)
The following results establish the mathematical soundness

of the GRSP model.

Theorem 1. The following results hold true for the iterative
form :
• Monotonicity and boundedness :

0 ≤ sk (a, b) ≤ sk+1 (a, b) ≤ 1 ∀ (a, b) ∈ V × V



• Convergence to limit : The sequence sk (a, b) converges
to a limit (obviously between 0 and 1 by the previous
part) for all (a, b) ∈ V × V .

Proof. The monotonicity and boundedness are proved by
induction. The inductive hypothesis is that

0 ≤ sk−1 (a, b) ≤ sk (a, b) ≤ 1 ∀ (a, b) ∈ V × V

The base case of this for k = 0 is trivial since s0 (x, x) = 1
and s0 (a, b) = 0 ∀ a 6= b, and so is the case with a = b . The
inductive step is as follows :

Monotonicity : We have

sk+1 (a, b)− sk (a, b) = C×∑
(a′ ,b′ )∈R((a,b))

p
(
(a

′
, b

′
)
∣∣∣ (a, b)) [sk(a′

, b
′
)− sk−1(a

′
, b

′
)
]

But sk(a
′
, b

′
) − sk−1(a

′
, b

′
) ≥ 0 by the inductive hypoth-

esis, and p((a
′
, b

′
) | (a, b)) ≥ 0 since it is a probability, thus

proving the monotonicity.
Boundedness : From the inductive hypothesis, 0 ≤

sk (a, b) ≤ 1. Therefore,

sk+1 (a, b) = C
∑

(a′ ,b′ )∈R((a,b))

p
(
(a

′
, b

′
)
∣∣∣ (a, b)) sk(a′

, b
′
)

≤ C
∑

(a′ ,b′ )∈R((a,b))

p
(
(a

′
, b

′
)
∣∣∣ (a, b)) · 1

≤ C ≤ 1

Where we have used the fact that∑
(a′ ,b′ )∈R((a,b)) p((a

′
, b

′
) | (a, b)) ≤ 1, since it is a

sum of transition probabilities out of (a, b) (possibly less than
one because of the stopped state). Similarly, it can be shown
that sk+1 (a, b) ≥ 0.

Convergence : Since sk (a, b) is bounded and non-
decreasing, by the Completeness Axiom of Calculus, sk (a, b)
converges to a limit ∀ (a, b) ∈ V × V , which we denote by
g (a, b). Of course, this limit must be between 0 and 1 as the
sequence itself is bounded in that range.

From the above, the following result follows :

Theorem 2. There exists a unique solution to the system of
equations defined by equation 6.

Proof. Let two solutions to Equation 6 be s1 and s2. Define
their difference

δ (a, b) = s1 (a, b)− s2 (a, b)

Let M be the maximum absolute value of δ, that is
max(a,b) |δ (a, b)|. Let this maximum value be achieved for
(a, b), that is M = |δ (a, b)|. If a = b, then clearly M = 0 as
both s1 and s2 must satisfy the maximal self-similarity base

case. Otherwise, we have

M =

∣∣∣∣∣∣C
∑

(a′ ,b′ )∈R((a,b))

p
(
(a

′
, b

′
)
∣∣∣ (a, b)) [s1(a′

, b
′
)−

s2(a
′
, b

′
)
]∣∣∣∣∣ ≤ C ∑

(a′ ,b′ )∈R((a,b))

p
(
(a

′
, b

′
)
∣∣∣ (a, b)) ∣∣∣δ(a′

, b
′
)
∣∣∣

≤ C
∑

(a′ ,b′ )∈R((a,b))

p
(
(a

′
, b

′
)
∣∣∣ (a, b))M ≤ CM

Here, we have used the fact that since (a, b) maxi-
mizes |δ (·, ·)|,

∣∣∣δ(a′
, b

′
)
∣∣∣ ≤ M and again the fact that∑

(a′ ,b′ )∈R((a,b)) p((a
′
, b

′
) | (a, b)) ≤ 1.

Now, since M is an absolute value, and M ≤ CM with
0 < C < 1, we must have M = 0. This proves that s1and
s2 are always the same. Thus, there exists a unique solution
to the recursive form of Equation 6, and that solution can be
obtained as the limit of the iterative form.

Which leads to our central result :

Theorem 3. The similarity measure induced by P according
to definition 1 is the same as the recursive similarity measure
induced by P (Equation 6).

Proof. We first need to show that the expected f -meeting
distances, for which we overload the notation s (a, b) satisfy
the recursive form. LetWa,b be the set of all compound walks
from (a, b) to a state of the form (x, x). Let l (w) denote the
length of such a walk w, and p (w) the total probability, which
is the product of the probabilities of the individual transitions.
Then, by definition of the expected f -meeting distance,

s (a, b) =
∑

w∈Wa,b

p (w)Cl(w) (8)

Now, consider the set of all such compound walks from
one step ahead, that is,

⋃
(a′ ,b′ )∈R((a,b))Wa′ ,b′ . Note that

all the individual sets Wa′ ,b′ are disjoint. Now, clearly this
collection of walks differs from Wa,b only in the inclusion
of the first transition to some (a

′
, b

′
). Therefore, a bijection

exists between this set and Wa,b, and so Wa,b can be
enumerated in terms of the new collection.

This means that for every member w of Wa,b, there is
some unique (a

′
, b

′
) and some unique w

′ ∈ Wa′ ,b′ . Thus, it
is possible to group the terms of the summation in Equation
8 by (a

′
, b

′
). Now, the corresponding w

′
will have one step

fewer, so l(w
′
) + 1 = l (w), and it omits the transition

probability for the step from (a, b) to (a
′
, b

′
), so

p (w) = p
(
(a

′
, b

′
)
∣∣∣ (a, b)) p(w′

)



Thus, Equation 8 is rewritten as:

s (a, b) =∑
(a′ ,b′ )∈R((a,b))

∑
w′∈W

a
′
,b

′

p
(
(a

′
, b

′
)
∣∣∣ (a, b)) p(w′

)
C

l
(
w

′)
+1

= C
∑

(a′ ,b′ )∈R((a,b))

p
(
(a

′
, b

′
)
∣∣∣ (a, b)) ∑

w′∈W
a
′
,b

′

p
(
w

′
)
C

l
(
w

′)

But, by definition, s(a
′
, b

′
) =

∑
w′∈W

a
′
,b

′ p
(
w

′
)
C

l
(
w

′)
.

This completes the proof that the expected f -meeting
distances satisfy the recursive form of Equation 6. By the
uniqueness result of Theorem 2, it follows that this is the same
as the solution that can be arrived as a limit of the iterative
form, thus establishing the equivalence of the Generalized
Random Surfer-Pair model and its recursive form.

This is the result necessary to convert an existing recursive
form into a Random Surfer-Pair Model. All that needs to
be done is to read off the non-zero coefficients into the
appropriate places into the matrix, or equivalently get the
support set and the corresponding transition probabilities as
a function of (a, b). One thing to note here is that the
probabilities corresponding to actual node pair destinations
from (a, b) need not sum to 1, because it could go into the
stopped state as well.

It would of course be more illustrative to get a concise
description of the matrix. For SimRank for instance, R ((a, b))
is simply all neighbor pairs of a and b with the transition
probabilities being uniform over this set. If either node has no
in-neighbors, it transitions to the stopped state with probability
1 (i.e unavailable).

Our formulation allows for transitions from one compound
state to any arbitrary state, and any number of destination
states with non-zero transition probability. However, in exist-
ing measures, there are only a few possible transitions from
any given state (a, b) compared to the total number of possible
states, that too involving the neighbor pairs of a and b (on
practical graphs which are not densely connected). This means
that P is sparse, so even though there are |V |2 states, only
a few of them are involved in transitions from any given
state, and it is no more complicated than the existing recursive
formulations. However, we note that the above results continue
to hold for any P regardless of sparsity.

VI. APPLICATION TO OTHER MEASURES

In this section, we demonstrate the usage of the GRSP
model by applying it to PSimRank (Equation 4), P-Rank
(Equation 3) and SimRank* (Equation 5) as discussed in the
previous section. Throughout this exercise, any “unallocatable”
probability due to e.g unavailability of in-neighbors or out-
neighbors is given to the stopped state.

A. PSimRank

Support Set: R ((a, b)) is divided into 3 disjoint sub-
sets: {(x, x) , x ∈ I (a) ∩ I (b)}, (I (a) \ I (b))×I (b), I (a)×

a

b

d e

f c

g

a

b

d e

f c

g

Fig. 1. Left: An instance of the GRSP experiment for P-Rank with the surfers
starting at b (dashed path) and g (dotted path) and meeting at f . Right: In this
graph, the same path-pair is invalid because the paths take opposite directions
in the second step.

(I (b) \ I (a)). Note that parts of I (a)×I (b) are missing from
this set unlike SimRank.

Transition Probabilities: The 3 subsets mentioned above
are given total probabilities of |I(a)∩I(b)||I(a)∪I(b)| (note that this is

the the Jaccard coefficients of in-neighbor sets), |I(a)\I(b)||I(a)∪I(b)|
and |I(b)\I(a)|

|I(a)∪I(b)| respectively, and probabilities for individual
elements are uniform over each set. This is exactly the RSP
model presented in [3].

B. P-Rank

Support Set: R ((a, b)) now has two disjoint parts:
I (a)× I (b) and O (a)×O (b).

Transition Probabilities: The two parts of R ((a, b)) are
given total probabilities of λ and 1−λ, and just like PSimRank,
probabilities for individual elements are uniform over each set.
These probabilities can be interpreted as follows: a coin with
probability λ is tossed, and based on its result, both surfers
move backward or forward and choose from applicable edges
uniformly. This scheme is illustrated in Figure 1. Transitions
where the surfers take different directions are not allowed.
Thus, a theoretical deficiency exists that causes it to discard
path-pairs containing such transitions as evidence for similar-
ity. This is not at all evident from its recursive form.

C. SimRank*

Support Set: For SimRank*, R ((a, b)) =({a} × I (b))∪
(I (a)× {b}). Note that the Cartesian products involve single-
ton sets.

Transition Probabilities: The two parts of R ((a, b)) are
given total probabilities of 1

2 each, and again, individual
probabilities are uniform over their respective subsets. These
transitions are the same as tossing a fair coin, and based on
the outcome, stepping one surfer to a uniformly chosen in-
neighbor. An example of this is shown in Figure 2.

The notable feature here is that only one of the surfers is
allowed to move at each step. The choice as to which surfer
moves is made uniformly. From this, it becomes clear how
SimRank* manages to consider path-pairs of unequal length.
The surfers need not have made an equal number of jumps to
meet at some node. This is a much more simpler and intuitive



ab

d e f

Fig. 2. An instance of the GRSP experiment for SimRank* with the surfers
starting at d (dotted path) and f (dashed path) and meeting at a, with their
paths having different effective lengths. The loop shows that surfer did not
move that step.

explanation than the original analytic derivation in [16] by
enumerating all such path pairs.

VII. MONTE CARLO COMPUTATION

A key benefit of the GRSP model is that it enables the use
of Monte Carlo methods for the entire class of measures that
fall under this model. This includes SimRank* and P-Rank,
for which Monte Carlo methods have not been used so far. It is
quite straightforward to apply: simulate the surfers’ transitions
starting from a given pair of nodes for some number of times,
and return the average score as the similarity.

In practice, the surfers would have to be truncated after
some number of steps Lmax, and only a limited number of
samples NS can be drawn in the interest of fast querying, but
decent guarantees for accuracy in practice are shown in [3].
Radius based pruning can be done to reduce the amount of
nodes that need to be considered for top-k similarity queries,
i.e restricting the search to nodes at a particular distance (or
radius) from the query node.

The various benefits of using Monte Carlo computation are
as follows:

1) Complexity: Typically, there is an easy (O(1)) way to
generate a transition from any given state. In SimRank*
for instance, all that needs to be done is to toss a
coin, and advance one surfer to a randomly chosen in-
neighbor. Thus, the complexity of a single similarity
computation is just O(NSLmax), where these quantities
are much smaller than the size of the network. In
comparison, solving the recursive equations takes at least
O(|V |2) even when extensive optimizations can be made
[16].

2) Memory efficiency: The memory requirement is also low
since individual similarities can be computed without
having to compute and store all pairs of similarities
(O(N2) memory needed) as is necessary for the re-
cursive forms. More precisely, it is O(1) for each
similarity being queried. This is particularly important
when dealing with large networks (including citation
networks). In fact, even storing the iterates while solving
the recursive forms becomes infeasible for even medium
sized networks (of the order of 106 nodes) by current
standards.

3) Adaptability to changes in network structure: The net-
work can be updated without having to recompute all
similarities, which is useful in settings where nodes are
dynamically added or removed. This is often the case,
such as with social and citation networks, which change
on a regular basis. Solving the recursive forms after each
change would be highly impractical or even impossible.

4) Parallelizability: Possibly the biggest advantage is the
extensive parallelizability; every instance of the RSP
experiment can be run separately and concurrently. Fur-
ther, under the RSP model, different similarities can be
computed in parallel.

VIII. DESIGNING MEASURES UNDER THE GRSP MODEL

Theorem 3, along with our other results, characterizes a
class of “sensible” measures that are non-negative, satisfy the
base case of maximal self similarity being 1, and are bounded.
It describes how such measures in the recursive form weight
common sources of similarity in their computation in their
GRSP model. We have also seen how existing measures can
be better understood under the GRSP model, and the compu-
tational benefits that result. These observations highlight the
utility of the GRSP model as a tool for developing measures
according to given design requirements, rather than working
with the recursive forms directly.

A. Modes of Design
The only mathematical requirement is a valid transition

matrix P, i.e P needs to be doubly stochastic. Thus, designing
measures is a matter of allocating transition probabilities out of
each compound state. This could be done from first principles
such as those underlying the measures we have discussed so
far, or existing measures could be involved, i.e P could be
derived from some other transition matrices. For example, one
might wish to combine existing measures in order to create a
measure with the desirable properties present in each of the
existing measures, an exercise we undertake in Section VIII-C.

One natural way to combine measures is to take a convex
combination of the individual transition matrices, resulting in
a transition matrix of the form

P =

N∑
i=1

λiPi

with Pi, i = 1 . . . N being transition matrices for some
given measures, and λi are non-negative weights such that∑

i λi = 1. In fact, it is easy to see that P-Rank itself is such
a combination. The two measures involved are SimRank and
Rvs-SimRank, as can be verified by using Theorem 3 to get
the transition matrices from Equations 1, 2 and 3. Indeed, the
rationale behind P-Rank is to account for both in-links as well
as out-links, which are properties of these two measures that
are easily combined as described above.

B. Domain Knowledge
The GRSP framework also enables the use of domain

knowledge in the design process. We describe two possible
ways in which this can be accomplished:



• Knowledge about the network structure: Different parts of
the network could have different structures, and a mixture
of behaviors of various measures could be necessary
to accurately capture similarity. One possibility is to
construct P based on independent transitions for each
component of the node pair following different measures
based on which part of the network the node belongs to,
leading to probabilities of the form

p
(
(a

′
, b

′
)
∣∣∣ (a, b)) = p1

(
a

′
∣∣∣ a) p2 (b′ ∣∣∣ b)

where the RHS terms are obtained by appropriately
marginalizing from two given transition matrices P1 and
P2.

• Node and Edge attributes and other data: these can
be used to give more weight to meaningful transitions
that can be identified from the additional information.
Similarly, this could help identify and prune out links that
exist in the network but are not indicative of similarity in
any way. This could prove particularly beneficial when
utilizing features extracted from text data. For instance,
[2] proposes a method to detect the intensity of references
in scientific articles based on their textual content, that is
how important a reference is to an article. This inferred
attribute could be used to assign lower probabilities to
tangential references when computing similarity as papers
connected through such references can be very dissimilar.

C. PSimRank* : The Best of Both Worlds

In this section, we describe a measure designed based
on two existing measures using the GRSP framework. Later
in section IX, the efficacy of this measure is empirically
evaluated.

Previously, we have described how PSimRank solves the
Pairwise Normalization problem and SimRank* solves the
Level-wise Computation problem, and what these entail in the
Random Surfer-Pair domain. With PSimRank*, we attempt
to combine these two benefits under the GRSP framework,
resulting in a better measure because of solving both the
problems.

The combination is straightforward; to make the surfers
meet at a common in-neighbor with probability equal to the
Jaccard coefficient just like in PSimRank, but the remainder
of the time behave like SimRank*, moving only one at a time.

Support Set: R ((a, b)) =({a} × I (b))∪ (I (a)× {b})∪
{(x, x) , x ∈ I (a) ∩ I (b)}. The first two subsets are for be-
havior like SimRank*, and the third subset is from PSimRank
with both surfers stepping to a common in-neighbor.

Transition Probabilities: The third subset is allocated
probability |I(a)∩I(b)|

|I(a)∪I(b)| , and the remaining is divided equally
among the other two. The same scheme as before is used for
individual probabilities.

The effect of this design is that node pairs which have
a large number of common neighbors (i.e a high value for
the Jaccard coefficient |I(a)∩I(b)||I(a)∪I(b)| ) will greatly increase the
tendency of the measure to adopt PSimRank-like behavior
and jump to a common neighbor, thus solving the Pairwise

TABLE I
MAP VALUES ATTAINED BY VARIOUS MEASURES ON DIFFERENT

DATASETS.

Measure Arnetminer Citeseer Cora
SimRank 0.73 0.71 0.66

P-Rank(λ=0.4) 0.76 0.73 0.70
SimRank* 0.80 0.67 0.62
PSimRank 0.80 0.68 0.57

PSimRank* 0.81 0.69 0.63

Normalization problem for these nodes. For other node pairs
with fewer common neighbors, this problem is not as severe,
and the measure will focus more on the Level-wise Computa-
tion problem by adopting SimRank*-like behavior. This way,
PSimRank* is expected to mitigate both problems overall.

IX. EXPERIMENTS

We compare the performance of PSimRank* against ex-
isting measures on a real-world dataset. For P-Rank, a sweep
over the λ parameter is performed in increments of 0.1 from 0
to 1 and the best performing value of λ is used for comparison.
SimRank and rvs-SimRank are the edge cases of this sweep
with λ = 1 and λ = 0 respectively.

We use the Arnetminer dataset ( [15]), which is a citation
network of 2,244,021 papers and 4,354,534 citations extracted
from DBLP1. A portion of these papers have been manually
annotated and given labels corresponding to 10 different topics
(clusters). The evaluation consists of running a top-k similarity
query on some randomly chosen labeled nodes, and finding
the Mean Average Precision (MAP) ( [10]) for the answer set
having the same label as the query. The rationale behind this
is that papers in the same topic as the query are likely to be
similar.

For all measures used here, pruning was done to radius 4 (in
the undirected graph). The Random Surfer simulations were
performed 200 times per query, and truncated after at most
15 steps. Top-100 queries were run on 50 randomly chosen
labeled nodes that had at least 5 citations and 5 references to
ensure that the measures wouldn’t become unavailable. Since
not all the nodes are labeled, only the nodes in the answer
set that have a label are considered for calculating the MAP
scores. Further, 50 such trials are performed and the averaged
MAP scores are reported in Table I.

It is observed that PSimRank* outperforms all the other
measures, improving on both PSimRank and SimRank* on
which it is based. In networks much smaller than Arnetminer
such as preprocessed versions [13] of the Cora [11] and
CiteSeer [4] datasets which have only a few thousand nodes
each, we found that PSimRank* as well as SimRank* and
PSimRank performed worse than P-Rank (Table I). However,
even in these cases, PSimRank* outperformed its predecessors.
Thus, combining the benefits of PSimRank and SimRank*

1http://dblp.uni-trier.de/

http://dblp.uni-trier.de/


under the GRSP interpretation is indeed effective, improving
on both the measures.

X. CONCLUSIONS

The GRSP model serves as a unifying framework for a class
of similarity measures based on the SimRank philosophy and
subsumes several seemingly disparate measures. Any proper-
ties that are discovered for this framework would also apply
to these measures. Admittedly, it is not all-encompassing; it is
not evident how it can be applied to MatchSim [9] which uses
weights obtained from a Maximum-Matching based scheme
(which are not constant), and CoSimRank [12] which is based
on Personalized PageRank [6].

Reinterpreting existing measures (P-Rank and SimRank*)
under this framework has provided interesting insights about
their functioning. The benefits of Monte Carlo computation
are also brought to this class of measures. The development of
PSimRank* under this framework, improving on the measures
from which it was derived, highlights the potential of the
GRSP Model to aid in the designing measures tailored to
various applications and domains. One exciting avenue for
future work is to use this framework to incorporate knowledge
generated by Machine Learning methods, such as document
embeddings generated by the state of the art Natural Language
Processing methods. Hopefully, this work has opened up
possibilities for theoretical dissection and development of
more effective measures.
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