
Building a Task Blacklist for Online Social
Platforms

Trang Ha, Quyen Hoang, Kyumin Lee
Department of Computer Science

Worcester Polytechnic Institute
Worcester, MA, USA

{tdha, qthoang, kmlee}@wpi.edu

Abstract—Recently, the use of crowdsourcing platforms (e.g.,
Amazon Mechanical Turk) has boomed because of their flex-
ible and cost-effective nature, which benefits both requestors
and workers. However, some requestors misused power of the
crowdsourcing platforms by creating malicious tasks, which
targeted manipulating search results, leaving fake reviews, etc.
Crowdsourced manipulation reduces the quality of online social
media, and threatens the social values and security of the
cyberspace as a whole. To help solve this problem, we build a
classification model which filters out malicious campaigns from
a large number of campaigns crawled from several popular
crowdsourcing platforms. We then build a task blacklist web
service, which provides users with a keyword-based search so that
they can understand, moderate and eliminate potential malicious
campaigns from the Web.

Index Terms—crowdsourcing, crowdsourced manipulation,
task blacklist, classification

I. INTRODUCTION

Crowdsourcing platforms such as Amazon Mechanical Turk
(MTurk)1 and Figure Eight2 have gained considerable favor
among companies and users, as they have made the pro-
cess of appealing to the mass for completion of micro-tasks
much easier. The crowdsourcing model provides requesters
with a low-cost, constantly available workforce, mitigating
the need to hire fixed-time employees to perform simple
tasks. Additionally, while AI has been developed to solve
numerous problems, it is not always feasible to make use of
automation instead of human labor. For instance, to perform
a classification task, initial manual labeling is required for
training machine learning-based classification models. On the
other side, workers can complete micro-tasks and earn money
mostly regardless of location and time. The more quickly they
finish the tasks, the more money they can make.

1https://www.mturk.com/
2https://www.figure-eight.com/

While crowdsourcing seems to be an ideal model for both
requesters and workers, crowdsourcing platforms face a risk of
being exploited by malicious requesters, who create malicious
tasks. Choi et al. [1] found that malicious tasks aimed at infor-
mation manipulation by manipulating search engines, writing
fake reviews or creating manipulated accounts, etc. In the
work, they found that malicious campaigns have several no-
table characteristics: shorter estimated completion time along
with higher rewards rate, which makes them more appealing
to workers when selecting tasks to complete because some
workers may not care about ethical issues or consequences.

So far, there exists no research or product that compiles
the findings of malicious campaigns into a comprehensive
list where affected parties can utilize to moderate the crowd-
sourcing environment. it has given us the motivation to build
classification models inspired by the findings from [1]’s re-
search, and detect additional malicious campaigns within over
446K campaigns crawled from several crowdsourcing sites.
In the end, we build a task blacklist, a web service, which
provides a keyword-based search service so that users can
query for malicious campaigns based on the targeted site,
task description or requesters’ information. Our task blacklist
service will be a useful tool for potential victims such as social
media sites, search engine companies and e-commerce sites,
to understand malicious attempts and which specific item or
product was targeted, as well as for workers to be aware of
this service, hoping them to conduct legitimate tasks instead
of malicious tasks.

Our contributions are as follows:

• We collected a large dataset consisting of 446K campaigns
collected from four crowdsourcing platforms.

• We developed a malicious campaign classifier and
achieved higher accuracy than the SVM-based model that
used in the prior work. Then, we applied the model to the
large dataset to identify new malicious campaigns.

• To support users and potential victims targeted by the
malicious campaigns, we built a task blacklist web service,
a keyword-based search service where users can retrieve
information of matched malicious campaigns.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

ASONAM ’19, August 27-30, 2019, Vancouver, BC, Canada
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6868-1/19/08...$15.00
http://doi.org/10.1145/3341161.3343705

2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

713

https://www.mturk.com/
https://www.figure-eight.com/
mailto:permissions@acm.org
http://doi.org/10.1145/3341161.3343705
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3341161.3343705&domain=pdf&date_stamp=2020-01-15

II. RELATED WORK

A number of researchers have noticed that the rising prob-
lem of crowdsourced manipulation in the past few years
and have reported valuable findings related to the malicious
campaigns on the Web. In 2012, Wang et al. [2] took the
first step in tackling the problem of sybils (fake accounts) in
social networking websites such as Facebook by developing
a scalable crowdsourced sybil detection system. On another
note, Fayazi et al. [3] showed that malicious requestors tar-
geted popular search engines (e.g., Google, Bing), social media
sites (e.g., Facebook, Pinterest), and online e-commerce sites
(e.g., Amazon) by creating malicious tasks and hiring workers
from crowdsourcing platforms. Choi et al. [1] proposed a novel
approach to define, classify and detect malicious campaigns
that exist on several popular crowdsourcing platforms. They
first analyzed the characteristics of malicious campaigns as
opposed to legitimate campaigns, and then made use of these
characteristics (or features) to build a classification model
to identify malicious campaigns with a high accuracy. This
work is the most relevant to our work, and we compare
our classification models with their SVM-based model in the
experimental section.

Recently, Su et al. [4] looked into a specific crowdturfing
problem called Add to Favorites that occurs within the realm of
online shopping. According to the paper, adding to favorites
is a popular function in online shopping sites, which helps
users make a record of potentially interesting items for future
purchase. Malicious requesters exploit this by putting up
tasks for workers to add their items to favorite. In this way,
their products will get higher positions in the search results,
which will make them more noticeable to shoppers, potentially
increasing their number of sales. The authors proposed a
factor graph based model to identify this kind of malicious
crowdsourcing behavior.

III. DATASETS AND METHODOLOGY

In this section, we describe our datasets and proposed
framework. We use two datasets called a small dataset and a
large dataset. The small dataset consists of 23,220 crowdsourc-
ing campaigns with manually labeled information (i.e., which
campaign is malicious or legitimate), including 3,356,153
tasks3. This dataset was collected from MTurk, Microwork-
ers, Rapidworkers, and Shorttask by using a crawler that
we developed for the prior work [1]. The crawler collected
23,220 campaigns, including detailed campaign descriptions
within a period of three months between November 2014 and
January 2015. Each campaign in the collected dataset was
manually labeled to either malicious or legitimate based on
its description. Out of the 23,220 campaigns, 5,010 campaigns
were labeled as malicious and the remaining ones were labeled
as legitimate. In the same manner, we collected a large
dataset, consisting of 446,167 crowdsourcing campaigns from
the four crowdsourcing platforms in a 20-month period from

3A campaign contains multiple tasks, and each task is assigned to one
worker.

July 2015 to February 2017. The large dataset is unlabeled.
Manually labeling the dataset requires a lot of efforts and time-
consuming job. This problem motivated us to study how to
build a classifier based on the labeled small dataset and predict
a class of each unlabeled campaign in the large dataset.

Fig. 1. A high level workflow of our proposed framework.

Figure 1 depicts a high level workflow of our proposed
framework. As we briefly mentioned earlier, we use the small
dataset to develop a classification model. Then, we apply the
model to identify malicious campaigns in the large dataset,
and save these campaigns into the database. We then index
the malicious campaigns and build a keyword-based search
engine. Finally, we deploy the web-based search engine so
that users can understand what kind of malicious campaigns
have been created, which item or product has been targeted
by malicious requestors.

IV. BUILDING CLASSIFICATION MODELS

A. Features

Following our prior work [1], we used the following fea-
tures to build malicious campaign classifier: reward, number
of tasks, estimated time to complete (ETC), hourly wage,
number of URLs in task instruction, number of URLs in task
instruction, number of words in task instruction, number of
words in a task title, number of words in task instruction, and
text features extracted from task title and task instruction.

To extract text features, we went through the following
steps:

• Combine task title and task instruction, remove stopwords
and apply stemming

• Build a TF-IDF vectorizer with the sklearn library that
uses the provided text features as its vocabulary and
automatically extracts unigram, bigram, trigram features
from the text

• Generate TF-IDF vectors for each campaign based on its
processed title and instruction text with the vectorizer

After the TF-IDF vectors were generated, we combined them
with all other proposed features to get the final vectors for
our model. The entire process of feature extraction can be
summarized in Fig. 2.

When we extract text features, a way to combine task
title and task instruction may lead slightly different bigram

2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

714

Fig. 2. Feature extraction workflow.

and trigram features. Therefore, we tried two different text
concatenation approaches:

• Concatenate the task title with the task detail
• Concatenate the task detail with the task title

B. Classification in the Small Dataset

Choosing which classification algorithm to use is an im-
portant decision, so we tried various classification algorithms
to see which one produces the best result in this malicious
campaign detection domain. In the previous work, [1] found
that Support Vector Machine (SVM) produced the best per-
formance. Therefore, we selected SVM as one of our classifi-
cation algorithms, and used its performance as a baseline. We
also chose CART (a simple decision tree algorithm), Random
Forest, Gradient Boosting Tree, and Xgboost to make the
Decision Tree algorithm more powerful.

In order to pick the best performing model, we compared
each model’s false positive rate (FPR), false negative rate
(FNR), accuracy, and area under the receiver operating charac-
teristic curve (AUC) by using the labeled small dataset (again,
containing 23,220 campaigns). AUC shows how well a model
can discriminate between positive and negative classes. AUC is
useful for evaluating binary classification, especially with high
bias data (one class is much more common than the other).
Since the number of malicious campaigns is significantly
less than the number of legitimate campaigns in both of
our datasets, this metric is extremely valuable for our model
evaluation. We randomly split the labeled small dataset into
training and test sets, which consist of 17,415 campaigns and
5,805 campaigns, respectively.

Overall, as shown in Table I, the Random Forest model
based on the second text concatenation approach (concatenat-
ing the task detail with the task title) outperformed the other
models including SVM (the baseline used in the prior work),
achieving 0.016 FPR, 0.003 FNR, 0.994 Accuracy and 0.990
AUC. Based on the result, we chose the Random Forest model
to identify new malicious campaigns in the large dataset.
The Random Forest model identified 51,605 new malicious
campaigns from the large dataset.

TABLE I
CLASSIFICATION RESULTS IN THE SMALL DATASET.

Model FPR FNR Accuracy AUC
SVM 0.104 0.011 0.969 0.943
CART 0.021 0.006 0.991 0.987
Gradient Boosting 0.025 0.004 0.992 0.986
Xgboost 0.025 0.003 0.992 0.986
Random Forest 0.016 0.003 0.994 0.990

Fig. 3. Landing page of our task blacklist service.

V. CREATING TASK BLACKLIST WEB SERVICE

In this section, we describe front-end and back-tend system
of our task blacklist web service.

A. Front-end Design

Our first task in creating the front-end UI for the web
application was to come up with the overall structural design.
In order to create an efficient design for displaying a large
number of malicious campaigns, we decided to create a
landing page which includes a search bar for users to put in
their search criteria (e.g., task name, name of targeted sites,
name of task requesters). From this, users will be redirected
to the search result page that consists of malicious tasks that
satisfy their search criteria. The landing page (see Fig. 3) only
contains a title for the project, a search bar and a navigation
bar for users to get to other parts of the website. This includes
links to the Search, Statistics, Contact and About page. The
statistics page displays graphs and charts to inform users about
the percentage of malicious tasks on crowdsourcing websites,
the breakdown of malicious task rate in each platform, and
typical pay rate for one malicious campaign, etc. About page
shows a short description of the project, and Contact page
provides contact information of this project’s team members.

When we designed a search result page, we got inspiration
from popular sites such as Google Careers, Monster and
Glassdoor. There are three main panels: the left-hand panel
contains a list of malicious tasks (see Fig. 4). Only 20
campaigns are shown at the same time in the list to avoid
crowding the page and to improve page loading time. When a
user chooses an item from this list, the details of the malicious
task would appear on the central panel. Concurrently, the right-
hand panel will display some statistics related to this particular
task.

2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

715

Fig. 4. An example of a search result page.

B. Back-end Components

a) Back-end framework: We chose Django as our back-
end framework. Django is a popular Python-based back-end
web application framework which follows the model-view-
template (MVT) architectural pattern. Some notable sites that
use Django include Disqus, Instagram, and Mozilla. Django
includes an object-relational mapper (or ORM) that arbitrates
the data models (which are defined as Python classes) and the
database (the “Model”). The “View” component is the Python
callback function for a particular URL, and a template system
for the user interface (the “Template”). Django is well-known
for its emphasis on making sure that developers can avoid most
common mistakes related to security. These common mistakes
include SQL injection, cross-site request forgery (CSRF),
clickjacking and cross-site scripting (XSS). By using a strong
user authentication system, Django significantly reduces secu-
rity risks. Furthermore, by employing a separation-of-concerns
method, Django projects are highly scalable. This means that
developers can add hardware, middleware or caching servers
at any point and still make sure the project is not corrupted.

b) Database management: Since the data that we used
for training and testing were stored in SQL tables, we used
MySQL for database management.

c) Search engine: One of the main features of our web
service is a search function. This is where users put in a search
criterion and it will be used to filter out relevant malicious
tasks. We used Django Haystack library4 as our search engine
for its numerous advantages. First of all, as it is a search engine
supported by Django, our choice of back-end framework, the
installation and usage of the search engine is much easier
and faster than any other searching modular. Secondly, Django
Haystack is a reusable app and relies only on its own code.
This makes it work nicely with both first-party and third-party
apps without requiring us to modify existing code.

Finally, Django Haystack is extremely flexible and sup-
ports some of the most popular search back-ends (e.g., Elas-
ticsearch5 Solr, Whoosh). The back-end is also pluggable,

4https://django-haystack.readthedocs.io/en/master/tutorial.html
5https://www.elastic.co/products/elasticsearch

meaning the developer can change the search back-end with
minimal code changes. Among the popular search back-ends,
we chose Whoosh, which is much simpler but still works well.
Our web service is running on a CentOS 7 server. The address
for our website is: http://blacklist.wpi.edu:8000/bl/.

VI. CONCLUSION AND FUTURE WORK

In this project, we have developed malicious campaign
classifiers based on a labeled 23,220-campaigns dataset. Ran-
dom Forest model achieved the best performance among five
models, and produced 0.994 accuracy, and 0.016 FPR. Then
this model was applied to a large unlabeled dataset consisting
of 446K campaigns, and found over 51K new malicious
campaigns. These malicious campaigns were indexed and used
for our task blacklist web service.

We created the task blacklist web service, where users can
query for malicious campaigns based on the targeted site,
task description or requesters’ information. This web service
uses Django as the back-end framework, which promotes
separation of concerns, security and scalability. The database
management system of our choice was MySQL for ease of
use and popularity. Django Haystack was the search modular
used for the searching functionality for its compatibility with
Django, our choice of back-end framework. This web service
was deployed to a server machine.

In the future, we are interested in building and running a
real-time data collection and index updating system so that
our task blacklist provide users with up-to-date malicious
campaign information. We are also interested in expanding
the number of crowdsourcing platforms from four to many
so that our task blacklist service provides users with more
diverse malicious campaign information. The current search
engine back-end is Whoosh. While it is sufficient for now,
this back-end is not optimal for scaling and performing more
complicated tasks such as faceting. We plan to replace this
back-end with a more powerful one such as Elasticsearch and
Solr.

ACKNOWLEDGMENT

This work was supported in part by NSF grant CNS-
1755536, and WPI Academic & Research Computing. Any
opinions, findings and conclusions or recommendations ex-
pressed in this material are the author(s) and do not necessarily
reflect those of the sponsors.

REFERENCES

[1] H. Choi, K. Lee, and S. Webb, “Detecting malicious campaigns in crowd-
sourcing platforms,” in Proceedings of the 2016 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining, 2016.

[2] G. Wang, M. Mohanlal, C. Wilson, X. Wang, M. Metzger, H. Zheng,
and B. Zhao, “Social turing tests: Crowdsourcing sybil detection,” arXiv
preprint arXiv:1205.3856, 2012.

[3] A. Fayazi, K. Lee, J. Caverlee, and A. Squicciarini, “Uncovering crowd-
sourced manipulation of online reviews,” in Proceedings of the 38th
international ACM SIGIR conference on research and development in
information retrieval, 2015.

[4] N. Su, Y. Liu, Z. Li, Y. Liu, M. Zhang, and S. Ma, “Detecting crowd-
turfing add to favorites activities in online shopping,” in Proceedings of
the 2018 World Wide Web Conference on World Wide Web, 2018.

2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

716

https://django-haystack.readthedocs.io/en/master/tutorial.html
https://www.elastic.co/products/elasticsearch
http://blacklist.wpi.edu:8000/bl/

	Introduction
	Related Work
	Datasets and Methodology
	Building Classification Models
	Features
	Classification in the Small Dataset

	Creating Task Blacklist Web Service
	Front-end Design
	Back-end Components

	Conclusion and Future Work
	References

