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ABSTRACT

Stress detection is becoming a popular field in machine learn-
ing and this study focuses on recognizing stress using the
sensors of commercially available smartwatches. In most of
the previous studies, stress detection is based on partly or
fully on electrodermal activity sensor (EDA). However, if the
final aim of the study is to build a smartwatch application,
using EDA signal is problematic as the smartwatches cur-
rently in the market do not include sensor to measure EDA
signal. Therefore, this study surveys what sensors the smart-
watches currently in the market include, and which of them
3rd party developers have access to. Moreover, it is studied
how accurately stress can be detected user-independently
using different sensor combinations. In addition, it is studied
how detection rates vary between study subjects and what
kind of effect window size has to the recognition rates. All
of the experiments are based on publicly available WESAD
dataset. The results show that, indeed, EDA signal is not
necessary when detecting stress user-independently, and
therefore, commercial smartwatches can be used for recog-
nizing stress when the used window length is big enough.
However, it is also noted that recognition rate varies a lot
between the study subjects.
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1 INTRODUCTION

There is evidence that well-being at work and working effi-
ciency are connected together [1]. This is because, employees
that are feeling well at work have better engagement, more
motivated and they have less sick days. One of the factors
leading to reduced work well-being and working efficiency
is stress. To increase productivity, it should be studied what
causes stress at work, and before this can be done, methods
to measure stress needs to studied. In this article, it is stud-
ied how to measure stress using the sensors of commercial
smartwatches.

Stress detection using wrist-worn sensors has recently
been studied widely, and it has been shown in the previous
studies that stress can be recognized with quite reliably. For
instance, in [2] stress at laboratory conditions was detected
with the accuracy of 83% using skin temperature, electroder-
mal activity, heart rate, blood volume pulse and accelerom-
eter signals. In fact, most of the studies use, among other
bio-sensors, electrodermal activity (EDA, a.k.a. galvanic skin
response) signal in the recognition process [3]. The main
problem of EDA is that if the aim is to build a stress detection
application for off-the-shelf smartwatches, the recognition
cannot be based on EDA as the smartwatches currently at
the market do not include sensor to measure EDA.

There are some studies where EDA is not used in the stress
detection process, and instead of EDA, other bio-signals have
been used. For instance, in [4] only accelerometer and opti-
cal heart rate sensor data were used for unsupervised stress
detection. However, there is no systematic study on how
accurately stress can be detected user-independently using
different sensor combinations. Some of the work was already
done in [5] where some of the sensor combinations were
compared. In fact, this article extends [5] by giving more in-
sights to publicly open WESAD data set and stress detection
using wearable sensors. Especially, this article concentrates
on studying how well stress can be detected using the sensors
included to commercial smartwatches. Moreover, it is studied
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Table 1: Smartwatch markets are dominated by three oper-
ating systems. The SDKs of these support different sensors.

Sensor / OS Tizen WearOS watchOS E4

ACC X X X X
ST X X X X
EDA - - - X
BVP X - - X
HR X X X X
HRV X - - X

how the recognition accuracy varies between study subjects,
as well as, how the window size effects to the recognition
rates.

2 EXPERIMENTAL DATASET

This study is based on publicly open data set called WESAD
[5]. It contains data from 15 participants measured using
Empatica E4 wrist-worn device [6]. This device includes
accelerometers (ACC), as well as, sensors to measure skin
temperature (ST), electrodermal activity (EDA), blood vol-
ume pulse (BVP), heart rate (HR), and heart rate variability
(HRV). In addition to E4 data, WESAD includes data from
chest-worn RespiBAN device and participants also filled in
questionnaires related to their feelings during the data gath-
ering session. However, in this study, only E4 data is used as
the focus of this article is in wrist-worn sensors.

In the data gathering, data from three different affective
states (stress, amusement, and relaxed) were collected. Ap-
proximately the length of the stressed situation was 10 min-
utes, amused situation 6.5 minutes and, relaxed situation was
20 minutes. In this study, amusement and relaxed states were
combined as one. Therefore, the studied problem was binary
(stressed vs. non-stressed). More detailed information about
the dataset can be found from [5].

3 SMARTWATCH SENSORS

Currently, the smartwatch market is dominated by three big
operating systems: Tizen by Samsung, WearOS by Google,
and watchOS by Apple. All of these operating systems have
own strength and weaknesses, but in this study the main
interest is which sensors they include and which one’s third
party application developers have access to. In Table 1, these
operating systems are compared to Empatica E4, which is
sensor-wise the most comprehensive wrist-sensor available.
However, Empatica is not a smartwatch, instead it is a device
that is designed to research usage, and therefore, it is expen-
sive and it is not a consumer product that can be bought
from store.

The comparison shows that from the commercial smart-
watches, Tizen is superior to WearOS and watchOS sensor-
wise. In fact, only Tizen provides access to heart rate variabil-
ity which is, according to several studies, the most important
information source when detecting different symptoms and
diseases. Moreover, only Empatica E4 includes a sensor to
measure electrodermal activity (EDA), which is in many stud-
ies used to detect stress. Therefore, if the aim is to detect
stress user-independently using commercial smartwatches,
it needs to be studied if it is possible to do that without EDA
sensor, and if EDA sensor is not obligatory, which sensors
are?

4 METHODS

In this article, the detection of stress is based on a recogni-
tion process traditionally used in human activity recognition
studies. This process contains three phases: data gathering,
training and detection [7]. The data gathering process is
passed by using open data set. For the model training sig-
nals were divided into windows, and from these windows,
features were extracted. To study the effect of window size,
different window sizes (15s, 30s, 60s, 90s, and 120s) were
compared. However, in each case, the length of slide was
the same, 0.25 seconds. In the original WESAD article [5]
this same slide was used with window size of 60 seconds.
Moreover, the features extracted from the windows were the
same as the ones used in [5]. However, in the original article,
features were extracted from EDA, BVP, temperature and
accelerometer signals, but not from heart rate signal as it
was done on this article.

Different window sizes and features are tested using 3
different classifiers: LDA (linear discriminant analysis), QDA
(quadratic discriminant analysis), and RF (Random Forest).
These classifiers were selected as they have shown good per-
formance when detecting human activities based on wear-
able sensor data.

5 EXPERIMENTS

For the experiments, the data was divided into training and
testing sets using leave-one-out method as the purpose is to
build user-independent models to detect stressed and non-
stressed stages. This means that one person’s data in turn was
used for testing and other 14 for training. Feature selection
was not used and the results in the tables present balanced
accuracies, which means that accuracy for both classes was
calculated separately and balanced accuracy is an average of
these.

The effect of window size

The results presented in Table 2 show the effect of window
size to the detection rate. In this case, LDA and all the features
biosignals (= features from skin temperature, electrodermal



Table 2: Window size has a noticeable effect on the recogni-
tion rates. Results using LDA classifier and the data from all
available biosensors.

Window Balanced Standard

size accuracy deviation
15s 81.2 13.1
30s 79.9 13.0
60s 81.7 13.3
90s 83.2 11.6
120s 84.0 12.9

Table 3: Average recognition results accuracies (standard de-
viation in parentheses) using different classifiers and sensor
combinations.

Sensors LDA QDA RF

ACC+EDA+ST+BVP+HR 834 (11.3) 76.8 (11.5) 80.5 (16.4)
EDA+ST+BVP+HR 84.0 (12.9) 72.9(15.6) 80.7 (14.4)
ST+BVP+HR 87.4(10.4) 84.9(14.3) 82.4(15.7)
EDA+BVP+HR 82.2(13.1) 78.4(12.9) 80.8(12.8)
EDA+ST+HR 84.4 (12.4) 72.1(15.9) 81.3(13.8)
EDA+ST+BVP 78.8 (15.2) 81.6(15.7) 81.0 (16.6)
ST+HR 82.5(12.4) 81.1(12.6) 77.5(16.9)
EDA+BVP 77.8 (13.7) 71.7 (154) 79.5 (14.5)
BVP+ST 82.9 (11.5) 83.3(15.0) 79.8(18.4)
EDA+ST 78.6 (15.4) 72.1(15.9) 79.7 (12.3)
EDA+HR 82.7 (14.3) 74.7(13.1) 78.8(13.3)
BVP+HR 83.8 (11.8) 78.7(14.9) 82.5(10.5)
EDA 735 (16.6) 69.7 (15.7) 78.3 (13.6)
BVP 81.2(11.4) 67.9(15.2) 81.4(9.2)
ST 75.2 (17.5) 68.3(18.1)  66.9 (18.0)
HR 77.0 (18.3)  73.3(16.0) 73.2(13.6)
ACC 71.0 (8.9)  69.2(10.8)  80.0 (9.2)

activity, heart rate, and blood volume pulse) were used in the
classification process. Tested window sizes varied from 15
to 120 seconds, longer window sizes were not experimented
as the size of the data set became a limiting factor. Based
on Table 2, window size has effect to the detection accura-
cies and long window size provides better results than short
ones. Interestingly, though the methods used to recognize
stress are quite similar to ones used to detect human activ-
ities, stress detection requires longer window than human
activities, which are normally detected using window size
of 2-10 seconds. This shows the difference of motion and
biosignal analysis, the type of motion can change rapidly
while affective states do not change that fast.

According to the Table 2, 120 seconds window provides
the best results. Therefore, this window size is used in the
following experiments when different classifiers and sensor
combinations are compared.

Comparing different sensor combinations and
classifiers

Table 3 compares the recognition rates using three different
classifiers and all the possible biosensor combinations. Firstly,
it can be noted that in the most of the cases LDA performs
slightly better than Random Forest and much better than
QDA. In fact, when it was noted that LDA performs better
than Random Forest, it was decided that there is no need to
run experiments several times using Random Forest, though,
depending on the run there is slight variation in the results
provided by Random Forest. On the other hand, the results of
LDA and QDA are not depended on the run. Secondly, it can
be noted that with each classifier, the best recognition rate
(LDA: 87.4%, QDA: 84.9%, RF: 82.4%) was obtained using a
combination of skin temperature, BVP, and heart rate signals.
Therefore, when stress is detected, it is not necessary to use
EDA signal in the recognition process. In fact, according to
the experiment, better detection rates can be obtained when
it is not used at all. Moreover, the importance of heart-based
biosignals (BVP and heart rate) can be noted from the results,
for instance by using only BVP signal, over 80% recognition
rate can be obtained. Additionally, it is worth noticing that
accelerometer data is not needed in stress detection, better
results can be obtained when biosensor data is not supported
by accelerometer data when using LDA or Random Forest as
the classifier. This shows that while accelerometer provides
information about motion, it is not that informative source
of data when it comes to detecting affective states.

Table 4 shows how the recognition rate varies between
the study subjects. There is a lot of variation, the lowest
accuracy is 62.6% and highest 98.8%. In fact, to reduce the
variation, it should be studied if the questionnaires explains
why the stress reactions of study subjects 14 & 15 are more
difficult to recognize than the one’s of other subjects.

6 DISCUSSION

The results presented in Table 2 show the effect of window
size to the recognition rates. In overall, it can be noted that
by using long windows, better recognition rates can be ob-
tained than using short ones. In this case, window of length
120 seconds provided the best results, and it was used in the
following experiments. It should be further experimented
if the recognition of other affective states, such as amuse-
ment, also requires long windows. Moreover, longer dataset
would allow experimenting with window sizes longer than
120 seconds. Now the size of the data set did not allow ex-
perimenting with longer window sizes. For instance, in [2]
window size of 20 minutes was used.

The main aim of the article was to study if it is possible to
detect stress using the sensors of commercial smartwatches
which do not include EDA sensor. The answer is yes. Tizen



Table 4: The best recognition rates were obtained using
LDA classifier and features from skin temperature, BVP and
heart rate signals. However, the recognition rate varies a lot
between the study subjects.

Study subject Accuracy

2 84.5
3 85.7
4 96.2
5 87.7
6 93.8
7 86.6
8 91.7
9 80.0
10 93.5
11 91.2
13 98.8
14 67.7
15 62.6
16 93.3
17 97.4

SDK provides access to skin temperature, BVP, and heart rate,
and according to Table 3 this sensor combination provides
recognition accuracy of 87.4% when LDA classifier is used.
In fact, recognition rate slightly drops if EDA signal is used
along with these these signals. The SDKs of WearOS and
watchOS are more limited sensor-wise, the only provide
access to body temperature and heart rate sensors. With this
combination, stress can be detected with accuracy of 82.5%
when using LDA classifier. Moreover, LDA classifier seems
to provide better results than QDA and Random Forest.

The main problem in stress detection that recognition
rate varies a lot between the study subjects, see Table 4.
Therefore, future work includes studying if the variation
could be reduced by using personalized recognition models
(for instance using method presented in [8]) instead of user-
independent or if the reason for variation can be found from
the questionnaires. Moreover, the author believes that results
can be improved by using feature selection.

7 CONCLUSION

Continuous stress detection using sensors of a smartwatch
was studied in this article. Firstly, the SDKs of the different
smartwatch operation systems were studied to find out what
data sources are available to third party developers. Tizen
SDK was found the most comprehensive, it provides access
to motion, ST, BVP, and HR sensors. Secondly, it was studied
how the window size effects to stress detection rates. It was
noted that long window (120s) provide more accurate results
than shorter one’s. Thirdly, the main aim was to study if

it is possible to detect stress user-independently using the
sensors of commercial smartwatches which do not include
EDA sensor. Leave-one-out method was used in the classifi-
cation process and it was actually noted that more accurate
recognition models can be trained if EDA is not used at all.
The best results (balanced accuracy 87.4%) were obtained
using a combination of LDA classifier and ST, BVP, and HR
sensors. However, while the average recognition rate is high,
the recognation rate varies a lot between the study subjects.
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