skip to main content
10.1145/3341163.3347741acmconferencesArticle/Chapter ViewAbstractPublication PagesubicompConference Proceedingsconference-collections
research-article

Multi-target affect detection in the wild: an exploratory study

Published:09 September 2019Publication History

ABSTRACT

Affective computing aims to detect a person's affective state (e.g. emotion) based on observables. The link between affective states and biophysical data, collected in lab settings, has been established successfully. However, the number of realistic studies targeting affect detection in the wild is still limited. In this paper we present an exploratory field study, using physiological data of 11 healthy subjects. We aim to classify arousal, State-Trait Anxiety Inventory (STAI), stress, and valence self-reports, utilizing feature-based and convolutional neural network (CNN) methods. In addition, we extend the CNNs to multi-task CNNs, classifying all labels of interest simultaneously. Comparing the F1 score averaged over the different tasks and classifiers the CNNs reach an 1.8% higher score than the classical methods. However, the F1 scores barely exceed 45%. In the light of these results, we discuss pitfalls and challenges for physiology-based affective computing in the wild.

References

  1. S. Bhattacharya and N. D. Lane. 2016. From smart to deep: Robust activity recognition on smartwatches using deep learning. In PerCom Workshops.Google ScholarGoogle Scholar
  2. Gordon H Bower. 1981. Mood and memory. Am Psychol (1981).Google ScholarGoogle Scholar
  3. B. Brenner, A.and Ehmke H. Burckhardt, G. and Draguhn, U. Eysel, and D. Singer. 2018. Physiologie.Google ScholarGoogle Scholar
  4. Andreas Bulling, Ulf Blanke, and Bernt Schiele. 2014. A tutorial on human activity recognition using body-worn inertial sensors. ACM Comput Surv. (2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. J. Choi, B. Ahmed, andR. Gutierrez-Osuna. 2012. Development and Evaluation of an Ambulatory Stress Monitor Based on Wearable Sensors. IEEE Trans. Inf. Technol. Biomed. (2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. V. Ebrahimi Kahou, S. and Michalski, K. Konda, R. Memisevic, and C. Pal. 2015. Recurrent Neural Networks for Emotion Recognition in Video (ICMI '15). Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. A Edwards. 1957. The social desirability variable in personality assessment and research. (1957).Google ScholarGoogle Scholar
  8. M. Gjoreski, M. Luǎtrek, M. Gams, and H. Gjoreski. 2017. Monitoring stress with a wrist device using context. J. Biomed. Inform. (2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. A. Grünerbl, A. Muaremi, V. Osmani, G. Bahle, and P. Lukowicz. 2015. Smartphone-Based Recognition of States and State Changes in Bipolar Disorder Patients. IEEE J BIOMED HEALTH (2015).Google ScholarGoogle Scholar
  10. N. Hammerla, S. Halloran, and T. Ploetz. 2016. Deep, Convolutional, and Recurrent Models for Human Activity Recognition using Wearables. arXiv preprint arXiv:1604.08880 (2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. J. Hannink, T. Kautz, C. F. Pasluosta, K. Gaßmann, and B. M. Eskofier. 2017. Sensor-Based Gait Parameter Extraction With Deep Convolutional Neural Networks. IEEE J. Biomed. Health Inform. (2017).Google ScholarGoogle Scholar
  12. J. Healey, L. Nachman, S. Subramanian, J. Shahabdeen, and M. Morris. 2010. Out of the Lab and into the Fray: Towards Modeling Emotion in Everyday Life (Pervasive'10). Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. J. A. Healey and R. W. Picard. 2005. Detecting stress during real-world driving tasks using physiological sensors. IEEE Trans. Intell. Transp. Syst. (2005). Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. J. Hernandez, R. Morris, and R. W. Picard. 2011. Call Center Stress Recognition with Person-Specific Models (ACII'11). Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. S. Koelstra, C. Muhl, M. Soleymani, J. Lee, T. Ebrahimi, and I. Patras. 2012. Deap: A database for emotion analysis; using physiological signals. IEEE Trans. Affect. Comput (2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Sylvia D Kreibig. 2010. Autonomic nervous system activity in emotion: A review. Biol. Psychol. (2010).Google ScholarGoogle Scholar
  17. M. Lin, Q. Chen, and S. Yan. 2013. Network In Network. arXiv preprint arXiv:1312.4400.Google ScholarGoogle Scholar
  18. A. Mattila, J. Salminen, T. Nummi, and M. Joukamaa. 2006. Age is strongly associated with alexithymia in the general population. J Psychosom Res (2006).Google ScholarGoogle Scholar
  19. Jon D Morris. 1995. Observations: SAM: the Self-Assessment Manikin; an efficient cross-cultural measurement of emotional response. J Advert Res (1995).Google ScholarGoogle Scholar
  20. S. Münzner, P. Schmidt, A. Reiss, M. Hanselmann, R. Stiefelhagen, and R. Dürichen. 2017. CNN-based Sensor Fusion Techniques for Multimodal Human Activity Recognition (ISWC '17).Google ScholarGoogle Scholar
  21. F. Pedregosa, G. Varoquaux, A. Gramfort, E. Duchesnay, et al. 2011. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 12 (2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. R. Picard, E. Vyzas, and J. Healey. 2001. Toward machine emotional intelligence: Analysis of affective physiological state. IEEE Trans. Pattern Anal. Mach. Intell. (2001). Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. K. Plarre, A. Raij, S. Hossain, M. Ali, A. Scott, et al. 2011. Continuous inference of psychological stress from sensory measurements collected in the natural environment (IPSN 2011).Google ScholarGoogle Scholar
  24. James A Russell. 1979. Affective space is bipolar. J Pers Soc Psychol (1979).Google ScholarGoogle Scholar
  25. A. Sano, A. Yu, A. McHill, A. Phillips, and R. Picard. 2015. Prediction of Happy-Sad mood from daily behaviors and previous sleep history. In Conf Proc IEEE Eng Med Biol Soc.Google ScholarGoogle Scholar
  26. P. Schmidt, A. Reiss, R. Dürichen, C. Marberger, and K. Van Laerhoven. 2018. Introducing WESAD, a Multimodal Dataset for Wearable Stress and Affect Detection (ICMI '18). Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. P. Schmidt, A. Reiss, R. Dürichen, and K. Van Laerhoven. 2018. Labelling Affective States "in the Wild": Practical Guidelines and Lessons Learned (UbiComp '18). Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. P. Schmidt, A. Reiss, R. Dürichen, and K. Van Laerhoven. 2018. Wearable affect and stress recognition: A review. arXiv preprint arXiv:1811.08854 (2018).Google ScholarGoogle Scholar
  29. S. Schneegass, B. Pfleging, N. Broy, F. Heinrich, and A. Schmidt. 2013. A data set of real world driving to assess driver workload (AutomotiveUI '13). Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. C. Spielberger, R. Gorsuch, and R. Lushene. 1983. Manual for the state-trait anxiety inventory. (1983).Google ScholarGoogle Scholar
  31. S. A. Taylor, N. Jaques, E. Nosakhare, A. Sano, and R. Picard. 2018. Personalized Multitask Learning for Predicting Tomorrows Mood, Stress, and Health. IEEE Trans. Affect. Comput. (2018).Google ScholarGoogle Scholar
  32. X. Zhang, W. Li, X. Chen, and S. Lu. 2018. MoodExplorer: Towards Compound Emotion Detection via Smartphone Sensing. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. (2018). Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Yi Zheng, Qi Liu, Enhong Chen, Yong Ge, and J. Leon Zhao. 2016. Exploiting multi-channels deep convolutional neural networks for multivariate time series classification. Front. Comput. Sci. (2016). Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Multi-target affect detection in the wild: an exploratory study

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      ISWC '19: Proceedings of the 2019 ACM International Symposium on Wearable Computers
      September 2019
      355 pages
      ISBN:9781450368704
      DOI:10.1145/3341163

      Copyright © 2019 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 9 September 2019

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate38of196submissions,19%

      Upcoming Conference

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader